Introduction to Genotyping

HC70AL Spring 2011 4/7/11

By Eden Maloney Elaine Chiu

What are the two possible alleles present in your plants?

Wild type allele of the gene

Gene with T-DNA insert

What are the possible genotypes?

Homozygous Wild Type

Heterozygous

Homozygous for T-DNA

What is the expected ratio of genotypes?

Remember Arabidopsis is a hermaphrodite!

Anther

Filament

Sepal

Receptacle

Where do Primers Anneal?

Gene Specific Primers

In Sequence Look For

Forward: 5' ACTG 3'

Reverse: 5' ATAA 3'

Forward: 5' TGAC 3'

Reverse: 5' TTAT 3'

Reverse Complement

What is the orientation of a T-DNA insert relative to the gene of interest?

What primer does the LBb1.3 primer form a PCR Product with?

What is the orientation of a T-DNA insert relative to the gene of interest?

What primer does the LBb1.3 primer form a PCR Product with?

How do you set up a PCR reaction for genotyping?

Do you know what direction the T-DNA inserted into your gene of interest?

How do we visualize PCR products?

 What do different sizes of PCR products represent?

How many different alleles are in a diploid organism?

 How many bands would you expect to see in a homozygous plant?

 How many bands would you expect to see in a heterozygous plant?

How do we interpret the gel results?

PCR products from plant #: 1 2 3 4

Rxn A

F + LBb1.3

Rxn B **R + LBb1.3**

Rxn C F + R

