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TABLE 8.2 Various Vectors and the Size of the Inserts They Carry

Typical Carrying

Capacity (Size of

Vector Form of Vector Host Insert Accepted) Major Uses
Plasmid Double-stranded circular DNA E. coli Upto 15 kb cDNA libraries; subcloning
Bacteriophage Virus (linear DNA) £ coli Upto 25 kb Genomic and cDNA libraries
lambda -
Cosmid Double-stranded circular DNA E. coli 30-45 kb Genomic libraries
Phagemid Virus convertible to plasmid E. coli Upto 12 kb c¢DNA and genomic libraries
‘acteriophage P1 Virus {circular DNA) E. coli 70-90 kb Genomic libraries
BAC Bacterial artificial chromosome E. coli 100-500 kb Genomic libraries
YAC Yeast, artificial chromosome Yeast 250-1000 kb Genomic libraries
(1 megabase)
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Fragment of DNA

amp" gene
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Gene of interest

Bacterial cell without
recombinant DNA
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Eliminate cells
without plasmid
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(a)

Celis that did not take up the plasmid are
not resistant to ampicillin and do not form
colonies on media containing this antibjotic.

FIGURE 19.6

(b)

Cells that did not take up DNA fragments
have functional /acz' genes, are able to metabolize
X-gal, and turn blue on media that contain X-gal.

Stage 4-I: Using antibiotic resistance and X-gal as preliminary screens of restriction fragment clones. Bacteria are transformed
with recombinant plasmids that contain a gene (amp") that confers resistance to the antibiotic ampicillin and a gene (leZ ) that is required
to produce B-galactosidase, the enzyme which enables the cells to metabolize the sugar X-gal. (s) Only those bacteria that have
incorporated a plasmid will be resistant to ampicillin and will grow on a medium that contains the antibiotic, (§) Ampicillin-resistant
bacteria will be able to metabolize X-gal if their plasmid does nor contain 2 DNA fragment inserted in the /2" gene; such bacteria will
turn blue when grown on a medjum containing X-gal. Bacteria with a plasmid that has a DNA fragment inserted within the g2’ gene will

not be able to metabolize X-gal and, therefore, will remain colorless in the presence of X-gal
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c 13-8 Two techniques for locating a gene. A. A hybridization probe locates a
NA sequence. B. Antibodies locate the protein product of the same sequence.
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l Overlay nitrocellulose filter

ﬂ’ Remove filter _
4 FIGURE 7-21 Use of A expression cloning to identify

Use J Il"‘ cloned DNA based on binding of the encoded protein to &
e’.‘Jﬂ“ 2. specific antibody. The Agt11 vector was engineered to exf
Ah'}l“ ’ the £. coli protein B-galactosidase at high levels. The only E
Proteins bind to nitrocellulose recognition site (red) in this vector lies near the 3’ end of the
B-galactosidase gene. If a cDNA (green), or protein-coding
Incubate filter with primary antibody fragment of genomic DNA, is inserted into this EcoRl site i

Wash filter
Incubate filter with radiolabeled
secondary antibody

correct orientation and proper reading frame, it will be expre
as a fusion protein in which most of the B-galactosidase
sequence is at the N-terminal end and the protein sequence

125
I~ encoded by the inserted DNA is at the C-terminal end. Plagu

Labeled PR resulting from infection with recombinant Agtll contain high .-
:ﬁ:&g‘:ﬁw Fusion protein concentrations of such fusion proteins. These proteins can.bi
] bound to transferred and bound to a replica fifter, which then is incube
5,’,;?;3{3’,, Antibody identifies igfoceliulass with a monoclonal primary antibody (blue) that recognizes the
specific plaques protein of interest, Rinsing the filter washes away antibody

molecules that are not bound to the specific fusion protsin

Jl Perform autoradiography attached to the filter. Bound antibody usually is detected by -

incubating the filter with a second radiolabeled antibody (dar

red) that binds to the primary antibody. Any signals that appe
on the autoradiogram are used to locate plaques on the ma
plate containing the gene of interest. [Adapted from J. D, Wa
et al., 1992, Recombinant DNA, 2d ed., Scientific American Books.] :
X-ray film




e ————

DR PACTOR PTT — A1) Radwrr LoHERE EEME 5
EXPRESTED .\ Miyry TSE FEArOmE LIERARY

Albert Victoria

% 1 (1819-1901)
@ Key = () Normal female u 1 J ’£> 4@ 5
v 1& /

2
(®) Carrier (heterozygous) female =
QIj "5(b4<>5m6m 7

J:] Normal male
I Affected male

(c) Analysis of presence or absence of (b) Vessel damage

blood-clotting factors
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IX
Vil
X
A
Prothrombin
Fibrinogen

Inactive XI — Active XI

Inactive (X — Active IX
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t

Factor VIlI

(d) Purified

factor VIl !

Prothrombin Factor v Thrombin

Obtain amino
acid sequence.
1

Fibrinogen — Fibrin
Use to determine
corresponding degenerate
nucleic acid sequence.

Synth;esize oligonucleotide. - m ——————

Probe library.
t

Find factor VIl clone.

Structure of gene
as determined from L ! 1 L | L 1 L )
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Figure 10.1 How geneticlsts Identified the hemophilia A gene. (a) A pedigree of the royal family descended from Queen Victoria, This
family tree uses the standard pedigree symbols. Black boxes represent males with hemophilia. (b) The blood clotting cascade. Vessel damage

induces a cascade of enzymatic events that convert inactive factors to active factors. The cascade results in the transformation of fibrinogen to fibrin

and the formation of a clot. (c) Many hemophiliac patients do not have an active form of Factor VIl Blood tests can determine the presence or
absence of the active form of each factor involved in the clotting cascade. The results of such analyses show that hemophiliacs, such as those found
in Queen Victoria’s pedigree, lack an active Factor VIl in their blood. (d) Starting with purified Factor VIII, scientists isolated DNA clones containing
the Factor VIil gene. Researchers determined the amino-acid sequence of purified protein. Knowledge of this sequence enabled them to synthesize
a degenerate oligonucleotide. They then used the oligonucleotide as a probe to screen a genomic library for clones containing all or parts of the
gene. Finally, they sequenced the positive clones (that is, the clones with which the probe hybridizes) to determine the structure and coding
sequence of the Factor VIil gene,
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determine synthesize screen cDNA Figure 10-28 Knowledge of the molecul,
amino acid — —* or genomic biology of cells makes it possible to
DNA probe DNA lib OgY
SIS forary \ experimentally move from gene to pro-

tein and from protein to gene. A smal
quantity of a purified protein is used to
obtain a partial amino acid sequence. Thi
\\ introduce int insert into provides sequence infor'matiun that
R E coliorother expression enables the corresponding gene to be
RRETER: host cell vector cloned from a DNA library (see Figure
10-18). Once the gene has been cloned, it
protein-coding sequence can be used to
design a DNA that can then be used 10
— produce large quantities of the protein

from genetically engineered cells (see

Isolate protein on the basis of Isolate genomic clone Figure 10-27).
its molecular function (e.g., corresponding to an altered

enzymatic or hormonal trait in mutants (e.g.,

activity) nutritional auxotrophy,

inherited disease,

developmental defect) L ] ,"JAJ";

Determine partial amino acid Use genomic DNA to isolate a *
seguence of the protein cDNA for the mRNA encoded J“ A 7(‘“ (""'y

l[ by the gene
Synthesize oligonucleotides Sequence the cDNA to deduce
that correspond to portions amino acid sequence of the
of the amino acid sequence encoded protein
Use oligonucleotides as Compare deduced amino acid
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ncoding the proteins to gain insight into
prote om library function of the protein
Sequence isolated gene Use expression vector to
L produce the encoded protein
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TRANSFER TO FILTER PAPER,
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TO FILTEA PAPER,

GENE CLONING involves finding a specific gene among thousands in a human cell. The
standard method, it one knows which cells make the desired protein, is {o screen a copy

DNA (cDNA) library derived by reverselr ption from the ger RNA (mRNA)of
those cells {right). In looking for the factor VIII gene, however, the authors did not know
where the protein is produced. Hence they screened the catire human genome (feft). Chro-
mosomal DNA fragments were joined to the DNA of the bacterial virus phage lambda.
Each phage contained onc human DNA fragment; each phage multiplied and formed a
plaque in a distinct region of a bacterial culture. To identify the plaque countaining the
factor VIIL genc, the phages were blotted onto filter paper and broken opea to release their
DNA. The DNA was exposed to a radioactive probe: a small piece of synthetic DNA encod-
ing part of factor VIIL The probe hybridized with part of the factor VIII gene, thereby
labeling it. To produce factor VIIL in cultured cells, it was still necessary 1o make factor
VIl ¢DNA, which lacks {he introns (noncoding sequences) that complicate the full gene.
Now Fragments of the cloned gene could serve as reliable probes, first For identifying cells
hat make factor VIII mRNA and then for finding factor VIII cDNA in the cDNA libeary.
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Figure 6-5. Electron Micrographs of Bacteriophages. (a) Bacterio-
phage P2, magnification 226,000 times. (b) Bacteriophage lambda,
magnification 109,000 times. (¢) Bacteriophage T5, magnification
91,000 times. (d) Bacteriophage T4, magnification 180,000 times. (Pho-
tomicrographs courtesy of Robley Williams, University of California,
Berkeley.)
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A FIGURE 9-14 The bacteriophage A genome and
packaging of bacteriophage A DNA. (a) Simplified map of the A
phage genome. There are about 60 genes in the A genome, only
a few of which are shown in this diagram. Genes encoding
proteins required for assembly of the head and tail are located at
the left end; those encoding additional proteins required for the
Iytic cycle, at the right end. Some regions of the genome can be
replaced by exogenous DNA (diagonal lines) or deleted (dotted)
without affecting the ability of X phage to infect host cells and
assemble new virions. Up to =25 kb of exogenous DNA can be
stably inserted between the Jand N genes. (b) In vivo assembly
of \ virions. Heads and tails are formed from multiple copies of
several different A proteins. During the late stage of \ infection,
*Oﬂg-DNA molecules called concatomers are formed; these
multimeric molecules consist of multiple copies of the 49-kb A
genome linked end to end and separated by COS sites (red),
Protein-binding nucleotide sequences that occur once in each
Copy of the A genome. Binding of A head proteins Nu1 and A to
CQS sites promotes insertion of the DNA segment between two
aﬁlacent COS sites into an empty head. After the heads are filled
V\_"Fh DNA, assembled \ tails are attached, producing complete A
vinons capable of infecting E. coli cells.
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Figure 4.4 FEvents that occur when a phage infects a bacterial cell.
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A FIGURE 7-11 Assembly of bacteriophage A virions, Empty
heads and tails are assembied from multiple copies of several
different A proteins. During the late stage of A infection, long DNA
molecules called concatomers are formed; these multimeric
molecules consist of copies of the A genome linked end to end
and separated by COS sites (red), a protein-binding nucleotide
sequence that occurs once in each copy of the A genome. Binding
of the A proteins Nu1 and A to COS sites promotes insertion of the
DNA between two adjacent COS sites into an empty head. After
the heads are filled with DNA, preassembled A tails are attached,
producing complete A virions capable of infecting £. cofi cells.
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Figure 12-7  Cloning in phage A. A nonessential central region of
the phage chromosome is discarded and the ends ligated to random
15-kb fragments of donor DNA. A linear multimer (concatenate)
forms, which is then stuffed into phage heads one monomer at a time .
by using an in vitro packaging system. (From J. D. Watson, ;“ém
M. Gilman, J. Witkowski, and M. Zoller, Recombinant DNA, 24 cd. Har
Copyright © 1992 by Scientific American Books.)
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(a) Intact human DNA  (b) Distribution of fragment sizes
after complete or partial digestion
L * J 4 ‘ Eeonr P pa 9 Figure 8.4 Comparison of results from partial and complete
<oR. Compiote skll digests. (a) By reducing the time available for the reaction to occur,
" digest (_‘ 2 . you can ensure that an enzyme actually cuts only a subset of the total
& ‘ 4 ‘ Partial recognition sites within a DNA sample. In this example, the chosen
EcoR| : Number of digest reaction time allowed only 1/5 of all EcoRl sites to be cut. The
sites "ri"ﬂ—l-i—l—l—mHH—&-‘l—[-l-l-ﬁH fragments particular 20% of sites at which the cuts occur is totally random and
qf each ifferent even on identical DNA molecufes, (b) Most of the restriction
} ‘ ‘ ‘ size LIl | fragments produced by partial digestion are larger than those
WH}_H 048 16 24 32 30 produced by complete digestion with the same restriction enzyme.
Enzyme cuts at one Fragment size (kb)

random site in five.
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