

DNA Genetic Code of Life

Entire Genetic Code of a Bacteria

DNA Fingerprinting

Cloning: Ethical Issues and Future Consequences

Plants of Tomorrow

HC70AL Spring 2011 Gene Discovery Laboratory

Knocking-Out Seed Transcription Factor Genes

4/5/11

Using Reverse Genetics To Find Genes That Control Seed Development

Recall.....Arabidopsis Features That Make It a Model Plant & Crop

- 1. Fast Generation Time
- 2.Small Size
- 3.Small Genome (~120 Mb & 25,000 Genes)
- 4. Sequenced Genome
- 5.Large Scientific Community-Many Resources For Genomics & Functional Studies
- 6.Knock-Out in Every Gene

Arabidopsis thaliana

Figure 1-13c Introduction to Genetic Analysis, Ninth Edition © 2008 W. H. Freeman and Company

SPECIES	SPECIAL FEATURES	HABITAT	GENOME SIZE (1000s OF NUCLEOTIDE PAIRS PER HAPLOID GENOME)	ESTIMATED NUMBER OF GENES CODING FOR PROTEINS
ARCHAEA				
Methanococcus jannaschii	lithotrophic, anaerobic, methane-producing	hydrothermal vents	1664	1750
Archaeoglobus fulgidus	lithotrophic or organotrophic, anaerobic, sulfate-reducing	hydrothermal vents	2178	2493
Nanoarchaeum equitans	smallest known archaean; anaerobic; parasitic on another, larger archaean	hydrothermal and volcanic hot vents	491	552
EUCARYOTES				
Saccharomyces cerevisiae (budding yeast)	minimal model eucaryote	grape skins, beer	12,069	~6300
Arabidopsis thaliana (Thale cress)	model organism for flowering plants	soil and air	~142,000	~26,000
Caenorhabditis elegans (nematode worm)	simple animal with perfectly predictable development	soil	~97,000	~20,000
Drosophila melanogaster (fruit fly)	key to the genetics of animal development	rotting fruit	~137,000	~14,000
Homo sapiens (human)	most intensively studied mammal	houses	~3,200,000	~24,000

Table 1–1 Some Genomes That Have Been Completely Sequenced

Genome size and gene number vary between strains of a single species, especially for bacteria and archaea. The table shows data for particular strains that have been sequenced. For eucaryotes, many genes can give rise to several alternative variant proteins, so that the total number of proteins specified by the genome is substantially greater than the number of genes.

Arabidopsis Has Same Number of Genes as Humans

Recall....Plant Life Cycle

Figure 2-22 Genetics: A Conceptual Approach, Third Edition © 2009 W. H. Freeman and Company

Recall...Embryos Undergo a Series of Events Leading to a Dormant Embryo in a Mature Seed

Recall...The "End Product" is Dormant Seed With a Mature Embryo!

<u>A Seed Consists of Three Parts With Distinct Genetic Origins</u>

- 1. A Seed Coat From Maternal Floral Tissue
- 2. An Endosperm From Fertilization of Embryo Sac Central Cell
- 3. An Embryo From Fertilization of the Egg

The Embryo Becomes the Next Plant Generation

Recall...Genome-Wide Profiling of mRNAs During Arabidopsis Seed Development & Plant Life Cycle

Searching For Functions of Seed Transcription Gactor Genes Using Reverse Genetics (e.g., lec1 Mutants Disrupt Seed Development)

- Suppression of Suspensor Embryonic Potential
- Development of Cotyledon Identity
- Initiation and Maintenance of Seed Maturation
- Inhibition Germination

Lotan et al., Cell, 1998

Examples of Arabidopsis Mutants

Figure 2-1a Introduction to Genetic Analysis, Ninth Edition © 2008 W.H. Freeman and Company

Reverse Genetics Starts With Gene Sequence and Searches For a Mutant Phenotype (i.e., Function)

Figure 5-1 Molecular Cell Biology, Sixth Edition © 2008 W.H. Freeman and Company

Knock-Out Mutations Are Loss-of-Function or Null Mutations

Knock-Out Mutations Are Loss-of-Function or Null Mutations

Figure 8-64 Molecular Biology of the Cell (© Garland Science 2008)

Inserting Foreign DNA Into the LacZ Gene is a Knock-Out Mutation

Genetics: A Conceptual Approach, Third Edition

© 2009 W. H. Freeman and Company

Inserting Foreign DNA Into the LacZ Gene is a Knock-Out Mutation

Figure 19-8 part 2 Genetics: A Conceptual Approach, Third Edition © 2009 W.H. Freeman and Company

A Null Mutation Can Affect Any Part of the Flow From DNA to Protein

Introduction to Genetic Analysis, Ninth Edition © 2008 W. H. Freeman and Company

Simple Mendelian Genetics...a Review

Table 3.1	ble 3.1 Summary of important genetic terms		
Term	Definition		
Gene	A genetic factor (region of DNA) that helps determine a characteristic		
Allele	One of two or more alternate forms of a gene		
Locus	Specific place on a chromosome occu- pied by an allele		
Genotype	Set of alleles possessed by an individual organism		
Heterozygote	An individual organism possessing two different alleles at a locus		
Homozygote	An individual organism possessing two of the same alleles at a locus		
Phenotype or trait	The appearance or manifestation of a character		
Character or characteristic	An attribute or feature		

Table 3-1

Genetics: A Conceptual Approach, Third Edition

© 2009 W. H. Freeman and Company

Chromosomes & Alleles...a Review

Simple Mendelian Genetics...a Review

Figure 3-1 *Genetics: A Conceptual Approach, Third Edition* © 2009 W. H. Freeman and Company

Simple Mendelian Genetics...a Review

What Happens if the KO Results in a Lethal Phenotype?

© 2009 John Wiley & Sons, Inc. All rights reserved.

Note Segregation of Wt and Mutant Seeds

Arabidopsis Siliques and Developing Seeds

Using Agrobacterium T-DNA as a Mutagen

T-DNA Inserts Randomly Into Plant Genome

Transforming Plants With T-DNA

Figure 8-67a Molecular Biology of the Cell (© Garland Science 2008)

Using Agrobacterium T-DNA as a Mutagen

Introduction to Genetic Analysis, Ninth Edition © 2008 W. H. Freeman and Company

A Collection of Arabidopsis T-DNA Mutants Exists

Funded by the National Science Foundation SalkInstitute Genomic Analysis Laboratory

SIGnAL "T-DNA Express" Arabidopsis Gene Mapping Tool (Dec.20, 2004)

Arabidopsis thaliana chromosome 1, nucleotide pairs 1 through 10,001.

Segregation of T-DNA Inserts in Knock-Out Lines

Male Gametes

		T-DNA Allele	Wt Allele
Female Gametes	T-DNA Allele	T-DNA/TDNA	Wt/T-DNA
	Wt Allele	T-DNA/Wt	Wt/Wt

If Gene Is Critical For Controlling Seed Development The T-DNA/T-DNA Class Does <u>Not</u> Appear!

Inheritance of the T-DNA Inserts

If Seed Lethal This Class Does Not Appear

Using PCR to Genotype Segregating Plants

What Do You Expect If Using Only Gene Primers? 1.Homozygous Wt Plant? 2.Heterozygous Plant? 3.Homozygous T-DNA Plant? 1.If Lethal? 2.If Not Lethal?