GENETIC ENGINEERING IN MEDICINE, AGRICULTURE, & LAW Professors Bob Goldberg (UCLA), John Harada (UC Davis), and Channapatna Prakash (Tuskegee) Winter 2019

LECTURES: Tuesday & Thursday $3:30-6:00 \rightarrow La$ Kretz 120

REQUIRED TEXT: Introduction to Biotechnology (W. J. Thieman & M. A. Palladino, 4^a Edition, 2019). The HC70A text can be purchased from the bookstore, or as an eBook from either Amazon or VitalSource. The eBook is less expensive than the hardcopy text.

OFFICE HOURS: Friday: 1:30 – 2:30 PM → Terasaki Life Sciences Building 4121 Phone: 310-825-9093; Email: bobg@ucla.edu

GOLDBERG HC70A WEBSITE: http://www.mcdb.ucla.edu/Research/Goldberg/HC70A_W19/

HC70A CCLE WEBSITE: https://ccle.ucla.edu/course/view/19W-HNRS70A-1

BRUINCAST: http://www2.oid.ucla.edu/webcasts/courses/2018-2019/2019winter/hnrs70a-1

COURSE ADMINISTRATOR: Dr. Lauren Bowman → Terasaki Life Sciences Building 4125 Phone: 310-825-3270; Email: laurenbowman@ucla.edu

DISCUSSION COORDINATOR: Dr. Kelli Henry (kfhenry@ucla.edu)

LECTURES: HC70A lectures are interactive, and in-class "experiments" highlight important genetic engineering concepts. *Note: Attendance in lecture is required.*

GUEST LECTURES: Guest speakers highlight the societal impacts of genetic engineering. <u>Note:</u> Attendance in guest lectures is required.

CLASS RECEPTIONS: There will be a catered all-class reception for each guest speaker immediately following their lecture, providing a unique opportunity to interact with guest speakers.

DISCUSSION SECTIONS: Discussion Sections are taught as undergraduate seminars in a Socratic style, and focus on articles that relate to the history, applications, and societal impacts of genetic engineering. Focus your reading around four questions: (1) What is the overall <u>scientific question</u> being addressed? (2) What are the <u>technologies</u> being discussed? (3) What is the <u>significance</u> of the technology? (4) What <u>ethical issues</u> arise, if any, as a consequence of new technology? A Discussion participation grade of up to 100,000 points will be assigned at the end of the quarter. <u>Note:</u> Attendance in discussion section is required.

QUIZZES: A **Take-Home Quiz** that focuses on the concepts covered in discussion and lecture will be handed out after discussion section. Quizzes count 25,000 points each. **Quizzes are due by <u>6 PM the Monday following</u> Discussion Section in Terasaki Life Sciences 4121.**

EXAMS: Exams include a **Take-Home Exam** and **Two All-Class Oral Exams**. Take-Home Exam questions will be handed out in class during Week 4 and will count 400,000 points. The Mid-Term Oral Exam will cover questions on the Take-Home Exam and Quizzes, and will count 100,000 points. Final Oral Exam questions will be handed out in class during Week 8 and will count 100,000 points. The Exam Schedule is:

Take-Home Exam: Due Tuesday, February 12 at the beginning of class (Week 6)

All-Class Mid-Term Oral Exam: Tuesday, February 12 (Week 6)

All-Class Final Oral Exam: Thursday, March 14 (Week 10)

COURSE GRADING: You will be able to earn **ONE MILLION regular points** and a number of **BONUS POINTS** during the quarter. **Your grade will be based on 1,000,000 points**, although you have the potential for earning more than 1,000,000 points. Regular points will be divided as follows:

Assignment	Total Points	% Grade
Lecture Attendance	100,000	10
Discussion Quizzes (8)	200,000	20
Discussion Participation	100,000	10
Take-Home Exam	400,000	40
Mid-Term Oral Exam	100,000	10
Final Oral Exam	100,000	10
TOTAL	1,000,000	100

The following guidelines will be used to assign grades: A (>90%), B (80-89%), C (70-79%), D (60-69%), F (<60%). Your grade will be assigned using the following formula:

% Total Points = [(<u>Regular points + Bonus points)]</u> X [100] [(1,000,000)]

DISCUSSION GRADING CRITERIA: Each Discussion is worth 10,000 points. Points will be assigned as follows:

Grading Criteria	Total Points
Attend Discussion	2,500
Participate in Discussion (i.e., answer & ask questions)	2,500
Demonstrate You Read Assigned Articles (i.e., knowing the main	2,500
questions addressed in each figure and article as a whole)	
Demonstrate an Understanding of Article Concepts	2,500
TOTAL	10,000

DATE	LECTURE & DISCUSSION SCHEDULE (Weeks 1 to 6)
1/8	Lecture 1: <i>The Age of DNA: What is Genetic Engineering - Part One</i> Experiment : Isolating DNA
1/10	Film: Race For the Double Helix (2 Hours)
DISCUSSION 1:	What Do You Think About Genetic Engineering and GMOs?
1/15	Lecture 2: <i>The Age of DNA: What is Genetic Engineering - Part Two</i> Demonstration: Genetic Engineering of Food Crops
1/17	Film: The Gene Engineers (1 Hour); Playing God (1 Hour)
DISCUSSION 2:	Origins of Genetic Engineering-1: <i>Manipulation of Genes; The Recombinant DNA Debate</i> Lab Demonstration: DNA Gel Electrophoresis QUIZ #1
1/22	Lecture 3: What Are Genes & How Do They Work: Part One
1/24	Film: Extraordinary Measures (1.75 Hours)
DISCUSSION 3	Origins of Genetic Engineering-2: <i>Useful Proteins from Recombinant DNA</i> Lab Experiment: Bacteria "Cloning" & DNA Sequencing QUIZ #2
1/29	Lecture 4: What Are Genes & How Do They Work: Part Two Tuskegee Students Visit UCLA
1/31	Lecture 5 – How Are Genes Cloned & Engineered: The Hemophilia Story TAKE-HOME EXAM QUESTIONS HANDED OUT All-Class Reception
DISCUSSION 4:	From Gene to Drug: Molecular Genetics of Hemophilia BACTERIA "CLONING" REPORT DUE QUIZ#3
2/5	Lecture 6 – A 21 st Century Genetic Engineering Revolution
2/7	Film: Food Evolution (1.5 Hours) Speaker: Channapatna Prakash, Ph.D. All-Class Reception
DISCUSSION 5:	Genetic Engineering Crops & Farm Animals: Are Genetically Engineered Foods Evil?; Transgenic Livestock As Drug Factories; Gene Edited Farm Animals Are Coming; GM Salmon Declared Fit For Dinner Plates
2/12	ALL-CLASS MIDTERM ORAL EXAM TAKE HOME EXAM DUE UC Davis Students Visit UCLA
2/14	Speaker: Harry Klann , Supervising Criminologist, LAPD, Retired <i>DNA Forensics & The Law</i> – All Class Reception Experiment: Making Your Own DNA Fingerprint!
DISCUSSION 6:	DNA & The Law: When Science Takes the Witness Stand; Science Makes it Impossible to Get Away With Crime; Cousin's DNA and Family Trees to Crack Cold Cases; Genetic Databases Could Identify Millions of Americans QUIZZES #4 & 5

DATE	LECTURE & DISCUSSION SCHEDULE (Weeks 7 to 10)	
2/19	Lecture 7 – Age of Genomics: Three Parent Babies, Human Origins, & Race Short Film: Knowledge or Certainty	
2/21	Speaker: Pei Yun Lee, PhD: <i>Stem Cells: Promise, Reality, and Conflict</i> All-Class Reception	
DISCUSSION 7:	How to Mark Your Genes: <i>Chromosome Mapping With DNA Markers;</i> <i>Genomics For the People; Full Genome Sequencing For Newborns</i> QUIZ #6	
2/26	Lecture 8 – Professor John Harada: Human Genetic Engineering FINAL ORAL EXAM QUESTIONS HANDED OUT	
2/28	Speaker: Michele Evans, MD: In Vitro Fertilization & Genetic Testing	
	All-Class Reception	
DISCUSSION 8:	Human Gene Therapy – The Beginnings: Gene Therapy; Gene Therapy's Second Act QUIZ #7	
3/5	Lecture 9: <i>Genetic Engineering & The Law: Regulating Science & GMOs</i>	
3/7	Speaker: Daisy Robinton: <i>The Future of Genetic Engineering & Health</i> All-Class Reception	
DISCUSSION 9:	Human Gene Therapy – 21 st Century Applications – Unlocking the Mysteries of ALS; Out of the Silence QUIZ #8	
3/12	Lecture 10: <i>Genetic Engineering & The Law: Who Owns Your Genes?</i>	
3/14	FINAL ALL-CLASS ORAL EXAM End of Class Reception	
DISCUSSION 10:	The CRISPR Revolution: <i>The DNA Revolution; Chinese Scientist's Claim of Gene Edited Babies Creates an Uproar; This Fertility Doctor is Pushing the Boundaries of Human Reproduction With Little Regulation</i>	
	What Do You Think About Genetic Engineering and GMOs <u>Now</u> ?	

TEXT READING ASSIGNMENTS:

Note: No textbook is perfect and follows the lecture sequence of every class – including HC70A! Your textbook contains most of the conceptual information covered in HC70A lectures and discussion sections – *but not in the same order*. The textbook index section will connect you to specific concepts covered in lecture and discussion. *For the textbook reading assignments I have extracted the most relevant pages that review and complement topics covered in lectures and discussions.* Study the information presented in these assignments, as it will help you understand the major concepts presented in HC70A, and help solve problems on the exams and quizzes.

Lecture 1	Chapters 1 & 3 (pgs. 60-70)
Discussion 1	No Text Reading
Lecture 2	Chapters 3 (pgs. 60-70)
Diamatica 2	Chamber 2 (max 22.20) $% Chamber 2 (max (0.70))$
Discussion 2	Chapter 2 (pgs. 55-56) & Chapter 5 (pgs. 60-70)
Lecture 5	Chapter 2
Discussion 3	Chapter 2, Chapter 3 (pgs. 70-84), & Chapter 5 (pgs. 130-144)
Lecture 4	Chapter 2
Discussion 4	Chapter 5 (pgs. 130-144)
Lecture 5	Chapter 3 (pgs. 70-84)
	1 10
Guest Lecture on GMOs	Chapter 6
Discussion	Chamber (7, 8, 1)
Discussion 5	Chapters 6, 7, & 12 Chapters 2 (F7 59) & Chapter 2 (map $99,90$)
Lecture 6	Chapter 2 (57-56) & Chapter 5 (pgs. 88-89)
Guest Lecture on Forensics	Chapter 8
Suest Decture on Forensies	chupter o
Discussion 6	Chapter 8
Lecture 7	Chapter 3 (pgs. 89-104) & Chapter 13 (pgs. 356-358)
Guest Lecture on Stem Cells	Chapter 11 (309-327)
Discussion 7	Chapter 11 (279-290)
Lecture 8	Chapter 11 (pgs. 299-309)
Discussion 8	Chapter 11 (pgs. 299-309)
Lecture 9	Chapter 12
Discussion 9	Chapter 11 (pgs. 299-309) & Chapter 12
Lecture 10	Chapter 12
Discussion 10	Chapter 2 (pgs. 57-58) & Chapter 3 (pgs. 88-89)

Introduction to Biotechnology, 4th^rEdition (2019)