

THEMES

- 1. What is Current Status of Recombinant DNA Drugs?
- 2. How Do We Go From Disease to Gene to Drug? Hemophilia A Case Study
- 3. How Is Hemophilia Inherited?
- 4. What is the Pedigree Pattern of a Sex-Linked Gene?
- 5. How Find a Disease Gene When It is Not Known Where the Gene is Expressed?
- 6. What Vectors Can Be Used For Cloning DNA?
- 7. What Are the Advantage of Using a Virus Vector For Constructing Genome Libraries?
- 8. How Make a Library of the Human Genome?
- 9. How Find a Gene With Only a Knowledge of the Protein Sequence?
- 10. What is Chromosome Walking & What Role Did it Play in Cloning the Factor VIII Gene?
- 11. How Use DNA Testing to Detect Factor VIII Disease Alleles?
- 12. How Isolate a Factor VIII cDNA Clone?
- 13. How Produce Factor VIII Protein For Use as a Drug?
- 14. Transgenic Protein Patent & Regulatory Concerns?
- 15. Diagnostic Disease DNA Testing Legal Concerns?
- 16. How About Gene Therapy?

But What About Genes?

Yes - Up to Six Months Ago!

June 13, 2013

Justices, 9-0, Bar Patenting Human Genes

SUPREME COURT OF THE UNITED STATES

Syllabus

ASSOCIATION FOR MOLECULAR PATHOLOGY ET AL. v. MYRIAD GENETICS, INC., ET AL.

Genes NOT Patentable – But Engineered Genes, cDNAs, and Transgenic Organisms (GMOs) Are Patentable!!

Examples of Recombinant DNA Drugs

TABLE 1.2 EXAMPLES FROM CLO	S OF PROTEINS MANUFACTURED				
Product	Application				
Blood factor VIII (clotting factor)	Treat hemophilia				
Epidermal growth factor	Stimulate antibody production in patients with immune system disorders				
Growth hormone	Correct pituitary deficiencies and short stature in humans; other forms are used in cows to increase milk production				
Insulin	Treat diabetes				
Interferons	Treat cancer and viral infections				
Interleukins	Treat cancer and stimulate anti- body production				
Monoclonal antibodies	Diagnose and treat a variety of dis- eases including arthritis and cancer				
Tissue plasminogen activator	Treat heart attacks and stroke				

TABLE 1.1	TOP 10 BIOTECHNOLOGY DRUGS (WITH SALES OVER \$1 BILLION) 2012					
Drug	Developer	Function (Treatment of Human Disease Conditions)				
Enbrel	Amgen & Wyeth	Rheumatoid arthritis				
Remicade	Johnson & Johnson	Rheumatoid arthritis				
Rituxan	Roche	Non-Hodgkin's lymphoma				
Avastin	Roche	Colon cancer				
Herceptin	Roche	Breast cancer				
Humira	Abbott Labs	Rheumatoid arthritis				
Levenox	sanofi-aventis	Blood clots				
Lantus	sanofi-aventis	Diabetes				
Aranesp	Amgen	Anemia				

<u>These Include</u>: Hormones, Blood Factors, Anticoagulents, Growth Factors, Interferons, Vaccines, Monoclonal Antibodies, Bone Morphogenic Proteins, & Many Others <section-header><section-header><section-header><image><text><text>

Reference: Lawn & Vehar, Sci. Amer., January, 1986

Abraham was circumcised at 93 and gave birth to Isaac at 99. His wife - Sarah - was 90!

	Copyright © Th	e McGraw-Hill Companies, Inc. Permission required for reproduction or displa	ıy.		
TABLE 13.2	Some Important	Genetic Disorders			
Disorder	Symptom	Defect	Dominant/ Recessive	Frequency Among Human Births	
Cystic fibrosis	Mucus clogs lungs, liver, and pancreas	Failure of chloride ion transport mechanism	Recessive	1/2500 (Caucasians)	
Sickle cell anemia	Blood circulation is poor	Abnormal hemoglobin molecules	Recessive	1/600 (African Americans	
Tay–Sachs disease	Central nervous system deteriorates in infancy	Defective enzyme (hexosaminidase A)	Recessive	1/3500 (Ashkenazi Jews)	
Phenylketonuria	Brain fails to develop in infancy	Defective enzyme (phenylalanine hydroxylase)	Recessive	1/12,000	
Hemophilia	Blood fails to clot	Defective blood-clotting factor VIII	X-linked recessive	1/10,000 (Caucasian males	
Huntington disease	Brain tissue gradually deteriorates in middle age	Production of an inhibitor of brain cell metabolism	Dominant	1/24,000	
Muscular dystrophy (Duchenne)	Muscles waste away	Degradation of myelin coating of nerves stimulating muscles	X-linked recessive	1/3700 (males)	
Hypercholesterolemia	Excessive cholesterol levels in blood lead to heart disease	Abnormal form of cholesterol cell surface receptor	Dominant	1/500	
Hemophilia A Hemophilia B	Prior to 1960s - Defective F Defective F	actor VIII Gene	1/10,00	00 males 80%	
		acton VT Gono	Autocol	nol /1%	

DNA Tests Can Now Be Used To Detects Hundreds of Genetic Disease Alleles

TABLE 11.1 GENETIC DISEASE TESTING					
Genetic Disease Condition	Genetic Basis for Disease and Symptoms				
Cancers (brain tumors; urinary bladder, prostate, ovarian, breast, brain, lung, and colorectal cancers)	A variety of different mutant genes can serve as markers for genetic testing.				
Cystic fibrosis	Large number of mutations in the cystic fibrosis transmembrane conduc- tance regulator (CFTR) gene on chromosome 7. Causes lung infections an problems with pancreatic, digestive, and pulmonary functions.				
Duchenne muscular dystrophy	Defective gene (dystrophin) on the X chromosome causes muscle weakne and muscle degeneration.				
Familial hypercholesterolemia	Mutant gene on chromosome 19 causes extremely high levels of blood cholesterol.				
Hemophilia	Defective gene on the X chromosome makes it difficult for blood to clot when there is bleeding.				
Huntington disease	Mutation in gene on chromosome 4 causes neurodegenerative disease in adults.				
Phenylketonuria (PKU)	Mutation in gene required for converting the amino acid phenylalanine into the amino acid tyrosine. Causes severe neurological damage, includin mental retardation.				
Severe combined immunodeficiency (SCID)	Immune system disorder caused by mutation of the adenosine deamina gene.				
Sickle cell disease	Mutation in ß-globin gene on chromosome 11 affects hemoglobin structur and shape of red blood cells, which disrupts oxygen transport in blood and causes joint pain.				
Tay-Sachs disease	Rare mutation of a gene on chromosome 5 causes certain types of lipids to accumulate in the brain. Causes paralysis, blindness, retardation, and respiratory infections.				

Genetic Screening Issues

•Why Screen For Genes?
•When is a Test Accurate Enough?
•Mandatory or Voluntary Screening?
•Who Should Be Tested?
•Employer & Insurance Company Testing?
•Protection From Genotype Discrimination?
•Testing for Genetic Diseases With No Cures?

•How Ensure Privacy & Confidentiality? •Obligations to Inform Others (Spouse/Sibling) of Genetic Disorder Knowledge?

•Genetic Databases??

•Patents on Tests?

a Drug to Treat Hemophilia A!

Step One

How to Construct a Human Genome Library to Find the Factor VIII Gene?

If It is Not Known Where Gene is Active Can "Look" to Genome Instead of mRNA to Find + Clone Gene!

Step Two

How Find the Factor VIII Gene in a Human Genome Library?

		Th	e Gen	etic C	ode	
			Secor	nd Letter		_
		U	с	A	G	
	U	UUU Phe UUC UUA Leu UUG	UCU UCC Ser UCA UCG	UAU Tyr UAC UAA Stop UAG Stop	UGU Cys UGC UGA Stop UGG Trp	U C A G
1st	С	CUU CUC Leu CUA CUG	CCU CCC CCA CCG	CAU His CAC CAA Gin CAG Gin	CGU CGC CGA CGG	U C A G
letter	A	AUU AUC IIe AUA AUG Met	ACU ACC ACA ACG	AAU Asn AAC AAA AAA Lys	AGU Ser AGC AGA Arg AGG	U letter C A G
	G	GUU GUC Val GUA GUG	GCU GCC GCA GCG	GAU Asp GAC GAA Glu GAG Glu	GGU GGC GGA GGG	U C A G
			Prop • Uni • Three N	<mark>erties</mark> versal Jucleotides		
			• Punc • Dege	tuation enerate		

Factor VIII Mutations Occur Throughout the Gene

[Haemophilia 11, 481-491 (2005)]

VIII:C (%)	Family history	Consanguinity*	Inversion	Codon [†]	Mutation	Amino acid change	Exon	Conservation [‡]
1	Sporadic	NC	Normal	51	$TTT \rightarrow TCTS$	Phe → Ser	2	FFFF, identical
1.20	Sporadic	NC	Normal	80	$GTT \rightarrow GAT$	$Val \rightarrow Asp$	3	VVVV, identical
1	Sporadic	NC	Normal	102	$GGT \rightarrow GTT$	$Gly \rightarrow Val$	3	GGGG, identical
2	Sporadic	NC	Normal	104	$TCC \rightarrow CCCS$	Ser \rightarrow Pro	3	SSSS, identical
6	Sporadic	NC	Normal	143	$GAG \rightarrow AAGS$	$Ghu \rightarrow Lys$	4	EEEE, identical
1	Sporadic	NC	Normal	233	delCAS	Thr \rightarrow fs (TGA-264)	6	
2.70	Inherited	NC	Normal	32.1	$GAA \rightarrow AAA$	$Ghu \rightarrow Lys$	8	EEEE, identical
0	Sporadic	NC	Normal	372	$CGC \rightarrow CAC$	Arg \rightarrow His	8	RRRR, identical
3	Inherited	NC	Normal	527	$CGG \rightarrow TGG$	Arg \rightarrow Trp	11	RRRR, identical
1	Sporadic	NC	Normal	52.8	$TGC \rightarrow TACS$	Cvs → Tvr	11	CCCC, identical
1	Inherited	NC	Normal	592	$CAA \rightarrow TAA$	Gln → Stop	12	OOOO, identical
1	Inherited	NC	Normal	864	delGACA	Gly \rightarrow fs [TAA-867]	14	
					insCAATTAAATGAGAAS			
1	Sporadic	NC	Normal	948	insAS	Lys \rightarrow fs (TGA-984)	14	
1	Sporadic	NC	Intron 1	1107	AGG → TGG§	Arg → Trp	14	RGKK, dissimilar
1	Sporadic	NC	Normal	1107	$AGG \rightarrow TGGS$	Arg → Trp	14	RGKK, dissimilar
1	Inherited	NC	Normal	1191-1194	delA	If \rightarrow fs (TAG-1198)	14	
1.40	Sporadic	NC	Normal	1191-1194	insA	IIe \rightarrow fs (TAA-1220)	14	
1	Sporadic	C	Normal	1227	delCS	Len \rightarrow fs (TGA-1231)	14	
2.10	Sporadic	NC	Normal	1241	$GAC \rightarrow GAG$	Asp → Glu	14	DGGE, similar
1	Sporadic	NC	Normal	1392	1392del14185	$Pro \rightarrow fs$ (TAG-1446)	14	
1	Inerited	c	Normal	1392	1392del14185	$Pro \rightarrow fs (TAG-1446)$	14	
1	Sporadic	NC	Normal	1441	insAS	110 1 10(1110-1110)	14	
î	Inerited	C	Normal	1441	insAS			
1	Inherited	NC	Normal	1.502	CAG → TAGS	$Gln \rightarrow Stop$	14	OREO, dissimilar
1	Inherited	NC	Normal	1504	delGTS	$Val \rightarrow fs (TGA-1517)$	14	
1	Sporadic	NC	Normal	1535	$TGG \rightarrow TGA$	Trn -> Ston	14	WLWM, dissimilar
hibitor 96 BU	oportane	110	1401111	1000	100 4 100	rip of stop		and a string descention.
1	Sporadic	NC	Normal	1571	$TAT \rightarrow TAAS$	Tyr → Stop	14	Y-YY, dissimilar
1	Sporadic	NC	Normal	1581	$AAA \rightarrow TAAS$	Lys \rightarrow Stop	14	KEKK, dissimilar
0.20	Sporadic	NC	Normal	1696	$CGA \rightarrow GGA$	Are \rightarrow Gly	14	RRRR, identical
1.80	Sporadic	NC	Normal	1729	delAS	$Gln \rightarrow fs (TAA-1752)$	15	
1	Inherited	NC	Normal	1751	GAA → AAAS	$Glu \rightarrow Lvs$	15	EEEE, identical
1	Sporadic	NC	Normal	1775	TTC → TCC%	Phe -> Pro	16	FFFF, identical
1	Sporadic	NC	Normal	1835	$TGG \rightarrow TGAS$	Trn → Ston	16	WWWW, identical
7.60	Sporadic	C	Normal	1882	$ATC \rightarrow ATAS$	$lle \rightarrow lle$	17	IIII. identical
3	Inherited	č	Normal	1966	$CGA \rightarrow CAA$	Arg → Glu	18	RRRR, identical
1	Sporadic	NC	Normal	1966	$CGA \rightarrow TGA$	Arg -> Stop	18	RRRR, identical
1	Sporadic	NC	Normal	1966	$CGA \rightarrow TGA$	Arg → Stop	18	RRRR, identical

The Factor VIII Story -- A Summary

- 1. Purify Small Amounts of Factor VIII
- 2. Obtain Partial or Complete Amino Acid Sequence
- 3. Use the Genetic Code to Synthesize Degenerate DNA Probes
- 4. Isolate Factor VIII DNA Clones Complementary to Probe in Genome Library
- 5. Determine if Factor VIII Clones Contain the Complete Gene By Sequencing and Comparing With Protein Sequence
- 6. If Not, "Walk" to Obtain Overlapping DNA Clones That Collectively Contain the Factor VIII Gene
- 7. Sequence Clones To Determine Where the Factor VIII Gene Starts and Stops
- 8. Use Factor VIII Genome Probe to Find Out What Body Organ/Tissue Expresses the Factor VIII Gene
- 9. Make a cDNA Library From the Target Organ/Tissue and Isolate a Factor VIII cDNA Clone
- Sequence the Factor VIII cDNA Clone and Compare With Factor VIII Gene Sequence to Map its Anatomy (I.e., introns, exons, swtiches) and Ensure That it Contains the Complete Protein Coding Sequence
- 11. Use Factor VIII cDNA and/or Genome Fragments as a Probe to Find RFLP Markers For Disease Alleles -- Or Sequence Disease Alleles to Find Relevant RFLP Markers By Comparison With Wild-Type Sequence
- 12. Insert Factor VIII cDNA Into an Expression Vector and Synthesize Factor VIII Protein in Host Cells (e.g., Mammalian Cells)