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Controlling Gene Activity

From Gene to Functional Protein & Phenotype




Production of the Phenotype: DNA — RNA
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Eukaryotic Gene Activity: Genes to Functional Proteins
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Regulating Eukaryotic Gene Activity: Major Control Points

NUCLEUS CYTOSOL mRNA
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Knock-Out Mutations Can Affect Each
Control Point As Well As Coding Sequences



RNA Structure & Transcription



Gene Anatomy-A Review
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Transcription: An Overview

Anti-Sense Strand
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Transcription: A “Ground Level” View

direction of DNA double
[ RNA polymerase] transcription l helix
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Requires: DNA Template, RNA Polymerase, and Ribonucleotides (Note: No Primer)




Visualizing Transcription in the Electron Microscope
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Genes Can Have Different “Expression” Levels That Are Reflected in
Differing Amounts of mRNAs Accumulating in the Cytoplasm
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What Cellular Processes
Can Lead to Different
mRNA Amounts?




RNA Has Ribose Sugar in Nucleotide

HOCH, O. OH

H H

OH OH

used in ribonucleic
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acid (DNA)



RNA Has a Uracil Instead of Thymine

uracil thymine
used in RNA used in DNA




Eukaryotic RNAs Are Single-Stranded Polynucleotides

Nucleotides
Joined By
Phosphodiester
Bonds Like All

Nucleic Acids

Order 5 — 3’
Leads to Function:
Co-Linear With
Gene Sequence



RNA Has Intra-Strand Double Helices
or Secondary Structure
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RNA Intra-Strand Secondary Structure Formed
By Intra-Chain Complementary Base Pairing
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Figure 6-5 Molecular Biology of the Cell (© Garland Science 2008)



A Comparison of RNA and DNA Structures

Table 13.1 The structures of DNA and
RNA compared

Characteristic DNA RNA

Composed of Yes Yes
nucleotides

Type of sugar Deoxyribose Ribose

Presence of No Yes
2'-OH group

Bases AG,CU

Nucleotides joined Yes
by phosphodiester
bonds

Double or single Usually double Usually single
stranded

Secondary structure Double helix Many types
Stability Stable Easily degraded




There Are Many Different Types of RNA

Table 13.2 Location and functions of different classes of RNA molecules

Class of RNA Cell Type

Location of Function
in Eukaryotic Cells*

Function

Ribosomal RNA (rRNA) Bacterial and eukaryotic

Messenger RNA (mRNA) Bacterial and eukaryotic
Transfer RNA (tRNA) Bacterial and eukaryotic

Small nuclear RNA (snRNA) Eukaryotic
Small nucleolar RNA (snoRNA) Eukaryotic
Small cytoplasmic RNA (scRNA) Eukaryotic
MicroRNA (miRNA) Eukaryotic
Small interfering RNA Eukaryotic

Piwi-interacting RNA (piRNA) Eukaryotic

Cytoplasm

Nucleus and cytoplasm
Cytoplasm

Nucleus
Nucleus
Cytoplasm
Cytoplasm
Cytoplasm

Cytoplasm

Structural and functional
components of the ribosome

Carries genetic code for proteins

Helps incorporate amino acids
into polypeptide chain

Processing of pre-mRNA
Processing and assembly of rRNA
Variable

Inhibits translation of mRNA

Triggers (siRNA) degradation of
other RNA molecules

Thought to regulate gametogenesis,
but function poorly defined




Differential Gene Activity
Programs Development



Animal Cloning Demonstrates That the Genome of a
Differentiated Cell Contains All of the Genes
Required To Program the Entire Life Cycle
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Corollary: Differentiation Must Be Programmed By
Differential Gene Expression




Plant Cell Cloning Demonstrates That the Genome
of a Differentiated Plant Cell Contains All of the
Genes Required To Program the Entire Life Cycle

A
(&

section proliferating separated single organized young young carrot
of carrot cell mass cellsinrich cell clone of embryo plant

liquid dividing

medium cells

Corollary: Plant Differentiation Must Be
Programmed By Differential Gene Expression




Tools For Investigating
Differential Gene Activity



Two-Dimensional Protein Gel Electrophoresis
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2-D Protein Gel Electrophoresis Demonstrates
Differential Gene Activity in Animal Organs

(A) human brain M (B) human liver
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RNA Blots Detect Specific RNAs in an RNA Population

Nitrocellulose Autoradiogram

Nitrocellulose Hybridize with
/ Gel labeled DNA or

W W RNA probe
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Capillary action transfers
DNA from gel to nitrocellulose

Need Specific Probe to Detect RNA



RNA Blot Demonstrates Differential Gene Activity

Tissue 1 Tissue 2 Tissue 3 Tissue 4 4. Wash away unhybridized probe. Make autoradiograph|
(ovary) (testes) (lung) (blood)
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Ovary RNA Testes RNA Lung HNA Blood RNA

1 12 3/ 4

2. Load RNA samples (= | =) (=] [=]
in wells of a gel.

3. Separate RNA samples by gel electrophoresis.
Blot onto filter. Expose filter to labeled hybridization probe.
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(4): Reprinted with permission from Nature 1990 Jul 19; 346(6281):216-7, Sinclair et al. © 1990 Macmillian Magazines Limited
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In Situ Hybridization Demonstrates
Differential Gene Activity

Hybridization of Specific Probe to Tissue

In Situ (i.e., In Place)



Localizing Gene Activity in Plant Embryo Regions

Weterings et al. Plant Cell (2001) 13,2409-2425



Using Reverse Transcriptase to Synthesize cDNA Copies
of mRNAs (Note: cDNA=copy DNA)

5.

Requirements

1. RNA Template

2. dXTPs

3. Reverse
Transcriptase

4. RNase H or

S-1 Nuclease
Oligo dT Primer

Note: Reverse
Transcriptase is a
DNN Polymerase

(e.g., brain)
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A Comparison of PCR and RT-PCR
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Generating Double-Stranded cDNA Copies of
Specific mRNAs Using Reverse Transcription PCR

)
[PCR cycle 1 with reverse primer. ]
Reverse primer
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Cycle 1: extension of reverse primer
with Tag polymerase
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[Ampliﬁcation of cDNA by PCR (many cycles). ]
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Using RT-PCR to Investigate Seed Gene Activity

mRNAs Root Seed Flower Owvule Markers

Primers Specific
For bobg mRNA

1.6 kb _

Which “Tissue” Has the Most bobg mRNA?



Using Real-Time Quantitative RT-PCR To Measure
Specific mMRNA Accumulation Levels

Primers Specific
For bobg mRNA

Flower mRNA
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Curves Visualize the Replication Process Over Time
That is, the Amount of DNA Synthesized at Each PCR Cycle



Genes Can Have Different “Expression” Levels That Are Reflected in
Differing Amounts of mRNAs Accumulating in the Cytoplasm
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What Cellular Processes
Can Lead to Different
mRNA Amounts?




Using Microarrays to Investigate the “Expression’ of
Thousands of Genes at a Time: Part One

cDNAs Are Synthesized
From Each mRNA With a
Different Fluorescent
Nucleotide

collection of gene-specific DNA molecules
PCR amplification

robotic‘printing’ onto glass slide

mRNA from

~
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with red
fluorochrome

HYBRIDIZE

}

WASH

|
SCAN RED AND GREEN SIGNALS
AND COMBINE IMAGES

small region of microarray representing
expression of 110 genes from yeast

RBTAL, mRNA from

sample 1 labeled ~~--> 22227 sample 2 labeled
e with green

fluorochrome

Each Spot Represents
A Different Gene



Using Microarrays to Investigate the “Expression’ of
Thousands of Genes at a Time: Part Two

Fibroblasts Fibroblasts
without serum with serum added

l Isolate total mMRNA 1

Reverse-transcribe
Eieenidye \1to ¢DNA labeled withl/-
a fluorescent dye

Mix
cDNAs hybridizedto | HyPridize to DNA
DNAs for a single gene y

y Wash

Measure green and red
/ / Y fluorescence over each spot
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A If a spotis green, expression of that gene decreases
in cells after serum addition

B! If a spot is red, expression of that gene increases in
cells after serum addition




Using Microarrays to Investigate the “Expression’ of
Thousands of Seed Genes

Which
Genes Are

Red=Seed 1. Seed

Specific?




Using Hierarchical Clustering to Reveal
Co-Regulated Gene (MRNA) Sets
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Clustering Algorithms Find Similar Patterns




Hierarchical Clustering of Up-Regulated mRNAs
in Different Cancer Tissues

unknown leukemia stomach

prostate 1Iung brain |rena|| ovarian breast liver
I 1 ) I L ] ] )




Using Microarrays To Investigate

Gene Activity in Arabidopsis Seeds
1. Whole Seeds
2. Specific Seed Compartments



Genome-Wide Profiling of mRNAs During Arabidopsis
Seed Development & Plant Life Cycle
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Identification of Seed-Specific mMRNAs in the
Arabidopsis Life Cycle Using Whole Seeds
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‘ Seed mRNAs ‘

Vegetative

Seed Development

3.0 -15 0 1.5 3.0
Top 2,000 Shared mRNAs

() Indicates number of
Le et al. PNAS (2010) 107, 8063-8070 transcription factor mRNAs



Using Laser. Capture Microdissection (LCM) and

GeneChips” To+Profile mMRNASs in SpecificiSeed
Cells, Tissues, and Compartments
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Gene Activity in Globular-Stage Arabidopsis
Seed Compartments

Peripheral Chalazal
F Chalazal Endosperm sged Coat

bt S S G

Micropylar
Endosperm

CHE

I 6GSc
ICHSc

SR TN b

General Seed Coat Embryo Ep
6SC PE MPE EP SUS CHE CHSC
mRNA BR1 11,402 11,445 7,844 10,532 11,273 7,709 12,440

mRNA BR2 12,316 9,972 10,658 10,674 12,965 7,002 11,818

mRNA BR3 - 9,793 - ‘ PE

Total MRNAs 10,513 9,136 7,216 9,130 10,692 7,776 10,794 |
MPE

Unique mRNA 108 54 14 56 95 133 152

Unique TFs 16 3 0 17 8 10 26 |sus

Shared 4,028 > Top 2000 Shared mRNAs




Arabidopsis Genes You Are Investigating This Quarter
Are Active in Specific Seed Compartments
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Recall..............Scientific American Article on
cDNA/EST Sequencing From Last Quarter

Discovering Genes
for New Medicines

By identifying human genes involved in disease,
researchers can create potentially therapeutic proteins
and speed the development of powerful drugs

by William A. Haseltine

Scientific American, March 1997



Sanger Sequencing cDNAs
to Discover New Genes

&
Drug Targets

How to Find a Partial cDNA Sequence

esearchers find partisl cONA seguences by chemicaly breaking down
copies of 8 cONA molecule to create an array of fragments that differ in
length by one base. In this process, the base at one end of each fragment is at-
tached to one of four flusrescent dyes, the color of the dye depending on the
identity of the base in that posi-
tion. Machines then sort the la-
beled fragments according to
size. Finally, a laser excites the
dye labels one by one. The result
is a seguence of colors that can
be read electronically and that
corresponds to the order of the
bases at one end of the cDNA
being analyzed. Partial  se-
q Jp'd

e hundreds of bases in

Lo ’ CTGA
wwl GT GRACCCT G
GTGACCCTGA
w0
ACGTGAC
CAACGT ONA SEINCES
GCATCAA

A G C A PREDICTED GENE SEQUENCE
"AGCATCAACGTGACCCTGA

Copyright 1597 Scieatific American, Inc




Using RNASeq To Investigate Gene Activity

AAAAAAAA

— pre-mRNA
RNA fragments EXOI‘]

e o E———m ) T e T e [ST “brary

with adaptors

ATCACAGTGGGACTCCATAAATTTTTCT
CGAAGGACCAGCAGAAACGAGAGENER)
GGACAGAGTCCCCAGCGGGCTGAAGGGE
ATGAAACATTAAAGTCAAACAATATGAA

|

Short sequence reads

Coding sequence =

Exonic reads :

poly(A) end reads

Mapped sequence reads

Short read is split by
intron when aligning

to reference Genome " ;J

RNA expression level

Nuclectide position

Combines EST/cDNA Sequencing & NextGen
High Throughput Technology




Advantages of RNASeq To Investigate
Gene Activity

* High Throughput Sequencing

* Relatively “Simple” Procedure

* Study the Activity of Entire Genome

* Very Sensitive (can identify rare mRNAs)

* Quantitative

* Useful For Genome Annotation

* Can Identify Differentially Processed mRNAs
* Can Identify SNPs in mRNAs (i.e., alleles)




Number of Reads
(in millions)
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Using RNASeq to Study Gene Activity in

Soybean Seed Development
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We’ ve generated >943 million reads (~71 Gb)ill



Number of Genes
(in thousands)
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How Many Genes Are Active Throughout the

Soybean Life Cycle?

GLOB HRT COT EM B1 AA1 DRY 6DAI
\ (M \
/IS o‘o\f) 2000008 \0
early mid late

globular heartcotyledon maturation dormant seed seedling
Globular Early Maturation
tdormi Shoot Adaxial Abaxial

Endothelium Epnermns Int;;:fr:ent Meri:‘t)em Pare:():(r';ma Pare::;\?(ma

Endosperm

Outer
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SO Abaxial
~-Epidermis

MATURE PLANT

\\ FLORAL

There are 55,343 Genes Active Throughout The Soybean Life Cycle!



Are There mRNAs Specific to Seed Development?

o900 000000000

*Union of Whole Seed & Seed Compartment RNA-Seq
Sets = 52,685 mRNAs (5,294 TFs)

SEED

VEGETATIVE

*Union of all LCM & WM (glob-dry)



