

DNA Genetic Code of Life



Entire Genetic Code of a Bacteria



**DNA** Fingerprinting



Cloning: Ethical Issues and Future Consequences



Plants of Tomorrow





## HC70AL Spring 2011 Gene Discovery Laboratory

RNA and Tools For Studying Differential Gene Expression During Seed Development

4/18/11









## Controlling Gene Activity From Gene to Functional Protein & Phenotype





## Production of the Phenotype: DNA $\rightarrow$ RNA $\rightarrow$ Functional Protein



### Eukaryotic Gene Activity: Genes to Functional Proteins



#### Regulating Eukaryotic Gene Activity: Major Control Points



Knock-Out Mutations Can Affect Each Control Point As Well As Coding Sequences

## **RNA Structure & Transcription**

## Gene Anatomy-A Review



<u>Note</u>: mRNA Sequence = Sense Strand Sequence

## **Transcription:** An Overview



## Transcription: A "Ground Level" View



<u>Requires</u>: DNA Template, RNA Polymerase, and Ribonucleotides (<u>Note</u>: No Primer)

### Visualizing Transcription in the Electron Microscope



#### Genes Can Have Different "Expression" Levels That Are Reflected in Differing Amounts of mRNAs Accumulating in the Cytoplasm



## RNA Has Ribose Sugar in Nucleotide



## **RNA Has a Uracil Instead of Thymine**





### Eukaryotic RNAs Are Single-Stranded Polynucleotides

Nucleotides Joined By Phosphodiester Bonds Like All Nucleic Acids



Order 5' → 3' Leads to Function: Co-Linear With Gene Sequence

## RNA Has <u>Intra</u>-Strand Double Helices or Secondary Structure



#### RNA <u>Intra</u>-Strand Secondary Structure Formed By <u>Intra</u>-Chain Complementary Base Pairing



Figure 6-5 Molecular Biology of the Cell (© Garland Science 2008)

## A Comparison of RNA and DNA Structures

| Table 13.1 The structures of DNA and<br>RNA compared |                |                 |  |  |
|------------------------------------------------------|----------------|-----------------|--|--|
| Characteristic                                       | DNA            | RNA             |  |  |
| Composed of<br>nucleotides                           | Yes            | Yes             |  |  |
| Type of sugar                                        | Deoxyribose    | Ribose          |  |  |
| Presence of<br>2'-OH group                           | Νο             | Yes             |  |  |
| Bases                                                | A, G, C, T     | A, G, C, U      |  |  |
| Nucleotides joined<br>by phosphodiester<br>bonds     | Yes            | Yes             |  |  |
| Double or single stranded                            | Usually double | Usually single  |  |  |
| Secondary structure                                  | Double helix   | Many types      |  |  |
| Stability                                            | Stable         | Easily degraded |  |  |

## There Are Many Different Types of RNA

#### Table 13.2 Location and functions of different classes of RNA molecules

| Class of RNA                  | Cell Type                | Location of Function<br>in Eukaryotic Cells* | Function                                                       |
|-------------------------------|--------------------------|----------------------------------------------|----------------------------------------------------------------|
| Ribosomal RNA (rRNA)          | Bacterial and eukaryotic | Cytoplasm                                    | Structural and functional<br>components of the ribosome        |
| Messenger RNA (mRNA)          | Bacterial and eukaryotic | Nucleus and cytoplasm                        | Carries genetic code for proteins                              |
| Transfer RNA (tRNA)           | Bacterial and eukaryotic | Cytoplasm                                    | Helps incorporate amino acids<br>into polypeptide chain        |
| Small nuclear RNA (snRNA)     | Eukaryotic               | Nucleus                                      | Processing of pre-mRNA                                         |
| Small nucleolar RNA (snoRNA)  | Eukaryotic               | Nucleus                                      | Processing and assembly of rRNA                                |
| Small cytoplasmic RNA (scRNA) | Eukaryotic               | Cytoplasm                                    | Variable                                                       |
| MicroRNA (miRNA)              | Eukaryotic               | Cytoplasm                                    | Inhibits translation of mRNA                                   |
| Small interfering RNA         | Eukaryotic               | Cytoplasm                                    | Triggers (siRNA) degradation of<br>other RNA molecules         |
| Piwi-interacting RNA (piRNA)  | Eukaryotic               | Cytoplasm                                    | Thought to regulate gametogenesis, but function poorly defined |

Differential Gene Activity Programs Development Animal Cloning Demonstrates That the Genome of a Differentiated Cell Contains All of the Genes Required To Program the Entire Life Cycle



<u>Corollary</u>: Differentiation Must Be Programmed By Differential Gene Expression Plant Cell Cloning Demonstrates That the Genome of a Differentiated Plant Cell Contains All of the Genes Required To Program the Entire Life Cycle



## <u>Corollary</u>: Plant Differentiation Must Be Programmed By Differential Gene Expression

Tools For Investigating Differential Gene Activity

#### Two-Dimensional Protein Gel Electrophoresis



## 2-D Protein Gel Electrophoresis Demonstrates Differential Gene Activity in Animal Organs



## **RNA Blots Detect Specific RNAs in an RNA Population**



#### Need Specific Probe to Detect RNA

#### **RNA Blot Demonstrates Differential Gene Activity**



## *In Situ* Hybridization Demonstrates Differential Gene Activity



## Hybridization of Specific Probe to Tissue In Situ (i.e., In Place)

## Localizing Gene Activity in Plant Embryo Regions



Weterings et al. Plant Cell (2001) 13,2409-2425

#### Using Reverse Transcriptase to Synthesize cDNA Copies of mRNAs (<u>Note</u>: cDNA=copy DNA)

#### Requirements

- 1. RNA Template
- 2. dXTPs
- 3. Reverse Transcriptase
- 4. RNase H or S-1 Nuclease
- 5. Oligo dT Primer

<u>Note</u>: Reverse Transcriptase is a DNN Polymerase



### A Comparison of PCR and RT-PCR



#### Generating Double-Stranded cDNA Copies of Specific mRNAs Using Reverse Transcription PCR



## Using RT-PCR to Investigate Seed Gene Activity



Which "Tissue" Has the Most bobg mRNA?

### Using Real-Time Quantitative RT-PCR To Measure Specific mRNA Accumulation Levels



Curves Visualize the Replication Process Over Time That is, the Amount of DNA Synthesized at Each PCR Cycle

#### Genes Can Have Different "Expression" Levels That Are Reflected in Differing Amounts of mRNAs Accumulating in the Cytoplasm



# Using Microarrays to Investigate the "Expression' of <u>Thousands</u> of Genes at a Time: Part One



## Using Microarrays to Investigate the "Expression' of <u>Thousands</u> of Genes at a Time: Part Two



## Using Microarrays to Investigate the "Expression' of <u>Thousands</u> of Seed Genes



## Using Hierarchical Clustering to Reveal Co-Regulated Gene (mRNA) Sets



**Clustering Algorithms Find Similar Patterns** 

#### Hierarchical Clustering of Up-Regulated mRNAs in Different Cancer Tissues



Using Microarrays To Investigate Gene Activity in Arabidopsis Seeds 1. Whole Seeds 2. Specific Seed Compartments

#### Genome-Wide Profiling of mRNAs During Arabidopsis Seed Development & Plant Life Cycle



## Identification of Seed-Specific mRNAs in the Arabidopsis Life Cycle Using Whole Seeds



<sup>()</sup> Indicates number of transcription factor mRNAs

Le et al. PNAS (2010) 107, 8063-8070

Using Laser Capture Microdissection (LCM) and GeneChips To Profile mRNAs in Specific Seed Cells, Tissues, and Compartments

Embryo Proper

Suspensor

Seed Coat

Arabidopsis Seed After Fertilization estdb.biology.ucla/seed/presentation

## Gene Activity in Globular-Stage Arabidopsis Seed Compartments



#### Arabidopsis Genes You Are Investigating This Quarter Are Active in Specific Seed Compartments



## Recall.....Scientific American Article on cDNA/EST Sequencing From Last Quarter

# Discovering Genes for New Medicines

By identifying human genes involved in disease, researchers can create potentially therapeutic proteins and speed the development of powerful drugs

by William A. Haseltine

Scientific American, March 1997

## Sanger Sequencing cDNAs to Discover New Genes & Drug Targets



## Using RNASeq To Investigate Gene Activity



Combines EST/cDNA Sequencing & NextGen High Throughput Technology

## Advantages of RNASeq To Investigate Gene Activity

- High Throughput Sequencing
- Relatively "Simple" Procedure
- Study the Activity of Entire Genome
- Very Sensitive (can identify rare mRNAs)
- Quantitative
- Useful For Genome Annotation
- Can Identify Differentially Processed mRNAs
- Can Identify SNPs in mRNAs (i.e., alleles)

#### Using RNASeq to Study Gene Activity in Soybean Seed Development



Number of Reads (in millions)

We've generated >943 million reads (~71 Gb)!!!!

## How Many Genes Are Active Throughout the Soybean Life Cycle?

![](_page_50_Figure_1.jpeg)

Number of Genes (in thousands)

![](_page_51_Figure_0.jpeg)

\*Union of all LCM & WM (glob-dry)