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Class Size of repeat Major chromosomal location(s)
‘Megasatellite’ DNA (blocks of several kb Various locations on selected chromosomes
hundreds of kb in some cases)
RS447 4.7 kb ~50~70 copies on 4p15 plus several copies on distal 8p
untitled 2.5kb ~400 copies on 4931 and 19g13
untitled 3.0 kb ~50 copies on the X chromosome
Satellite DNA (blocks often from 5-171bp Especially at centromeres
100 kb to several Mb in length)
o (alphoid DNA) 171 bp Centromeric heterochromatin of all chromosomes
B (Sau3 A family) 68 bp Centromeric heterochromatin of 1,9, 13, 14, 15,21,22 and Y
Satellite 1 (AT-rich) 25-48 bp Centromeric heterochromatin of most chromosomes and other
) heterochromatic regions
Satellites 2 and 3 5bp Most, possibly all, chromosomes
Minisatellite DNA (blocks often 6-64 bp At or close to telomeres of all chromosomes
within the 0.1-20 kb range) o
telomeric family 6 bp All telomeres
hypervariable family 9-64bp__ All chromosomes, often near telomeres . ’
! blocks often ‘1—4 bp (Dispersed throughout all chromosom@
less than 150 bp) o
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Figure 7.1 Occurrence of different kinds of unique and repeated DNA segments on chromosomal DNA.
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Figure 2.28 In a simple tandem repeat polymorphism (STRP), the alleles in a population differ in the
number of copies of a short sequence (typically 2-60 bp) that is repeated in tandem along the DNA
molecule. This example shows alleles in which the repeat number varies from 1 to 10. Cleavage at
restriction sites flanking the STRP yields a unique fragment length for each allele. The alleles can also
be distinguished by the size of the fragment amplified by PCR using primers that flank the STRP.
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Figure 1. D1580 Alleles in the Winter, 2004 HC70A UCLA Class Population.
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Figure 2. D1580 Alleles in the Winter, 2004 HC70A Kyoto Class Population.
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Figure17.14 Use of DNA typing in paternity
testing. The sets of lanes numbered 1 and 2
contain DNA samples from two different
paternity cases. In each case, the lanes contain
DNA fragments from the following sources: M,
the mother; C, the child; A, the accused father,
The lanes labeled A + C contain a mixture of
DNA fragments from the accused father and the
child. The arrows in case 2 point to bands of the
same size that are present in lanes M, C, and

A + C. Note that the male accused in case 2
could not be the father because neither of his
bands is shared with the child. [Courtesy of R.
W. Allen.]
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present in any one individual.
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Figure17.13 An example of DNA typing in a criminal case. Each panel is the result of DNA typing for
a different VNTR. The lanes marked S1, $2, and S3 contain DNA from blood samples of three male
suspects; those in columns U1 through U7 contain DNA from semen samples collected from seven
female victims of rape. The lanes marked M contain molecular-weight markers. In each case, the
DNA from suspect S2 matches the samples obtained from the victims. [Courtesy of Steven J.
Redding, Office of the Hennepin County District Attorney, Minneapolis, and Lowell C. Van Berkom
and Carla J. Finis, Minnesota Bureau of Criminal Apprehension. ]
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Figure 9.4 Minisatellites are highly polymorphic because of
their potential for misalignment and unequal crossing-over,
Minisatellites are composed of relatively long tandem repeating units
of identical sequence. (a) Misalignment and (b) unequal crossing-over
produce (c) recombinant products that contain different numbers of
repeating units than either parental locus; each new recombinant
product is a new allele,
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ia 4 Figure 8-60 (a) Generalized diagram of eukaryotic nt

cleus showing identifiable structural elements. (b) Eleciron
Nuclear pore ~ Mmicrograph of nuclear pore—lamin complexes isolated from
rat nuclei. Nuclear pores {arrows) are embedded in fibrous
lamin proteins (la). (c) A transmission electron micrograph
S of a whole mount of a HeLa cell, showing a skeletal net-

| work within the nucleus. The cell was prepared by removin;

- Nuclear envelope
Nucleolus ;

Lipid bilayer

lipids and soluble factors with a mild detergent. The remain
ing skeletal struture was then treated to remove most of th:
DNA. The sample was fixed with glutaraldehyde, but no
heavy-metal shadowing was done. [See S. Penman et al.,
1982, Cold Spring Harbor Symp. Quant. Biol. 46:1013.]
Photograph (b) courtesy of N. Dwyer. Reproduced from th
Journal of Cell Biology, 1976, by copyright permission of
Rockefeller University Press. Photograph (c) courtesy of

S. Penman. -
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Chromosome typing for the identification of gross
chromosomal abnormalities is being carried out at an
increasing number of genetic counseling centers
throughout the United States. The result of the proce-
dure is a graphic display of the chromosome comple-
ment, known as a karyotype. The chromosomes
shown in a karyotype are mitotic metaphase chromo-
somes, each consisting of two sister chromarids held
together at their centromeres, To prepare a karyo-
type, cells in the process of dividing are interrupted at

metaphase by the addition of}colchicig a drug that
prevents the subsequent steps of mitosis from taking
place by interfering with the spindle microtubules.
After treating and staining, the chromosomes are
photographed, enlarged, cut out, and arranged
according to size. Chromosomes of the same size are
paired according to centromere position, which
results in different “arm” lengths. From the karyo-
type, certain abnormalities, such as an extra chromo-
some or piece of a chromosome, can be detected.
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5 Figure 10.3 The human karyotype: Banding distinguishes the chromosomes. (a) Photograph of a complete set of human
@ chromosomes at metaphase. Staining with Giemsa dye accentuates the bands and interbands. (b) Idiograms for the complete set of
human chromosomes. An idiogram is an idealized diagram of the banding pattern associated with a stained chromosome.
(c) Chromosome 7 at three different levels of banding resolution. As staining techniques improve, it becomes possible to resolve what previously
appeared as a single band into a series of bands and interbands, producing more and more bands along each chromosome. Thus, at one
resolution, 7G31 appears as one band. At a slightly higher resolution, 731 becomes two bands (7q31.1 and 7q31.3) flanking an interband
(7g31.2); and at an even higher resolution, 7q31.3 itself appears as two bands (7g31.31 and 7q31.33) an an interband (7q31.32).
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Table 9.1 Conventional karyotype symbols used in hy

man genetics
A-G Chromosome groups
2 Aosomedesgnations
XY Sex-chromosome designatr’ons
P Shotamofdhomosome
ter

Terminal portion: pter refers to terminal portion of short arm, qter to terminal portion of long arm

+ Preceding a chromosome designation, indicates that the chromos

ome or arm is extra; following a designation,
indicates that the chromosome or arm s larger than normal

Preceding a chromosome designation, indicates that the chromosome or arm
tion, indicates that the ch romosome or arm is smaller than normal

mos Mosaic

/ Separates karyotypes of clones in mosaics—e.g., 47, XXX/45,X

dup Duplication

dirdup  Direct duplication

invdup  Inverted duplication

is missing; following a designa-

del Deletion
inv Inversion
t translocation
cp Reciprocal translocation
rob Robertsonian translocation
r Ring chromosome
i Isochromosome (two identical arms attached to a single centromere, like an attached-X chromosome in
Drosophila) :
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FIGURE 30-1
The baglmd human genome)This is a schematic drawing of 1 of each of the 23 human
chromosomes, showing the pattern of staining seen with the Giemsa banding method. Chro-
mosomes are first created with trypsin and then stained with Giemsa. The patterns of light
and dark bands are characteristic for each chromosome; and wanslocations, deletons, and
other strucrural abnormalities can be idendfied. Typically 400 bands can be seen per haploid
genome, and each band represents on average 7.5 x 10° bp, or twice as many base pairs as in
the entire . coli genome! Chromosome 1 constitutes 8.4 percent, and the Y chromosome
abour 2.0 percent, of the human genome. Taking the £ coli genome as a unir of genome size,
a cytogenetic band is 2 genome units, and the Y chromosome is 15 genome units.

K bl pi5 = ZSAE ~ Z0xrb4
@0 f‘&an;;; / £ e 4"“‘./



e S e B T T SR i
= - " S —

E AUMAN <k ROMOSOMES CAN AlSo ?
\ . 3 ' ;
\ Vit V.l T/ & Lo LA E 20 j} J'?
. y e : i

————__ T 1r SEPlErcEs [

Heowr Are

Hore <4romosones ‘5’9- m’;&,('.?
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Figure 9.1 Human chromosome painting, in which each pair of chromosomes is labeled by
hybridization with a different fluorescent probe. (A) Metaphase spread showing the chromosomes

in a random arrangement as they were squashed onto the slide. (B) A karyotype, in which the
chomosomes have been grouped in pairs and arranged in conventional order. Chromosomes 1-20 are
arranged in order of decreasing size, but for historical reasons, chromosome 21 precedes chromosome
22, even though chromosome 21 is smaller. [Courtesy of Johannes Wienberg and Thomas Ried.]

Table 7.2: DNA content of human chromosomes®

Chromosome Amount Chromosome Amount

of DNA of DNA
(Mb) (Mb)
1 263 13 114
2 255 14 109
3 214 15 106
4 203 16 98
5 194 17 92
6 183 18 85
7 171 19 67
8 155 20 72
9 145 21 50
10 144 22 56
1" 144 X 164
12 143 Y 59

* The DNA content is given for chromosomes prior to entering
the S (DNA replication) phase of cell division (see Figure 2.2).
Data abstracted from electronic reference 1.
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Figure 2.19: Origins of triploidy and tetraploidy.r

About two-thirds of human triploids arise by fertilization of a
single egg by two sperm (A). Other causes are a diploid egg
(B) or sperm (C). Most human triploids abort spontaneously;
very rarely they survive to term, but not beyond. Tetraploidy
(D) results from failure of the first mitotic division after
fertilization, and is incompatible with development.
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TABLE 12.1 Chromosomal Rearrangements and Changes in Chromosome Number (or Ploidy).

@:M aﬁ < ?‘D @ﬂosoma] Reamngem@

Before After
Deletion: Removal of a segment of DNA 2|3 fals 6]zl — . -i|2}3ls18]7/8

'\ Duplication: Increase in the number of copies of a o lueladulel 4l b6l 2)8. — A fBdehakad4]6.6]7.]8

chromosomal region

CA’-‘”J“"O! Inversion: Half-circle rotation of a chromosomal region b2 iddd 516 17|18 * thadBdal 51 6]7]8

‘e 180° Rotation
s A (]
"UJ e e anslocations:
Nonreciprocal: Unequal exchanges between ~ti243.l4l51.617]8 w2ddal4 | 51647]8
nonhomologous chromosomes dRddBladlislasrdzlig. Jidddaldeadzias.
'(”';c, L P Reciprocal: Parts of two nonhomolagous -ilajalalsielzis. WMAJLLB
! ’; chromosomes trade places deldslidlisldmddis Al
4" A Transposition: Movement of short DNA segments from el 2 bldd.).5.0.607]8. — ~Ad2ld )56 k8718

one position in the genome to another
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< Changes in Chromosome Number or Ploidy l
Euploidy: Lells that contain only complete sets of

chromosomes

Diploidy (2x): Two copies of each homolog @ XX Xx x é— f‘; ‘4‘.
1

3

2
Monopioidy (x): One copy of each homolog @ X x X & Sy efe,
1 2 3

ore than the normal diploid number of
chromosome s
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2

<

Tetraploidy (4x): Four copies of each homolog
g .

le"ﬂe’f":/i m oss or gai

producing @ chromosome number that is not an exact
multiple of the haploid number
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ONne 2~ Nore Novasem . ! ‘ i
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Tetrasomy (2n + 2) L:fz‘:rj 3{ & XX XXXX
LA 1‘-/ 9 3

2
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Note that it is more accurate to denote monaploids, triploids, and tetraploids as multiples of x, which represents the number of different chromasomes in a complete

set, rather than as multiples of n, the number of chromosomes in the gametes. In this table, as throughout the chapter, nonhomologous chromosomes are drawn in
different colors. Ditferent shades of the same color highlight different regions of the same chromosome.
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Amniocentesis and Chorionic Biopsy: tests may be performed on the fluid recovered from the am-

nionic sac to detect other sorts of abnormalities, including
neural tube defects and some kinds of mutations. The results

Procedures to Detect Aneuploidy

in Human Fetuses of all these tests may take up to three weeks. In Laura’s case,
no abnormalities of any sort were detected, and 20 weeks af-
The Andersons, a couple living in Minneapolis, were ex- ter the amniocentesis, she gave birth to a healthy baby girl.
pecting their first baby. Neither Donald nor Laura Anderson Chorionic biopsy provides another way of detecting
knew of any genetic abnormalities in their families, but be- chromosomal abnormalities in the fetus. The chorion is a fe-
cause of Laura’s age—38—they decided to have the fetus tal membrane that interdigitates with the uterine wall, even-
checked for aneuploidy. tually forming the placenta. The minute chorionic projections
Laura’s physician performed a procedure called am- into the uterine tissue are called willi (singular, villus). At 10-
niocentesis. A small amount of fluid was removed from the 11 weeks of gestation, before the placenta has developed, a
cavity surroundaing trie aeveibping retus Oy mservig o - serrrepks o Al vl car e abvainad by prassing @ hal-
dle into Laura’s abdomen (Figure 1). This cavity, called the low plastic tube into the uterus through the cervix. This tube
amnionic sac, is enclosed by a membrane. To prevent dis- can be guided by an ultrasound scan, and when it is in place,
comfort during the procedure, Laura was given a local anes- a tiny bit of material can be drawn up into the tube by as-
thetic. The needle was guided into position by following an piration. The recovered material usually consists of a mix-
ultrasound scan, and some of the amnionic fluid was drawn ture of maternal and fetal tissue. After these tissues are sep-
ouf, Because this fluid contains nucleated cells sloughed off arated by dissection, the fetal cells can be analyzed for
from the fetus, it is possible to determine the fetus’s kary- chromosome abnormalities.
otype (thure 2). Usually the: fetal cells are purified from the Chorionic biopsy can be performed earlier than amnio-
amnijonic fluid by centnfuganon, and then the cells are cul- centesis (10-11 weeks gestation versus 14-16 weeks), but it

tured for several days to a few weeks. Cytological analysis is not as reliable. In addition, it seems to be associated with
of these cells will reveal if the fetus is aneuploid. Additional a slightly greater chance of miscarriage than amniocentesis,
perhaps 2 to 3 percent. For these reasons, it tends to be used
only in pregnancies where there is a strong reason to expect
a genetic abnormality. In routine pregnancies, such as Laura
Anderson's, amniocentesis 15 the preterred procedure.

Amniotic cavity
Fetal cells

oF Placenta
Amniocentesis
Uterine
wall

Centrifuge Biochemical /Chromosomal {Biochemical
analysis analysis analysis
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Figure 1 A phys %akmg a sample of fluid from the ke L
amniotic sac of a p* t woman for prenatal diagnosis Figure 2 Amniocentesis and procedures for prenatal di-
of acl ical abnormality. agnosis of chromosomal and biochemical abnormalities.
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FIGURE 27-1

Amniocentesis and chorionic villus sampling. (a) A sample of amniotic fluid (mostly fetal
urine and other secretions) is taken by inserting a needle into the amniotic cavity during or
around the sixteenth week of gestation. The feral cells are separated from the fluid by cen-
wrifugation. The cells can be used immediately, or more usually they are cultured'so that &
number of biochemical, enzymatic, and chromosomal analyses can be made. The culred
cells can also be a source of DNA. (b) Chorionic villus sampling is performed between the
eighth and twelfth weeks of gestation. A catheter is introduced through the vagina or tran-
sabdominally, and a small sample of chorionic villi is drawn into the syringe. DNA can be
isolated directly from the tissue, or cell cultures can be established. Note that the various
elements of this figure are not drawn to scale.




