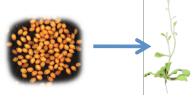
Methods and Approaches used to Study Knockout Arabidopsis Thaliana Plants

Lauren Daoust Reece Fenning Krista Perry

June 2nd, 2011

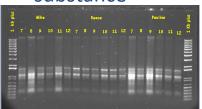
Reverse Genetics

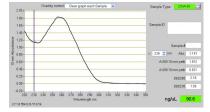

- Question
 - What is the function of the gene of interest?
- Method
 - Observe the phenotypic effects of the knockout mutant

What is a Knockout Mutant?

- Method
 - Knockout a gene by placing a T-DNA insert in the middle of an exon to disrupt sequence
- Homozygous T-DNA mutant plant
 - Both alleles contain T-DNA inserts and cause the gene to not be expressed
 - Does not always cause lethality or a physical phenotype
 - Other genes may compensate
 - Gene may not have a crucial role in seeds

Genomic Isolation

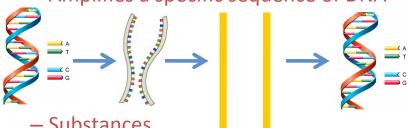

Sow Seeds



- Extract Nucleotides from a Leaf
 - Extraction Buffer, Isoproponal, Ethanol, SpeedVac, TE
 Buffer
- Determine quality of Nucleotides
 - Gel Electrophoresis and Nanodrop

What does Nanodrop and Electrophoresis Measure?

- Nanodrop
 - Measures the concentrations of nucleotides in a substance

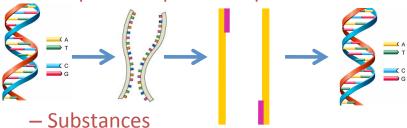


- Electrophoresis
 - Measures the quality of genomic DNA which corresponds with the top band
 - Syber Safe, Agarose, TAE Buffer, Loading Dye

Polymerase Chain Reaction (PCR)

PCR

- Amplifies a specific sequence of DNA



- Substances

• 10x Taq Buffer, dNTP Mix(deoxyribonucleotide triphosphate), Primers, Ex Taq DNA Polymerase

Polymerase Chain Reaction (PCR)

- PCR
 - Amplifies a specific sequence of DNA

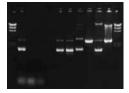
• 10x Taq Buffer, dNTP Mix(deoxyribonucleotide triphosphate), Primers, Ex Taq DNA Polymerase

Genotyping

- PCR
 - Primers specify what allele is isolated and amplified
- Biorad
 - Denaturing, Annealing, Replication and Cycles
- Gel Electrophoresis
 - The expected sizes for each type of allele should indicate what genotype the plant has for that specific gene

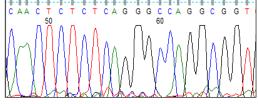
PCR Purification

- PCR purification purifies the products produced by PCR in order to sequence
- Methods
 - Gel Extraction
 - PCR QuickSpin purification



Gel Purification

- Cut out desired DNA fragment from agarose gel
 - Use a razor under UV light to cut out gel
- Add QG Buffer
 - Dissolves gel during incubation
- Add isopropanol to increase yield and place into a Quickspin column
 - Perform this step after gel is dissolved and turns yellow


PCR Quickspin Purification


- Reagents
 - PB Buffer
 - DNA binds to the Quickspin membrane and PB brings down cellular compounds
 - PE Buffer
 - · Washes out salts and proteins
 - EB Buffer
 - Binds to DNA and provides a stable environment to elute DNA from Quickspin membrane
- Nanodrop
 - Check Nucleotide Concentration

What Does Sequencing Reveal?

The Sanger Sequencing Method is used to determine:

- 1. The Orientation and location of the T-DNA Insert
- 2. Your gene of interest and its function
- 3. The structure of your gene

http://arabidopsis.org/servlets/TairObject?type=gene&id=130865

Bioinformatics

•Analyzes data using statistics and high output computing in a detailed and visual manner

Examples:

- 1. TAIR: contains information on all genes in the Arabidopsis Genome
- 2. NCBI: a large database for genes from all species and organisms
- 3. FinchTV: sequence viewer
- 4. Seed Gene Network: gives an in depth view on gene expression in Arabidopsis seeds

Phenotyping

- •Compare the phenotypes between mutant plants and wildtype plants to determine if there are any differences in phenotype as a result of mutation in a gene
- •This comparison can reveal what the gene codes for, where it is expressed, and whether it will cause seed or plant lethality

How can we observe phenotypes?

- 1. Look for differences between the plants i.e. the leaves, flowers, stems
- 2. Observe the seeds
- 3. Look at gene expression

Light Microscopy

- •If a plant is heterozygous for the mutant allele there should be one mutant seed for every three green seeds
- •Looking for this 3:1 ratio of green to mutant seeds
- •Dissect siliques and count seeds to discover the ratio

3:1 Ratio of a Heterozygous Plant

	Α	a	
Α	AA	Aa	
а	Aa	aa	

What is a Chi-Square Test?

- A statistical test that measures deviation from a null hypothesis
- Tells how much the deviation from the expected 3:1 ratio is due to chance alone
- If a p-value > 0.05, the deviation from the expected ratio is most likely due to chance and not some other factor
- Cannot reject null hypothesis of a 3:1 Ratio if p>0.05 indicating there is no significant difference between the expected and observed results

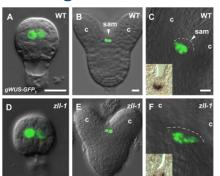
What can Nomarski Reveal about the Phenotypes of Seeds?

•Allows a more detailed view of the seeds to detect if there is any mutant phenotype not visible by the naked eye as compared to the wild-type seeds

When and Where are Genes Expressed?

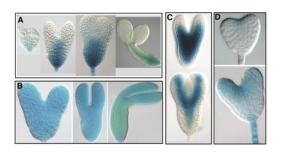
Promoter Cloning

How Do You Measure Transcription? Design an Experiment:


- Transcription is controlled by the promoter, a "switch" that acts independently
- Create a chimeric gene using the Arabidopsis promoter switch and a reporter gene
- Allows the observation of protein expression rather than the accumulation of mRNA in the cytoplasm

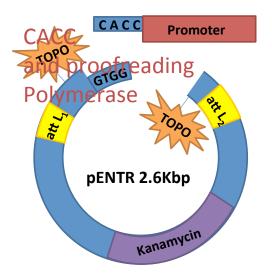
LB Basta^R Promoter GFP GUS RB

What is a Reporter Gene?


GFP

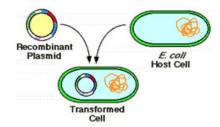
- Green Fluorescent Protein
- Fluoresces green under UV light

GUS


- Beta-glucuronidase
- Enzyme converts x-gluc to a blue precipitate
- More sensitive

ttp://www.plantphysiol.org/content/156/1/346.fu

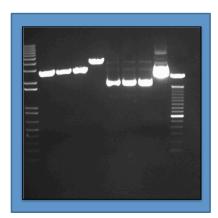
How do you Clone the Promoter Into a Plasmid in the Correct Direction?

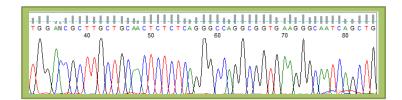

Isolate and amplify the promoter using PCR with

primers with a 5' overhang DNA

- Ligate PCR product into pENTR/D-TOPO Vector
- pENTR contains:
 - Kanamycin resistance
 - Topoisomerase I
 - GTGG overhang
 - att L_1 + att L_2

Transformation of E. coli Cells and Isolation of Plasmid DNA


- Transform via heat shock
- Grow colonies on Kanamycin plates, selecting for transformed cells
- Select a colony and isolate plasmid DNA



n://www.bio-world.com/productinfo/3_43_287_683/2509/Terrific-Broth-TR-w-Glycerol.html

How Do You Identify an Accurate Recombinant Plasmid?

- Restriction Enzyme Digest
 - Cleave with Ascl.
 - Gel electrophoresis expected sizes:
 - Without promoter ≈ 2.5Kbp
 - With promoter longer
 - Compare to non-digested plasmids
- Sequence Reaction and BLAST
 - Ensure there are no mutations

When and Where are Genes Expressed? Next Steps

- Homologous recombination between att sequences flanking the promoter in pENTR and a toxic gene in the T-DNA vector containing GFP, GUS, BastaR, and LB + RB
- Transform *E. coli* cells with T-DNA vector to select and amplify
- Transform Agrobacterium cells with T-DNA vector and Ti Helper plasmid containing transfer proteins that package the chimeric gene
- Transform Arabidopsis with Agrobacterium and observe reporter gene activity

LB	Basta ^R	Promoter	GFP	GUS	RB	
----	--------------------	----------	-----	-----	----	--

