
Plastics.” When a fami-
ly friend whispered
this word to Dustin
Hoffman’s character
in the 1967 film The
Graduate, he was ad-

vocating not just a novel career choice
but an entirely different way of life. If
that movie were made today, in the age
of the deciphering of the human ge-
nome, the magic word might well be
“bioinformatics.”

Corporate and government-led scien-
tists have already compiled the three
gigabytes of paired A’s, C’s, T’s and G’s
that spell out the human genetic code—
a quantity of information that could fill

more than 2,000 standard computer
diskettes. But that is just the initial trick-
le of the flood of information to be
tapped from the human genome. Re-
searchers are generating gigantic data-
bases containing the details of when and
in which tissues of the body various
genes are turned on, the shapes of the
proteins the genes encode, how the pro-
teins interact with one another and the
role those interactions play in disease.
Add to the mix the data pouring in
about the genomes of so-called model
organisms such as fruit flies and mice
[see “The ‘Other’ Genomes,” on page
53], and you have what Gene Myers,
Jr., vice president of informatics re-
search at Celera Genomics in Rockville,
Md., calls “a tsunami of information.”
The new discipline of bioinformatics—a
marriage between computer science and

biology—seeks to make sense of it all. In
so doing, it is destined to change the
face of biomedicine.

“For the next two to three years, the
amount of information will be phe-
nomenal, and everyone will be over-
whelmed by it,” Myers predicts. “The
race and competition will be who can
mine it best. There will be such a wealth
of riches.”

A whole host of companies are vying
for their share of the gold. Jason Reed
of the investment banking firm Oscar
Gruss & Son in New York City esti-
mates that bioinformatics could be a
$2-billion business within five years. He
has compiled information on more than

50 private and publicly traded compa-
nies that offer bioinformatics products
and services. These companies plug
into the effort at various points: collect-
ing and storing data, searching databas-
es, and interpreting the data. Most sell
access to their information to pharma-
ceutical and biotechnology companies
for a hefty subscription price that can
run into the millions of dollars.

The reason drug companies are so
willing to line up and pay for such ser-
vices—or to develop their own expen-
sive resources in-house—is that bioin-
formatics offers the prospect of finding
better drug targets earlier in the drug
development process. This efficiency
could trim the number of potential
therapeutics moving through a compa-
ny’s clinical testing pipeline, significant-
ly decreasing overall costs. It could also

create extra profits for drug companies
by whittling the time it takes to re-
search and develop a drug, thus length-
ening the time a drug is on the market
before its patent expires.

“Assume I’m a pharmaceutical com-
pany and somebody can get [my] drug
to the market one year sooner,” ex-
plains Stelios Papadopoulos, managing
director of health care at the New York
investment banking firm SG Cowen.
“It could mean you could grab maybe
$500 million in sales you would not
have recovered.”

Before any financial windfalls can oc-
cur, however, bioinformatics companies
must contend with the current plethora

of genomic data while constantly refining
their technology, research approaches
and business models. They must also
focus on the real challenge and oppor-
tunity—finding out how all the shards
of information relate to one another
and making sense of the big picture.

“Methods have evolved to the point
that you can generate lots of informa-
tion,” comments Michael R. Fannon,
vice president and chief information of-
ficer of Human Genome Sciences, also
in Rockville. “But we don’t know how
important that information is.”

Divining that importance is the job of
bioinformatics. The field got its start in
the early 1980s with a database called
GenBank, which was originated by the
U.S. Department of Energy to hold the
short stretches of DNA sequence that
scientists were just beginning to obtain
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A $300-million industry has emerged
around turning raw genome data into
knowledge for making new drugs
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from a range of organisms. In the early
days of GenBank a roomful of techni-
cians sat at keyboards consisting of
only the four letters A, C, T and G, te-
diously entering the DNA-sequence in-
formation published in academic jour-
nals. As the years went on, new proto-
cols enabled researchers to dial up
GenBank and dump in their sequence
data directly, and the administration of

GenBank was transferred to the Na-
tional Institutes of Health’s National
Center for Biotechnology Information
(NCBI). After the advent of the World
Wide Web, researchers could access the
data in GenBank for free from around
the globe.

Once the Human Genome Project
(HGP) officially got off the ground in
1990, the volume of DNA-sequence
data in GenBank began to grow expo-
nentially. With the introduction in the
1990s of high-throughput sequencing—
an approach using robotics, automated
DNA-sequencing machines and com-
puters—additions to GenBank skyrock-
eted. GenBank held the sequence data
on more than seven billion units of
DNA as this issue of Scientific American
went to press.

Around the time the HGP was taking
off, private companies started parallel
sequencing projects and established
huge proprietary databases of their
own. Today companies such as Incyte
Genomics in Palo Alto, Calif., can de-
termine the sequence of approximately
20 million DNA base pairs in just one
day. And Celera Genomics—the se-
quencing powerhouse that announced
in April that it had completed a rough
draft of the human genome [see “The
Human Genome Business Today,” on
page 50]—says that it has 50 terabytes
of data storage. That’s equivalent to
roughly 80,000 compact discs, which

in their plastic cases would take up al-
most half a mile of shelf space.

But GenBank and its corporate cou-
sins are only part of the bioinformatics
picture. Other public and private data-
bases contain information on gene ex-
pression (when and where genes are
turned on), tiny genetic differences
among individuals called single-nu-
cleotide polymorphisms (SNPs), the

structures of various proteins, and maps
of how proteins interact [see “Beyond
the Human Genome,” on page 64]. 

Mixing and Matching

One of the most basic operations in
bioinformatics involves searching

for similarities, or homologies, between
a newly sequenced piece of DNA and
previously sequenced DNA segments
from various organisms. Finding near-
matches allows researchers to predict the
type of protein the new sequence en-
codes. This not only yields leads for drug
targets early in drug development but
also weeds out many targets that would
have turned out to be dead ends.

A popular set of software programs
for comparing DNA sequences is BLAST
(for Basic Local Alignment Search Tool),
which first emerged in 1990. BLAST is
part of a suite of DNA- and protein-se-
quence search tools accessible in various
customized versions from many data-
base providers or directly through NCBI.
NCBI also offers Entrez, a so-called meta-
search tool that covers most of NCBI’s
databases, including those housing three-
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GENETIC DATA are the stuff of bioinformatics, which can be likened to looking for a
needle in a haystack. In the fanciful example at the left, the needle is the word “DOG”
buried amid a sequence of thousands of A’s, C’s, T’s and G’s, the four units that make up
DNA. But bioinformatics also involves comparing genes from various organisms: the oth-
er illustrations on this page and on the preceding one are maps of fruit fly chromosomes
alongside bar codes showing regions where the fly’s genes are similar to those of others.

RUSH

“The race and competition will be 
who can mine [the data] best. There 
will be such a wealth of riches.”
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DoubleTwist
www.doubletwist.com 
Privately held
Headquarters: Oakland,Calif.
Lead Executive: John Couch,presi-
dent and CEO
Major Clients/Partners: Derwent In-
formation,Clontech Laboratories,
Myriad Genetics,AlphaGene,Univer-
sity of Pennsylvania
Strategy: Provide on-line access to a
variety of bioinformatics tools and
databases.
Financing This Year: $37 million
Key Challenges: Providing unique
proprietary tools and attracting
enough customers to support an In-
ternet-portal business model.
Competitive Advantage: High visi-
bility and potentially large market.

Lion Bioscience 
www.lionbioscience.com
Privately held
Headquarters: Heidelberg,Germany
Lead Executive: Friedrich von
Bohlen,CEO
Major Clients/Partners: Bayer,Aven-
tis, Pharmacia 
Strategy: Provide enterprise-wide
bioinformatics systems and services.
Financing This Year: $TK
Key Challenges: Continuing to pen-
etrate large to midsize biotechnolo-
gy and pharmaceutical client base;
replicating their success with Bayer.
Competitive Advantage: $100-mil-
lion alliance with Bayer creates high
visibility and financial leverage.

Lion Bioscience 
www.lionbioscience.com
Privately held
Headquarters: Heidelberg,Germany
Lead Executive: Friedrich von
Bohlen,CEO
Major Clients/Partners: Bayer,Aven-
tis, Pharmacia 
Strategy: Provide enterprise-wide
bioinformatics systems and services.
Financing This Year: None
Key Challenges: Continuing to pen-
etrate large to midsize biotechnolo-
gy and pharmaceutical client base;
replicating its success with Bayer.
Competitive Advantage: $100-mil-
lion alliance with Bayer creates high
visibility and financial leverage.

Oxford Molecular
Group
www.oxmol.co.uk
Stock Symbol: OMG (London)
Headquarters: Oxford,England
Lead Executive: N.Douglas Brown,
chairman
Major Clients/Partners: Novartis,
Glaxo Wellcome,Merck,Pfizer,Smith-
Kline Beecham,Abbott Laboratories
Strategy: Provide broad range of
drug-discovery research software
and services.
Financing This Year: None
Key Challenge: Expanding business
into more enterprise-wide products
and services.
Competitive Advantage: Owns 
Genetics Computer Group, whose
flagship product, the Wisconsin 
Package, is considered the industry
standard for sequence analysis.

InforMax
www.informaxinc.com
Privately Held
Headquarters: Bethesda,Md.
Lead Executive: Alex Titomirov,CEO
Major Clients/Partners: Products
used by 19 drug companies
Strategy: Provide desktop and enter-
prise-wide bioinformatics tools.
Financing This Year: None
Key Challenge: Evolving business
into enterprise-wide systems.
Competitive Advantage: High mar-
ket penetration with desktop line of
bioinformatics tools.

NetGenics
www.netgenics.com
Privately held
Headquarters: Cleveland,Ohio
Lead Executive: Manuel J.Glynias,
president and CEO
Major Clients/Partners: Abbott 
Laboratories,Aventis, IBM
Strategies: Provide enterprise-wide
bioinformatics systems and services.
Financing This Year: $21.3 million
Key Challenge: Continuing to pene-
trate large and midsize biotechnolo-
gy and pharmaceutical client base.
Competitive Advantages: Well fund-
ed and has relationships with large
pharmaceutical companies.

NetGenics
www.netgenics.com
Privately held
Headquarters: Cleveland,Ohio
Lead Executive: Manuel J.Glynias,
president and CEO
Major Clients/Partners: Abbott 
Laboratories,Aventis, IBM
Strategy: Provide enterprise-wide
bioinformatics systems and services.
Financing This Year: $21.3 million
Key Challenge: Continuing to pene-
trate large and midsize biotechnolo-
gy and pharmaceutical client base.
Competitive Advantages: Well fund-
ed and has relationships with large
pharmaceutical companies.

Compugen
www.cgen.com
Privately held
Headquarters: Tel Aviv, Israel
Lead Executive: Mor Amitai,CEO
Major Clients/Partners: Merck, Incyte
Genomics,Amgen,Millennium Phar-
maceuticals,Bayer,Human Genome
Sciences, Janssen Pharmaceutica
Strategies: Produce computer hard-
ware and software to accelerate
bioinformatics algorithms; engage in
gene discovery and drug develop-
ment; offer bioinformatics tools via
Internet portal.
Financing This Year: None
Key Challenges: Evolving business
model to drug discovery; expanding
product lines; developing Internet-
portal business model.
Competitive Advantages: One of the
first companies to develop special-
ized bioinformatics tools,giving it
expertise in data mining.Has a sta-
ble of proprietary biological data for
use in developing drug targets. SL
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dimensional protein structures, the com-
plete genomes of organisms such as
yeast, and references to scientific jour-
nals that back up the database entries.

An early example of the utility of bio-
informatics is cathepsin K, an enzyme
that might turn out to be an important
target for treating osteoporosis, a crip-
pling disease caused by the breakdown
of bone. In 1993 researchers at Smith-
Kline Beecham, based in Philadelphia,
asked scientists at Human Genome Sci-
ences to help them analyze some genetic
material they had isolated from the os-
teoclast cells of people with bone tumors.
(Osteoclasts are cells that break down
bone in the normal course of bone re-
plenishment; they are thought to be over-
active in individuals with osteoporosis.)

Human Genome Sciences scientists se-

quenced the sample and conducted data-
base homology searches to look for
matches would give them a clue to the
proteins that the sample’s gene sequences
encoded. Once they found near-matches
for the sequences, they carried out fur-
ther analyses and discovered that one
sequence in particular was overexpressed
by the osteoclast cells and that it matched
those of a previously identified class of
molecules: cathepsins.

For SmithKline Beecham, that exer-
cise in bioinformatics yielded in just
weeks a promising drug target that stan-
dard laboratory experiments could not
have found without years and a pinch
of luck. Company researchers are now
trying to find a potential drug that
blocks the cathepsin K target. Searches
for compounds that bind to and have

the desired effect on drug targets still
take place mainly in a biochemist’s tra-
ditional “wet” lab, where evaluations
for activity, toxicity and absorption can
take years. But with new bioinformat-
ics tools and growing amounts of data
on protein structures and biomolecular
pathways, some researchers say, this as-
pect of drug development will also shift
to computers, in what they term “in sili-
co” biology [see “Forget In Vitro—Now
It’s ‘In Silico,’” on next page].

It all adds up to good days ahead for
bioinformatics, which many assert holds
the real promise of genomics. “Genomics
without bioinformatics will not have
much of a payoff,” states Roland Som-
ogyi, former director of neurobiology
at Incyte Genomics who is now at Mol-
ecular Mining in Kingston, Ontario.
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MODEL HUMAN PROTEIN 
BASED ON KNOWN 
STRUCTURE OF A SIMILAR
PROTEIN FROM A MODEL
ORGANISM (red area is 
encoded by the sequence 
data shown)

FIND DRUG THAT 
BINDS TO 
MODELED
PROTEIN

POSSIBLE
DRUG

TRANSLATE DNA SEQUENCE INTO AMINO 
ACID SEQUENCES (the building blocks 
of protein) USING COMPUTER PROGRAM

FRUIT FLY
(Drosophila melanogaster)

HUMAN AMINO ACID SEQUENCE

NEMATODE WORM
(Caenorhabditis elegans)

HUMAN

BAKER’S YEAST
(Saccharomyces cerevisiae)

BACTERIA
(Escherichia coli )

HUMAN CHROMOSOME 3

MLH1 GENE
(on band 21.3)

q (long arm) p (short arm)

4
5

2

ISOLATE HUMAN DNA SEQUENCE1

LOOK FOR SIMILAR SEQUENCES IN DATA-
BASES OF MODEL ORGANISM PROTEINS 
(green areas reflect great differences; 
orange, smaller variations)

3

Using Bioinformatics to Find Drug Targets
By looking for genes in model organisms that are similar to a given human gene, researchers can learn 

about the protein the human gene encodes and search for drugs to block it. The MLH1 gene,
which is associated with colon cancer in humans, is used in this example.
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Michael N. Liebman, head of compu-
tational biology at Roche Bioscience in
Palo Alto, agrees. “Genomics is not the
paradigm shift; it’s understanding how
to use it that is the paradigm shift,” he
asserts. “In bioinformatics, we’re at the
beginning of the revolution.”

The revolution involves many differ-
ent players, each with a different strate-
gy. Some bioinformatics companies cater
to large users, aiming their products and
services at genomics, biotechnology and
pharmaceutical companies by creating
custom software and offering consulting
services. Lion Bioscience, based in Hei-
delberg, Germany, has been particularly
successful at selling “enterprise-wide”
bioinformatics tools and services. Its
$100-million agreement with Bayer to
build and manage a bioinformatics ca-
pability across all of Bayer’s divisions
was at press time the industry’s largest
such deal.

Other firms target small or academic
users. Web businesses such as Oakland,
Calif.–based DoubleTwist and eBioin-
formatics, which is headquartered in
Pleasanton, Calif., offer one-stop Inter-

net shopping. These on-line portals al-
low users to access various types of data-
bases and use software to manipulate the
data. 

In May, DoubleTwist scientists an-
nounced they had used their technology
to determine that the number of genes in
the human genome is roughly 105,000,
although they said the final count would
probably come in at 100,000. For those
who would rather have the software be-
hind their own security firewalls, Infor-
max in Rockville, Oxford Molecular
Group in England, and others sell shrink-
wrapped products.

Making Connections

Large pharmaceutical companies—
“big pharma”—have also sought to

leverage their genomics efforts with in-
house bioinformatics investments. Many
have established entire departments to
integrate and service computer soft-
ware and facilitate database access
across multiple departments, including
new product development, formulation,
toxicology and clinical testing. The old

model of drug development often com-
partmentalized these functions, ghetto-
izing data that might have been useful
to other researchers. Bioinformatics al-
lows researchers across a company to
see the same thing while still manipulat-
ing the data individually.

In addition to making drug discovery
more efficient, in-house bioinformatics
can also save drug companies money in
software support. Glaxo Wellcome in
Research Triangle Park, N.C., is replac-
ing individual packages used by various
investigators and departments to access
and manipulate databases with a single
software platform. Robin M. DeMent,
U.S. director of bioinformatics at Glaxo
Wellcome, estimates that this will save
approximately $800,000 in staffing
support over a three- to five-year period.

To integrate bioinformatics through-
out their companies, pharmaceutical gi-
ants also forge strategic alliances, enter
into licensing agreements and acquire
smaller biotechnology companies. Us-
ing partners and vendors not only al-
lows big pharma to fill in the gaps in its
bioinformatics capabilities but also gives
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Forget In Vitro—Now It’s “In Silico”

With the human genome essentially complete, fu-
turists are suggesting that scientists will soon be
able to use bioinformatics to model the astro-

nomical number of biochemical reactions that add up to human
life. Ken Howard discusses the possibility of such “in silico” biolo-
gy with complexity expert Stuart A.Kauffman,an external profes-
sor at the Santa Fe Institute in New Mexico who is also founder
and chief scientific officer of Bios Group in Santa Fe.

Q: What is the promise of bioinformatics and “in silico” biology?
Kauffman: We’re entitled to think of the 100,000 genes in a hu-
man cell as some kind of parallel-processing chemical computer
in which genes are continuously turning one another on and off
in some vastly complex network of interaction. Cell-signaling
pathways are linked to genetic regulatory pathways in ways
we’re just beginning to unscramble. The most enormous bioin-
formatics project in front of us is unscrambling this regulatory
network,which controls cell development from the fertilized egg
to the adult.

Q: What is the payoff?
Kauffman: We will know which gene to perturb—or which se-
quences of genes to perturb, and in what order—to guide a can-
cer cell to nonmalignant behavior or to apoptosis [programmed
cell death]. Or to guide the regeneration of some tissue, so that if
you happen to have lost half of your pancreas we’ll be able to re-

generate your pancreas. Or we’ll be able to regenerate the beta
cells in people who have diabetes.

Q: What needs to happen to achieve that goal?
Kauffman: It’s not going to be merely bioinformatics—there has
to be a marriage between new kinds of mathematical tools.
Those tools will in general suggest plausible alternative circuits
for bits and pieces of the [cell’s] regulatory network. And then
we’re going to have to marry that with new kinds of experiments
to work out what the circuitry in cells actually is. And bioinfor-
matics has to be expanded to include experimental design.What
we’re going to get out of each of these pieces of bioinformatics is
hypotheses that need to be tested.

Q: What challenges lie ahead?
Kauffman: Suppose I pick out 10 genes that I know regulate one
another, and I try to build a circuit about their behavior. It’s a per-
fectly fine thing, and we should do it. But the downside is the fol-
lowing:those 10 genes have inputs from other genes outside that
circuit. So you’re taking a little chunk of the circuitry that’s embed-
ded in a much larger circuit with thousands of genes in it.You’re
trying to figure out the behavior of that circuit when you do not
know the outside genes it impacted. And that makes that direct
approach hard, because you never know what the other inputs
are. We’ve known for years what every neuron is in the lobster
gastric ganglia [a nerve bundle going to the animal’s digestive
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it the mobility to adapt new technologies
as they come onto the market rather
than constantly overhauling its own sys-
tems. “If a pharmaceutical company had
a large enough research budget, they
could do it all themselves,” Somogyi
says. “But it’s also a question of culture.
The field benefits as a whole by provid-
ing different businesses with different
roles with room to overlap.”

Occupying some of that overlap—in
resources, products and market capital-
ization—are companies such as Human
Genome Sciences, Celera and Incyte.
They straddle the terrain between big
pharma and the data integration and
mining offered by specialist companies.
They have also quickly seized on the
degree of automation that bioinformat-
ics has brought to biology.

But with all this variety comes the
potential for miscommunication. Get-
ting various databases to talk to one
another—what is called interoperabili-
ty—is becoming more and more key as
users flit among them to fulfill their
needs. An obvious solution would be
annotation—tagging data with names

that are cross-referenced across data-
bases and naming systems. This has
worked to a degree. “We’ve been suc-
cessful in bringing databases together
by annotation: database A to database
B, B to C, C to D,” explains Liebman of
Roche Bioscience. “But annotation in A
may change, and by the time you get
down to D the references may not have
changed, especially with a constant
stream of new data.” He points out that
this problem becomes more acute as the
understanding of the biology and the
ability to conduct computational analy-

sis becomes more sophisticated. “We’re
just starting to identify complexities in
these queries, and how we store data be-
comes critical in the types of questions
we can ask,” he states.

Systematic improvements will help,
but progress—and ultimately profit—still
relies on the ingenuity of the end user,
according to David J. Lipman, director
of NCBI. “It’s about brainware,” he says,
“not hardware or software.”

KEN HOWARD is a freelance sci-
ence writer based in New York City. 
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Further Information

Trends in Commercial Bioinformatics. A report issued March 13, 2000, by Jason
Reed of Oscar Gruss & Son. To obtain a free copy, log onto www.oscargruss.
com/reports.htm

Using Bioinformatics in Gene and Drug Discovery. D. B. Searls in Drug Discov-
ery Today, Vol. 5, No. 4, pages 135–143; April 2000.

BioInform, a biweekly newsletter on the subject of bioinformatics, can be accessed at
www.bioinform.com

To access the bioinformatics databases maintained by the National Center for
Biotechnology Information (NCBI), go to www.ncbi.nlm.nih.gov

system],what all the synaptic connections are and what the neu-
rotransmitters are.You have maybe 13 or 20 neurons in the gan-
glion, and you still can’t figure out the behavior of the ganglion.
So no mathematician would ever think that understanding a sys-
tem with 13 variables is going to be an easy thing to do. And
[now with the human genome] we want to do it with 100,000
variables. Let me define the state of the network as the current
on-and-off values of all 100,000 genes. So how many states are
there? Well, there’s two possibilities for gene one and two possi-
bilities for gene two and so on, so there’s 2100,000 states, which is
roughly 1030,000. So even if we treat genes as on or off—which is
false because they show graded levels of activity—that’s 1030,000

possible states. It is mind-boggling because the number of parti-
cles in the known universe is 1080.

Q: Where are we in terms of that problem?
Kauffman: We’re at the very beginning, but there’s going to be a
day when somebody comes in with cancer, and we diagnose it

with accuracy not just on the morphology of the cancer cell but
by looking at the detailed patterns of gene expression and pro-
tein-binding activities in that cell.

Q: How far away is this? One year or 200 years?
Kauffman: The tools will mature within the next 10 to 12 years,and
then we’ll really start making progress,getting the circuitry for big
chunks of the genome and actually understanding how it works.
I think 30 to 40 years from now we will have solved major chunks.

For the full transcript of Ken Howard’s interview with Stuart A.Kauff-
man, visit the Scientific American Web site at www.sciam.com/
interview/2000/060500/kauffman
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COMPUTER MODEL OF A HEART in fibrillation shows
waves of uncoordinated electrical activity sweeping the organ.
The model is based on changes in the expression of four genes
whose function is altered during chronic heart failure.
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