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Agriculture is Facing the Perfect Storm 

Population Growth & Increased Demand For Food 

Reduced Land For Agriculture 

Scarcity of Natural Resources (e.g., Water) 

Climate Change 

Expanding Pest Habitats 



And……..Political Headwinds 



OVER THE NEXT 50 YEARS WE NEED TO PRODUCE MORE 
FOOD THAN IN THE WHOLE OF HUMAN HISTORY  

AND DO IT WITH FEWER INPUTS, LESS ARABLE LAND, 
& CLIMATE CHANGE!!!! 

Regardless…….We Face a Major 
Challenge in Agriculture…. 

World Population (millions) 

40,000 Kids Die Each Day  
7,530,392,810 

9/5/17 



 
 

Thus…..Crop YIELDS MUST Be Increased  
Using Every Discovery & Technique 

Available!



We Have Faced Similar Challenges  
Over The Past 100+ Years 



CROP YIELD INCREASES HAVE “ROCKETED UPWARDS” 
OVER THE LAST 100 YEARS AND CONTRIBUTED TO A 

LONGER AND “BETTER” LIFE 

            Bushels/Acre 
•  1900   30 
•  1920   30 
•  1940   40 
•  1960   60 
•  1980   100 
•  2017   171 

Conclusion:  Crop yields increased significantly over the past 100 
years and lead to a similar reduction in food costs!!!!! 

Life Span 

48 Years 

80 Years 

% Farm  
Workers 

55% 

1.5% 

 
%  Income  
on Food 

 

50% 

7% 

1930: 30 bushels/acre                2017: 171 bushels/acre    
1930: 1 farmer fed 10 people       2017: 1 farmer feeds 200 people 

22% 



How Were Crop Yields 
Increased? 

And Not Succumbing To Anti-Science Forces 
of “Darkness” 



  Why Seeds?  Our Food Is Derived from Fourteen 
Crops & Over Half Produce Seeds for Human and 

Animal Consumption 

Seed Crops  
•  Corn 
•  Wheat 
•  Rice 
•  Barley 
•  Sorghum 
•  Soybean 
•  Common Bean 
•  Coconut 

Non-Seed Crops  
•  Potato  
•  Sweet Potato 
•  Cassava 
•  Sugar Beet 
•  Sugar Cane 
•  Banana 
 
 

In Some World Populations 75% of Calories Are Derived from Seeds! 



Why Soybean? 
 

-  Second Largest US Crop (77M 
Acres) 

-  Total Crop Value $42 Billion    
(50% Value Exported) 

-  The Second Highest Edible Oil 
(44 million tons consumed worldwide) 

-  Important Biofuel Source 
(~30% of US Soybean Oil Production 
for Biodiesel) 

-  Excellent Model Plant 
(Transformation, Knockdowns, 
Genetics) 

-  Genome Sequenced 
-  Seed Gene Expression Data 



Storage Protein and Oil Deposition 
Preparation for Dormancy 

Differentiation of 
Tissues/organs  

Dormancy and 
Germination 

Food Reserve Accumulation 

(6DAI) 

Morphogenesis Maturation & Preparation for Dormancy Dormancy Germination 

cotyledon ax
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And……… How Are They Wired in a Plant Genome? 
Question…What Are the Genes Required to Make a Seed? 



Fix &  
Section 

Laser Capture 
Microdissection 

(LCM) 
Library 

Construction Collect RNA-Seq 

Seed Coat 
(Protection) 

Endosperm 
 (Nourishment) Embryo (Next Generation) 

26,000 Captures 
875 hrs 

71,225 Sections 
(n=835 Seeds) 

189 hrs 835 Seeds 
42 hrs 

~230 Datasets 

Morphogenesis Maturation 

Cotyledon 

Axis 
Seed coat 

Endosperm 

Time from Collecting to 
LCM = ~1,100 person 

hours 

Finding the Players – Mapping the Seed Using 
Laser Capture Microdissection (LCM) and RNA-

Seq From Fertilization Through Dormancy 

Profile 40 Major Regions, Subregions, & Tissues Throughout Seed Development 



Using LCM to Capture Two Embryo Regions 
Shortly After Fertilization 

Post-Fertilization Seed 
 Cross Section 

Embryo 



Comprehensive Atlas of Biological Processes and Regulators 
During Soybean Seed Development  



For Example - Two Embryo Regions Shortly After 
Fertilization Express Different Genes and are Specified to 

Follow Different Developmental Pathways 

GO Terms: Transport, Cellular component 
movement, Asymmetric cell division, 
Gibberellin bp, Root cap development, 
Response to stress, Defense response, 
Thiazole bp 
 
Metabolic Processes: Phenylpropanoid bs, 
Ethylene bs, Jasmonic acid bs 
 
Transcription Factors: WOX9-like, AP2-
EREBP, ARF7, Lec1-like 

741 mRNAs more than 
5-fold up-regulated in 
Suspensor  

Suspensor 

127 mRNAs more than 
5-fold up-regulated in 
Embryo Proper  

Embryo Proper 
GO Terms: Regulation of organ formation 
timing, Pattern specification process, 
Leaf & Root development, Reproductive 
process, Regulation of transcription 
 
Metabolic Processes: Fatty acid bs, 
Glycolipid desaturation, Auxin bs, Calvin-
Benson-Bassham cycle  
Transcription Factors: GRF1a, GRF1b, 
CUC2, STM, AIL6 

Mature 
Embryo 

Embryo proper 

Suspensor 

Provides Nutrients 
& Growth Regulators 
Degenerates During 
Seed Development 



The Beginning of a Seed Gene Network 
A Unique Cis-Control Module Activates Genes 

Specifically Within the Suspensor  
After Fertilization!! 

G564 Suspensor 
Cis-Control 

Module 

GA20-Oxidase Suspensor Cis-
Control Module 

Suspensor-Specific  
Transcription 

Suspensor-Specific  
Transcription 

Henry et al., 2015 
Kawashima et al., 2010 

Constructs made 164 

Transgenic plants generated 1106 

Embryos dissected from seeds 7,742 

Hours spent dissecting embryos 903 hr 

Days spent dissecting embryos 90 days 
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CHH Methylation Increases During Seed 
Maturation Towards Dormancy…………… 

H = A, C, T 
Morphogenesis Maturation Dormancy Germination 
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•  There Are No Major Changes in CG and CHG Methylation  
•  CHH Methylation Increases During Seed Maturation Towards 

Dormancy…Then…Decreases After Germination 
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Are There Global DNA Methylation Changes 
During Seed Development and Germination? 
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Are There Global DNA Methylation Changes 
During Seed Development and Germination? 

glob em mm lm dry sdlg cot pd1 pd2 

H = A, C, T 
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Mostly in Transposon-Dense Regions 



Are the CHH Methylation Changes During Soybean 
Seed Development Conserved in Other Plants? 

dormant mature globular torpedo seedling 

Morphogenesis Maturation Germination Dormancy 

Soybean Arabidopsis 



Do the DNA Methylation Changes Occur During  
Arabidopsis Seed Development? 

CHH Changes Are Conserved in Seed Development! 

Schematic representation of Arabidopsis seed development and stages of the life cycle used for 
GeneChip analysis.  

Le B H et al. PNAS 2010;107:8063-8070 

©2010 by National Academy of Sciences 
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Schematic representation of Arabidopsis seed development and stages of the life cycle used for 
GeneChip analysis.  

Le B H et al. PNAS 2010;107:8063-8070 

©2010 by National Academy of Sciences 
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Schematic representation of Arabidopsis seed development and stages of the life cycle used for 
GeneChip analysis.  

Le B H et al. PNAS 2010;107:8063-8070 
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Schematic representation of Arabidopsis seed development and stages of the life cycle used for 
GeneChip analysis.  

Le B H et al. PNAS 2010;107:8063-8070 

©2010 by National Academy of Sciences 



What Is the Biological Relevance of Increasing CHH 
Methylation During Seed Development? 

1.  Play a Role in Desiccation? 
 
2.  Play a Role in Dormancy? 
 
3.  Play a Role in Seed Morphogenesis? 
 
4.  Play a Role in Germination? 

5.  Affect Gene Activities? 
 
6.  Reinforce Transposon Silencing? 



How to Functionally Test These Hypotheses? 

Use a Mutant Arabidopsis Plant Without CHH Methylation 
-  Arabidopsis CHG/CHH Methyltransferases: DRM1 DRM2 CMT2 CMT3 

- Arabidopsis ddcc mutant (drm1  drm2  cmt2  cmt3) 

Hume et al., 2014 

Wild Type ddcc Mutant 
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methylation readers other than SHH1 that recruit Pol IV to CMT2 sites. 
Although these 24-nt siRNAs do not appear to have a major role in guid-
ing DRM2 in cis, they might function to silence TEs in trans27,28.

In summary, our data demonstrate that the CMT2, CMT3 and 
DRM2 methyltransferases collaborate to control non-CG methyla-
tion and participate in self-reinforcing loop mechanisms with H3K9 
methylation and small RNAs to control gene silencing throughout 
the genome.

METHODS
Methods and any associated references are available in the online 
version of the paper.

Accession codes. All sequencing data have been deposited in GEO 
with accession GSE51304.

Note: Any Supplementary Information and Source Data files are available in the online 
version of the paper.
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What is the DNA Methylation Level in ddcc Seeds? 

There Is No CHG and CHH Methylation! 
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The ddcc Mutant Seeds Develop and Germinate Normally! 
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What Is the Biological Relevance of Increasing CHH 
Methylation During Seed Development? 

CHH 

X Play a Role in Desiccation 
 
X Play a Role in Dormancy 
 
X Play a Role in Seed Morphogenesis 
 
X Play a Role in Germination 
 
? Affect Gene Activities 

? Reinforce Transposon Silencing 
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Schematic representation of Arabidopsis seed development and stages of the life cycle used for 
GeneChip analysis.  

Le B H et al. PNAS 2010;107:8063-8070 

©2010 by National Academy of Sciences 

Soybean 

10 

0



Gene Expression Is Not Affected in ddcc Mutant! 

Are Gene Activities Different in ddcc Mutant Seeds? 
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Are TE Activities Different in ddcc Mutant? 
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Activation and Repression of These Genes Are 
NOT Correlated With Methylation Changes! 
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Are Expression Patterns of Major Soybean Food Reserve Genes 
Correlated With DNA Methylation Changes?	
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Are There Other Seed DNA Methylation Valleys 
(DMVs) That Are Devoid of Methylation*  

in the  Soybean Genome? 

* DMV means an average methylation level <5% in all three contexts across ALL of seed development & germination	
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Total 21,669 DMVs 
identified in genome 

21% (~210Mb) of genome 
(~978Mb) are DMVs 
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Regulation of gene expression 
Regulation of cellular process 

Response to stimulus 
Cell wall 
DNA binding 

Log10(P-value) GO Analysis	
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26% (14,328) of Genes in DMVs 
38% (2,088) of Transcription 

Factor Genes in DMVs 

glob hrt cot 
em 

glob hrt cot 
em 

Yes…….Soybean Seed DMVs Contain Genes 
That Are Regulated During Development! 



Total 4,829 DMVs 
identified in genome 

41% (~49Mb) of genome 
(~120Mb) are DMVs 
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32% (8,710) of Genes in DMVs 
48% (835) of Transcription Factor 

Genes in DMVs 

Arabidopsis 
-20 0 

Regulation of gene expression 
Regulation of cellular process 
Response to endogenous stimulus 

Cell wall 
DNA binding 

GO Analysis	Log10(P-value) 
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Embryo 
Proper CZE PEN MCE GSC CZSC 

Endosperm Seed Coat Embryo 
Proper CZE PEN MCE GSC CZSC 

Endosperm Seed Coat 

Are There Seed DMVs With Regulated  
Genes in Other Plant Genomes? 



The Central Challenge is to Uncover the 
Regulatory Networks Required to Make a Seed! 

What Are the Interactions 
Between Cis-Regulatory 

Modules & Seed 
Transcription Factors? 

Stay Tuned! 



There Is Major Public Skepticism About GMOs!!! 

2015 

How Do We Change This? 

Public Scientists 

51 Point Gap!! 



Online Teaching (MCDB70) 

Long Distance Learning (HC70A) 

Gene Discovery Laboratory (HC70AL) 
Weekly Meeting to 

Discuss Data 

Setting up PCR Final Symposium “Graduating” Class 

Identifying Knockout 
Arabidopsis Plants 

Dissecting Embryos 
Under Microscope 

UC Davis Students Visit UCLA  

Tuskegee Students Visit UCLA  

Live Online Discussions 

Interactive Lectures 

TAs 

Dr. Goldberg 

Participating Students 

UC Davis 

Tuskegee 

UCLA 

Seeds of Hope: Using Long-Distance and Online Learning To 
Teach Genetic Engineering to Non-Science Students Across the 

US and the Globe!!  



Matteo Pellegrini 
Min Chen 
Jer-Young Lin 
Jungim Hur 
Brandon Le 
Kelli Henry 
Allan Chung 
Lauren Bowman 

John Harada 
Julie Pelletier 
Ryan Kirkbride 

Many Thanks To….. 
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And Special Thanks To…… 

Professor Norman Cohn 
Ohio University 

1930-2016 

Who Taught Me The Excitement of Discovery & The Art of Teaching 

1964	


