HC 70AL Solo Presentation

Will Wolf

AT3G60740

Also known as TTN 1 (TITAN 1).

 Partially responsible for tubulin production and therefore integral to cellular division.

Its inhibition is generally considered to be fatal.

Experiment Overview

- Arabidopsis Thaliana is modified via a T-DNA insert from Agrobacterium.
- gDNA is extracted and checked for quality and concentration.
- PCR products produced from gene and T-DNA specific primers are used to determine the presence of mutants.
- The mutant gene is sequenced to confirm T-DNA insertion accuracy.
- The phenotype of mutant plants are visually observed after they reach sexual maturity.

Testing the Quality of gDNA

Screening for Mutants

Plants 2,3, and 4 produce bands with both Forward + LBb1.3 and Reverse + LBb1.3 primers.

In addition **ALL** plants produce bands with Forward + Reverse primers

This suggests that Plants 2,3, and 4 are heterozygous mutants with a T-DNA insert that is both forward and reverse oriented!

Gene Structure

T-DNA inserted at nucleotide 22452525, 32 bp away from expected location of 22452590

TTN 1 Expression Patterns

Tissue: CZE - Chalazal Endosperm; CZSC - Chalazal Seed Coat; EP - Embryo Proper; GSC - General Seed Coat; MCE - Micropylar Endosperm; PEN - Peripheral Endosperm; S - Suspensor

TTN 1 is known to be expressed in most seed tissues during all phases of growth, so where can we expect to see a mutant phenotype?

TTN 1 is important in tubulin production, a protein vital to cell division.

The embryo is one of the first organs to see cell division, so we will look there first for a phenotype!

Effects of TTN 1 Inhibition

Mutant seeds observed in a roughly 3:1 ratio as expected.

TTN deficient seeds appear white and disfigured above.

Effects of TTN 1 Inhibition

Mutants above contrasted with normal seed below from the same heterozygous silique

AT2G33710

 One of at least 7-members of the ERF B-4 subfamily of ERF/AP2 transcription factors

Functions known to be some-what redundant

Expressed almost exclusively in the micropylar and chalazal endosperm

Experiment Overview

- Arabidopsis Thaliana is modified via a T-DNA insert from Agrobacterium.
- gDNA is extracted and checked for quality and concentration.
- PCR products produced from gene and T-DNA specific primers are used to determine the presence of mutants.
- The mutant gene is sequenced to confirm T-DNA insertion accuracy.
- The phenotype of mutant plants are visually observed after they reach sexual maturity.

Screening for Mutants

Plants 2,3, and 5 produce **thick** bands with Forward + LBb 1.3 primers.

No bands are produced by Reverse + LBb1.3 primers.

Only Plants 2,3, and 5 **DO NOT** produce bands with
Forward + Reverse
primers

The presence of thick bands with Mmix A, absence of any bands in Mmix B, and absence of Plants 2,3, and 5 in Mmix C suggest that Plants 2,3, and 5 are homozygous mutants!

Gene Structure

AT2G33710 Expression Patterns

Tissue: CZE - Chalazal Endosperm; CZSC - Chalazal Seed Coat; EP - Embryo Proper; GSC - General Seed Coat; MCE - Micropylar Endosperm; PEN - Peripheral Endosperm; S - Suspensor

Gene is primarily expressed in the micropylar and chalazal endosperm.

This is where I would focus my observation later in the experiment.

Effects of AT2G33710 Inhibition

Under light microscopy there is no discernible difference between mutant and wild-type

Effects of AT2G33710 Inhibition at Early Stages of Development

No discernible difference between mutant and wild-type seeds observed at the globular/heart stage

Effects of AT2G33710 Inhibition at Mature Green (MG) Phase

Mutant Wild-Type

Seed development appears normal in both mutant and wild-type seeds at MG phase

So What's Next?

 Knock out of AT2G33710 yields no phenotype despite the homozygous nature of the mutation.

 Since AT2G33710 is part of a family with known redundancy, more members of its immediate ETF B-4 subfamily must be knocked out simultaneously to potentially generate a mutant phenotype.

Thank You!

Special thanks to Mike and Kelli for putting up with all our shenanigans and preparing solutions that actually work!