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3.4 WHAT CAN YOU DO WITH A CLONED GENE? APPLICATIONS OF RECOMBINANT DNA TECHNOLOGY

Express protein and study

Find chromosomal location
B 0 f i
protein structure and function ) Use purified protein to make geﬁ::rézt;ygﬁlr::;bﬁte;mme
in vivo; isolate and purify protein antibodies for medical purpose 4 o + and.study
to study protein structure and and/or make vacgcines jor the gene stetug,

treatment of disease \ ﬁ(

function in vitro.
[ Ny

Mutate gene and study
function of altered
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[ Study gene stru e,
and gene expression in organs, tissues,

and individual cells @@ \
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@ Create new, geneticall
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: = Recombinant ;
Create transgenic animals and plasmids with _animals,and.plapis,with a
gene knock-out animals to study cloned gene of range of applications
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microorganisms to
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alter bacteria

[ for cleaning
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Diagnose human genetic
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Figure 3.10 Applications of Recombinant DNA Technology




The Molecular Genetics
of Hemophilia

FIBRIN STRANDS stabilize a blood clot at the site of a wound by
trapping the platelets that form the bulk of the clot. The electron
micrograph, which was made by Jon C. Lewis of Wake Forest Uni-
versity, shows a clot formed in a suspension of platelets and fibrin.

A clot in the bloodstream is the result of a complex cascade of en-
zymatic reactions culminating in the conversion of fibrinogen, a sol-
uble protein, into insoluble fibrin strands. In hemophiliacs a crucial
protein in the blood-clotting cascade is cither missing or defective.
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Your Genes,
Your Choices

Exploring the Issues
Raised by Genetic Research

Your Genes, Your Choices describes the Human Genome Project, the
science behind it, and the ethical, legal, and social issues that are raised by
the project. This book was written as part of the Science + Literacy for
Health project of the Ameri iati i

n V.
(AAAS) and funded by the U.S. Department of Energy.

AAAS has a strong commitment to science literacy and the public
understanding of science. Through its Directorate for Education and Human
Resources Programs, AAAS has been a leader in identifying and meeting
the needs of underrepresented groups in science. Science + Literacy for
Health fits into this vision of making science accessible to everyone.

Most people think that science is remote from the work they do, the lives
they lead, and the decisions that they make day by day. Nothing could be
further from the truth. Your Genes, Your Choices points out how the
progress of science can potentially "invade" your life in the most direct
ways, affecting the choices you make at the grocery store, your own health
care and that of your family, and even your reproductive decisions. The
connection between science and health is a direct one, and your ability to
understand the science behind health affects your ability to understand the
issues and the stakes.

Science may seem difficult, because scientists often use technical language
to talk about abstract ideas. This book has been written to introduce you to
important ideas, but also to convince you that you can understand the basic
concepts of science and that it is important to do so.

Most people are curious about the way their bodies work (and the ways they
sometimes don't work very well). This curiosity goes beyond immediate
concerns about any specific health condition. We hope that Your Genes,
Your Choices helps to feed that interest.
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HUMAN GENETICS SIDELIGHT

Hemophilia: Successful Treatment
of a Once Deadly Disorder

A small defect in an important gene can cause a fatal human
disease. In the past, hemophilia, excess bleeding caused by
a defect in blood clotting, was such a disease—often fatal
early in life. Before the 1960s, when scientist-physicians de-
veloped the first effective treatment, the life expectancy of
individuals with hemophilia was about 20 years. Today, he-
mophiliacs in mos%méw%om] life
expectancy. An understanding of the molecular basis of the
disease resulted in the development of an effective treatment.
There are two major types of hemophilia. About 80 per-
cent of the individuals with this disease have hemophilia A
(classical hemophilia), and about 20 percent have hemophilia
B (also called Christmas disease because it was first detected
in a patient named Stephen Christimas). Both types of he-
mophilia are caused by defective genes on the X chromo-
some, the human chromosome that is present in two copies
in females and one copy in males (Chapter 6). Most hemo-
philiacs are males, because they only need one copy of the
defective gene to have the disease. Hemophilia is rare in fe-
males, because they need two copies of the defective gene,
one on each X chromosome, to have the disorder.
Hemophilia A is sometimes called “royal hemophilia”
because of its prevalence in the royal families of Europe. Eng-
land’s Queen Victoria (Figure 1) did not have hemophilia, al-

though she carried the defective gene that causes hemophilia:

A on one of her X chromosomes. However, she passed the
defective gene to two of her daughters—Alice, who trans-
mitted the gene to the imperial families of Russia (see Fig-
ure 6.9) and Germany, and Beatrice, who passed the gene to
the royal family of Spain—and to her son Prince Leopold,
who died at age 31 from hemorrhages after a fall. Several of

the queen’s grandsons and great-grandsons died early in life
because of excess bleeding or hemorrhages after surgery or
accidents.

ission of hemophilia was probably
recognized in ancient civilizations. The Jewish Talmud, which
dates to about 400 5.C. and was compiled into a single docu-
mentin the 4th and 5th centuries A.0., decreed that boys whose
older brothers or male cousins had died from excessive bleed-
ing after circumcision were exempt from this

in blood coagulation—the cascade of reactions that causes
blood to clot at the site of a wound. A simplified version of
part of this pathway is shown in Figure 2. Individuals with
hemophilia Aare deficientin a gene product called factor VIII;
those with hemophilia B are lacking factor IX. In the absence
of either of these blood-clotting factors, an individual can
bleed to death after suffering a small cut or can die from in-
ternal hemorrhages after an otherwise minor bruise.

When scientists discovered that hemophilia was caused
by the absence of specific blood-clotting factors, they realized
that the disease could be treated with transfusions of concen-
trates of the missing factor, Initially, beginning in the 1960s,
the proteins were purified from blood obtained from large
numbers of donors. This process was expensive; and the con-
centrates were either unavailable or were too expensive for
use by hemnphﬂmm in !II.BII)" cmmtrles Forl'unatel the ad-

'y this procedure, cell culture lines were produced
that synthesize large quantities of either factor VIII or factor
IX. The clotting factors are now purified from these cells and
used fo prepare concentrates for use in transfusions. As a re-
sult, both clotting factors are now available in essentially un-
limited quantity to treat people suffering from hemophilia.

Figure 1 A portrait of Great Britain's
Queen Victoria, her husband Prince Albert,
and five of their nine children. Queen

 Victoria passed the defective gene that is
responsible for hemophilia to at least three
of her children. They, in turn, passed the
gene to the royal families of Germany, Rus-

sia, and Spain (see Figure 6.9). The present
British royal family is free of hemophilia.
They are descendants of Victoria’s son King
Edward VL[, who did not inherit the hemo-
philia gene from his mother.
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FIBHINOG EN  FIBRIN CLOT i

CLOTTING CASCADE begins when cell damage at a wound somehow activates the en-

zyme factor XII; it ends with the conversion of fibrinogen into fibrin by thrombin. At each o LBrooo CloT ’
step an inactive protein is converted into a protease, or protein-cutting enzyme (color), £
which activates the next protein, Some steps require cofactors such as factors VII and V.

The cascade includes positive- and negative-feedback loops (colored arrows). Thrombin acti-

vates factors VIII and V; it also deactivates them (by activating protein C), which helps

to halt clotting. Some 85 percent of hemophiliacs lack factor VIIL The rest lack factor IX.
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yure 40-5 Making and unmaking blood clots. Exposed col-

<en or blood platelats trigger the first steps in the “clotting cas-
cade.” Thin arrows indicate the work of enzymes that facilitate
transformation of one molecule into another. Fat arrows indicate
the transformation. For example, the enzyme thrombin (scissors)
cuts off a piece of fibrinogen, leaving fibrin, which combines with
platelets to form a clot. Heparin prevents formation of clots, while
the enzyme tPA (tissue plasminogen activator) triggers breakdown
of clots. (Photo, CNRI/Science Photo Library/Photo Researchers, Inc.)
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Dominant/  Frequency among
Disorder Symptom Defect Recessive Human Births
Cuystic fibrosis Mucus clogs lungs, liver, Failure of chloride ion Recessive 1/2500
and pancreas transport mechanism (Caucasians)
Sickle cell anemia Poor blood circulation Abnormal hemoglobin Recessive 1/625
molecules (African Americans)
Tay-Sachs disease Deterioration of central Defective enzyme Recessive 1/3500
nervous system in infancy (hexosaminidase A) (Ashkenazi Jews)
Phenylketonuria Brain fails to develop in Defective enzyme Recessive 1/12,000
infan (phenylalanine hydro
(Hemophilia ) (Blood fails to clot ) (ﬁ'e tive blood clotting factor ) Sex-linked  1/10,000
: VI recessive (Caucasian males)
‘Huntington’s disease Brain tissue gradually Production of an inhibitor of Dominant 1/24,000
: deteriorates in middle age brain cell metabolism
‘Muscular dystrophy Muscles waste away Degradation of myelin coating Sex-linked 1/3700
‘(Duchenne) of nerves stimulating muscles recessive (males)
Hypercholesterolemia ~ Excessive cholesterol levels Abnormal form of cholesterol Dominant 1/500

in blood, leading to heart
disease
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FIGURE 13.26

The Royal hemophilia pedigree. Queen Victoria’s daughter Alice introduced hemophilia into the
Russian and Austrian royal houses, and Victoria's daughter Beatrice introduced it into the Spanish
royal house. Victoria's son Leopold, himself a victim, also transmitted the disorder in a third line of
descent. Half-shaded symbols represent carriers with one normal allele and one defective allele; fully
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SEX-LINKED INHERITANCE of hemophilia results from the location of the factor VIII
gene on the X chromosome. A male carrying a mutant factor VIII gene lacks normal factor
VIl and is hemophilic. A female carrier is protected by the normal gene on her second
X chromosome, but half of her daughters will be casriers and half of her sons will be he-
mophilic. In the case of a hemophilic father (not shown), his sons will not be hemophil-
ic, because they receive his Y (not his X) chromosome, but his daughters will be carriers.
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Figure 10.1 How geneticists identified the hemophilla A gene. (a) A pedigree of the royal family descended from Queen Victoria. This
family tree uses the standard pedigree symbols. Black boxes represent males with hemophilia. (b) The bload clotting cascade, Vessel damage
induces a cascade of enzymatic events that convert inactive factors to active factors. The cascade results in the transformation of fibrinogen to fibrin
and the formation of a clot. (c) Many hemophiliac patients do not have an active form of Factor VI, Blood tests can determine the presence or
absence of the active form of each factor involved in the clotting cascade. The results of such analyses show that hemophiliacs, such as those found
in Queen Victoria's pedigree, lack an active Factor Vill in their blood, (d) Starting with purified Factor VIII, scientists isolated DNA clones containing
the Factor Vill gene. Researchers determined the amino-acid sequence of purified protein. Knowledge of this sequence enabled them to synthesize
a degenerate oligonucleotide. They then used the oligonucleotide as a probe to screen a genomic library for clones containing all or parts of the
gene. Finally, they sequenced the positive clones (that is, the clones with which the probe hybridizes) to determine the structure and coding

sequence of the Factor Vil gene.

——
Aol CearnE A FEng WHEV FO4
Qb , ' fdar Whepg 1T 25

Expresres /

@



Mq_lz As ,éww/y AsouTr FdCfdA’M]

CEpsp e & EIE Koweo

@ Glood ProPe,r (&‘7‘/4:-44,9: r;»/lcwf;./-elreué’w_/)
@ Could éa ,ov/%ez ’n Yﬂ«-(/Mam?‘.r AR rp

S ote & he s F Cous /(«41/ %W ,e?o bloasd
@ Jhean?® rHcvety = Bo¥ oo Fesn, -f-'%;aweuf

) J—S!aence A noswr,

@ %mo/)‘ebk A could &a Reated ,,% 6’144(

7% 4 M‘{?J'/o.;;.r FRar 2WORpMal 70 drvidusts .. cdy 1’7‘){,/'
\_

PACTIR 1 LBroo L.

R e Y

L Ao TO So FRart PRa7EM iy LENEZ



L rOUWLEDLE OF THE PRITE 1y SEQHUSsCE
o THE FEXETIC <OIE /ALES
1T SOISIPLE T soEnrsFY

determine sinileate screen cDNA Figure 8-44 Knowledge of the
partial  — ppA nrobe — OF genomic molecular biology of cells makes it
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purified protein is used to obtain a partial
amino acid sequence. This provides
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introduce ir;'tO insert into sequence information that enables the
E. colior other «— expression
- hostesll Vadtar corresponding gene to be cloned from a

DNA library. Once the gene has been
cloned, its protein-coding sequence can be
inserted into an expression vector and
used to produce large quantities of the
protein from genetically engineered cells.
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TABLE 7-1 Examples of the Actions of Restriction Endonucleases

Number of Cuts (kb)*

Recognition A Ad2 SV40 pBR322
Source Microorganism Enzyme?* Site (| )F (50) (36) (5.2) (4.3)
Arthrobacter luteus Ald AGICT Wdp 143 158 34 14
Thermus aquaticus Tagl TICGA ¥dp 121 50 1 13
Haemophilus parahaemolyticus Hphl GGTGA + 5 Sép 168 99 4 18
Haemophilus gallinarum Hgal GACGC + 8 Fép 102 87 0 12
Escherichia coli EcoR1 Gl AATTC € s 5 5 1 1
Haenophilus influenzae HindIll A AGCTT 4ép 7 = 6 1
Nocardia otitiscaviaruns Notl GC | GGCCGC P dp 0 7 0 0
Streptomyces fimbriatus Sfil GGCCN, | NGGCC 0 3 1 0

“Enzymes arc named with abbreviations of the bacterial strains from which they are isolated; the Roman numeral indicates the
enzyme's priority of discovery in that strain (for example, Alil was the first restriction enzyme to be isolated from Arthrobacter
litens).
" Recognition sequences are written 5' — 3' {only one strand is given) with the cleavage site indicated by an arrow. For example,
G | GATCC is an abbreviation for
4
(5")GGATCC(3")
(3')CCTAGG(5")

The cleavage site for Hphl and Hgal occurs five ar eighr bases away from the recognition sequence; N indicates any base.
These columns lise the number of cleavage sites recognized by specific endonucleases on the DNA of bacteriophage A (A),
adenovirus type 2 {Ad2), simian virus 40 (SV40}, and an E. coli plasmid (pBR322). The sizes of the DNAs in kilobases (kb) are
in parentheses. Note thar the actual number of cuts in these sequences deviates from the expected ber in rand juences,
which would be given by L/4", where u is the length of the site recognized by an nzyme and L is the length of the sequence.
source: R. [. Roberts, 1988, Nue. Acids Res. 16(supp)r271.
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Cleavage Map of the SV40 Genome

- (Top) DNA [ragments generated from SV40 DNA digested with HindlI restriction endonucle-
ase separated by electrophoresis. (Reprinted, with permission, from Danna K. and Nathans D.
1971. Specific cleavage of simian virus 40 DNA by restriction endonuclease of Hemophilus
influenzae. Proc. Nail. Acad. Sci. 68: 2913-2917.) (Bottom) A cleavage map of the SV40 genome.
Fragments created by HindII digestion are labeled A to K, corresponding to fragments seen on
the gel above. (Reprinted, with permission, [rom Danna K., Sack G.H., and Nathans D. 1973.
Studies of simian virus 40 DNA. VII. A cleavage map of the SV40 genome. J. Mol. Biol. 78:
363-376.)
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DNA CAN BE CUT into comparatively short Iegths wxg’:ni?
of restriction endonuclgases, special enzymes that recognize specific
base sequences at which they cause the molecule to come apart. For
example, Eco Rl, the first such enzyme discovered, recognizes a cer-
tain six-base sequence and cuis the molecule wherever this sequence
appears, whereas Hae 111, another restriction enzyme, operates at a
certain four-base sequence. Since the probability of finding a partic-

Yhe Thwe

ular four-base se:iu:acg is%e:m‘hnn that of finding a particular
six-base sequence, one would expect Hae 111 to cut DNA more often
than Eco RL. Accordingly one Eco RI site and two Hae I sites are
represented in the DNA segment at the top, which corresponds to
part of the gene coding for insulin in rat cells, The snme DNA con-
tains recognition siles for a ber of other restriction enzymes, ns
is shown in the line dingram of a larger gene fragment af the bottom.
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Figure 4.9: Generating a restriction map.

The size patterns from double digests provide information
on the relative locations of restriction sites. The example
shows size fractionation by agarose gel electrophoresis of
restriction fragments following incubation of a 6.2 kb DNA
fragment with the indicated enzymes, New bands in the
double digests (i.e. not found in the original single digests)
are indicated by black boxes. In the Bglll + BamHI double
digest, the original 1.7 kb and 0.3 kb bands from the Balil
digest alone are maintained, suggesting that these
fragments do not have a BamH| site, while the 4.2 kb Bglil
fragment is replaced by 3.5 kb and 0.7 kb fragments,
suggesting that there is a BamH| site within 0.7 kb from one
end of the 4.2 kb Baglll fragment. Similarly, in the BamH| +
Pst | double digest, the 1.4 kb and 1.2 kb fragments seen in
the Pstl digest alone are maintained, suggesting that they
lack a BamHi site, while the 3.6 kb Pst| fragment is replaced
bya2.6kb + 1.0kb fragment, as a result of possession of
an internal BamHl site located 1.0 kb from one end. By
comparing all three patterns of double digestion, the
restriction map at the bottom can be deduced. Note that
restriction mapping is often helped by the use of partial
digests and also by end-labeling (Section 5.1 ).
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TABLE 8.2 Various Vectors and the Size of the Inserts They Carry
Typical Carrying
Capacity (Size of
i Vector Form of Vector Host Insert Accepted) Major Uses
o | Plasmid Double-stranded circular DNA E. coli Upto 15 kb cDNA libraries; subcloning
@ ‘ Bacteriophage Virus (linear DNA) E. coli Up to 25 kb Genomic and cDNA libraries
| lambda
|
|| Cosmid Double-stranded circular DNA E. coli 30-45 kb Genomic libraries
L] | Phagemid Virus convertible to plasmid E. coli Upto12kb c¢DNA and genomic libraries
‘acteriophage P1 Virus (circular DNA) E. coli 70-90 kb Genomic libraries
/ ® BAC Bacterial artificial chromosome E. coli 100-500 kb Genomic libraries
YAC Yeast, artificial chromosome Yeast 250-1000 kb Genomic libraries
(1 megabase)
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A COMPARISON OF DNA VECTORS AND THEIR APPLICATIONS

Vector Type

Bacterial plasmid
vectors (circular)

Bacteriophage
vectors (linear) £

Cosmid (circular)

Bacterial artificial
chromosome (circular)

Yeast artificial
chromosome (circular)

Ti vector (circular)

Maximum Insert
Size (kb)

~6-12

~-300

200-1,000
(1 megabase)

Varies depending on
type of Ti vector used

Applications

DNA cloning, protein
expression, subcloning,
direct sequencing of insert
DNA

cDNA, genomic and
expression libraries

cDNA and genomic
libraries, cloning large
DNA fragments

Genomic libraries, cloning
large DNA fragments

Genomic libraries, cloning
large DNA fragments

Gene transfer in plants

Limitations

Restricted insert size; limited expression
of proteins; copy number problems;
replication restricted to bacteria

Packaging limits DNA insert size;
host replication problems

Phage packaging restrictions; not ideal
for protein expression; cannot be
replicated in mammalian cells

Replication restricted to bacteria;
cannot be used for protein expression

Must be grown in yeast; cannot be
used in bacteria

Limited to use in plant cells only; number
of restriction sites randomly distributed;
large size of vector not easily manipulated.
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vector

EcoRV 185
Nhel 229
BamHI 375
Sphl 562
Sall 651

Scal 3846

Pvul 3735

Pst| 3609
Ppal 3435 Eagl 939
Nrul 972

BspM| 1063

Figure 12-6 Two plasmids designed as vectors for DNA cloning, showing general structure and
restriction sites, Insertion into PBR322 is detected by inactivation of one drug-resistance gene (ter®),
indicated by the Tet’ (sensitive) phenotype. Insertion into pUC18 is detected by inactivation of the
B-galactosidase function of Z', resulting in an inability to convert the artificial substrate X-Gal into a
blue dye.
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Gaort
lacZ' gene (functional) e Bacterial cell that did ot take up plasmid Axnp®

Fragment of DNA

amp'’ gene

@rt43.27)

Gene of interest

Bacterial cell without
recombinant DNA Finde C2des b:ﬂ

¢ dud Colony with
A A%piciie, s H"" —

recombinan
DNA

Colonies with
plasmid o

Eliminate cells
without plasmid

Identify cells
without X-gal
- in media

recombinant DNA

(a) (b)
Cells that did not take up the plasmid are Cells that did not take up DNA fragments
not resistant to ampicillin and do not form have functional /acz' genes, are able to metabolize
colonies on media containing this antibiotic. X-gal, and turn blue on media that contain X-gal.
FIGURE 19.6

Stage 4-I: Using antibiotic resistance and X-gal as preliminary screens of restriction fragment clones. Bacteria are transformed
with recombinant plasmids that contain a gene (amypr) that confers resistance to the antibjotic ampicillin and a gene (/acZ') that is required
to produce B-galactosidase, the enzyme which enables the cells to metabolize the sugar X-gal. (#) Only those bacteria that have
incorporated a plasmid will be resistant to ampicillin and will grow on a medium that contains the antibiotic. (4) Ampicillin-resistant
bacteria will be able to metabolize X-gal if their plasmid does 7ot contain a DNA fragment inserted in the /acZ' gene; such bacteria will
turn blue when grown on a medium containing X-gal. Bacteria with a plasmid that has a DNA fragment inserted within the /g2’ gene will
not be able to metabolize X-gal and, therefore, will remain colorless in the presence of X-gal,
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< FIGURE 7-21 Use of A expression cloning to identify
cloned DNA based on binding of the encoded protein to |
specific antibody. The Agt11 vector was engineered to ex
the E. coli protein B-galactosidase at high levels. The only
recognition site (red) in this vector lies near the 3’ end of'
B-galactosidase gene. If a cDNA (green), or protein-coding
fragment of genomic DNA, is inserted into this EcoRl site i
correct orientation and proper reading frame, it will be expres
as a fusion protein in which most of the B-galactosidase
sequence is at the N-terminal end and the protein sequen
encoded by the inserted DNA is at the C-terminal end. Plag
resulting from infection with recombinant Agtll contain high
concentrations of such fusion proteins. These proteins can
transferred and bound to a replica filter, which then is incut
with a monoclonal primary antibody (blue) that recognizes t
protein of interest. Rinsing the filter washes away antibody
molecules that are not bound to the specific fusion protein
attached to the filter. Bound antibody usually is detected by
incubating the filter with a second radiolabeled antibody (da
red) that binds to the primary antibody. Any signals that app
on the autoradiogram are used to locate plaques on the mas
plate containing the gene of interest. [Adapted from J. D. Wat
et al., 1992, Recombinant DNA, 2d ed., Scientific American Books." ¥
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Figure 10.1 How geneticists P gene. (a) A pedigree of the royal family descended from Queen Victoria. This
family tree uses the standard pedigree symbols. Black boxes represent males with hemophilia. (b) The blood clotting cascade. Vessel damage

induces a cascade of enzymatic events that convert inactive factors to active factors, The cascade results in the transformation of fibrinogen to fibrin

and the formation of a clot. (c) Many hemophiliac patients do not have an active form of Factor Vi Blood tests can determine the presence or

absence of the active form of each factor involved in the clotting cascade. The results of such analyses show that hemophiliacs, such as those found

in Queen Victoria's pedigree, lack an active Factor VIl in their blood. (d) Starting with purified Factor VIII, scientists isolated DNA clones containing

the Factor Vil gene. Researchers determined the amino-acid sequence of purified protein. Knowledge of this sequence enabled them to synthesize

a degenerate oligonucleotide. They then used the oligonucleotide as a probe ta screen a genomic library for clones containing all or parts of the
gene. Finally, they sequenced the positive clones (that is, the clones with which the probe hybridizes) to determine the structure and coding
sequence of the Factor Viif gene.
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Figure 10-28 Knowledge of the molecuyly

biology of cells makes it possible to

experimentally move from gene to pro-

tein and from protein to gene. A small
quantity of a purified protein is used 1o

obtain a partial amino acid sequence. Thi

provides sequence information that

enables the corresponding gene to be
cloned from a DNA library (see Figure

10-18). Once the gene has been cloned, it
protein-coding sequence can be used to

design a DNA that can then be used 1o
produce large quantities of the protein
from genetically engineered cells (see

Figure 10-27).
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|IDENTIFY SOURGE OF FACTOR VIIl mRNA

GENE CLONING involves finding a specific gene among thousands in a human cell. The
standard method, if one knows which cells make the desired profein, is {o screen a copy
DNA (cDNA) library derived by reverse transcription from fhe messenger RNA (mRNA)of
those cells (right). In looking Eor the factor VIII gene, however, the authors did not know
where the protein is produced. Hence they screened the entire buman genome (lefi). Chro-
mosomal DNA fragments were joined to the DNA of the bacterial virus phage Inmbda.
Each phage contained one human DNA fragment; each phage muliiplied and formed a
plaque in a distinct region of a bacterial culture. To identify the plague coataining the
factor VILI gene, the phages were blotied onto filler paper and broken opea to release their
DNA. The DNA was exposed (o a radioactive probe: a small piece of synthetic DNA encod-
ing part of factor VIIL The probe hybridized with part of the factor VIII gene, thereby
G?IEI“.! it. To produce factor VIIl in coltured cells, it was still necessary to make factor

1 cDNA, which lacks the infrons { di q ) that P the full gene.
Now fragments of the cloned gene could serve as reliable probes, first for identifying cells
fhat make factor VIl mRNA and then for finding factor VIIL ¢<DNA in the cDNA library.
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Figure 6-5. Electron Micrographs of Bacteriophages. (a) Bacterio-
phage P2, magnification 226,000 times. (b) Bacteriophage lambda,
magnification 109,000 times. (c¢) Bacteriophage T5, magnification
91,000 times. (d) Bacteriophage T4, magnification 180,000 times. (Pho-
tomicrographs courtesy of Robley Williams, University of California,
Berkeley.)
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(b) A Phage assembly

Preassembled

Preassembled A tail
A head
(49 kb)
cos_ .. COS

Concatomer of A DNA

Nu1 and A proteins
promote filling of A head
with DNA between COS
sites

A genome (1 copy)

A tail attaches only
to filled head

Complete \ virion

A FIGURE 9-14 The bacteriophage A genome and
packaging of bacteriophage A DNA. (a) Simplified map of the A
phage genome. There are about 60 genes in the A genome, only
a few of which are shown in this diagram. Genes encoding
proteins required for assembly of the head and tail are located at
tht? left end; those encoding additional proteins required for the
lytic cycle, at the right end. Some regions of the genome can be
re_piaced by exogenous DNA (diagonal lines) or deleted (dotted)
without affecting the ability of A phage to infect host cells and
assemble new virions. Up to =25 kb of exogenous DNA can be
stably inserted between the J and N genes. (b) In vivo assembly
of A virions. Heads and tails are formed from multiple copies of
several different A proteins. During the late stage of A infection,
|°“Q_DNA molecules called concatomers are formed; these
multimeric molecules consist of multiple copies of the 49-kb A
genome linked end to end and separated by COS sites (red),
Protein-binding nucleotide sequences that occur once in each
copy o_f the A genome. Binding of A head proteins Nul and A to
CQS sites promotes insertion of the DNA segment between two
adiacent COS sites into an empty head. After the heads are filled
"\f'_lh DNA, assembled \ tails are attached, producing complete A
Virions capable of infecting E. coli cells.
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Figure 4.4 Events that occur when a phage infects a bacterial cell.
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Figure 12-7 Cloning in phage A. A nonessential central region of
the phage chromosome is discarded and the ends ligated to random
15-kb fragments of donor DNA. A linear multimer (concatenate)
forms, which is then stuffed into phage heads one monomer at a time

by using an in vitro packaging system. (From J. D. Watson, ;ﬂ‘m
M. Gilman, J. Witkowski, and M. Zoller, Recombinant DNA, 2d ed. ‘qu-
Copyright © 1992 by Scientific American Books.) <, ‘,_‘f.’_ Screen library by using nucleic acid prabe.
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A FIGURE 7-12 Construction of a genomic library of hu
DNA in a bacteriophage A vector. The nonessential region
the right half of the A genome (dotted areas in Figure 7-10b)
usually are deleted to maximize the size of the exogenous D
fragment that can be inserted. Then the A DNA is treated to 4
remove the central replaceable region. In this example, the
replaceable region is cut out with BamHI, and the total DNA
from human cells is partially digested with Sau3A. These tw
restriction enzymes produce fragments with complementary.
sticky ends (red lines). The A vector arms and ~20-kb genom
fragments are mixed, ligated, and packaged in vitro to produc
recombinant A phage virions, which are plated on a lawn of |
cofi cells. In the diagrams of DNA regions, light and dark shai
of the same color indicate complementary strands.
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A FIGURE 7-11 Assembly of bacteriophage A virions. Empty
heads and tails are assembled from multiple copies of several
different A proteins. During the late stage of A infection, long DNA
molecules called concatomers are formed; these multimeric
molecules consist of copies of the A genome linked end to end
and separated by COS sites (red), a protein-binding nucleotide
sequence that occurs once in each copy of the A genome. Binding
of the A proteins Nu1 and A to COS sites promotes insertion of the
DNA between two adjacent COS sites into an empty head. After
the heads are filled with DNA, preassembled A tails are attached,
producing complete A virions capable of infecting E. coli cells.
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(a) Intact human DNA  (b) Distribution of fragment sizes
after complete or partial digestion

t ¢ 4 4 i EeorT Figure 8.4 Comparison of results from partial and complete
Complete 26 kL) digests. (a) By reducing the time available for the reaction to occur,
A digest (“ N you can ensure that an enzyme actually cuts only a subset of the total
; l’ * } Pariial recogpition sites within a DNA sample. In this example, the chosen
EcoR| Number of digest reaction time allowed only 1/5 of all EcoRl sites to be cut. The
sites H—E—FH—F%—J—H—Q—!-H—}@H- fragmenls particular 20% of sites at which the cuts occur is totally random and
of each wifferent even on identical ONA mofecufes. (b) Most of the restriction
* l’ } ‘ size LLLLLLL] fragments produced by partial digestion are larger than those
1 1it

; roduced by complete digestion with the same restrictio 4
048 16 24 32 40 48 Ry Compies digestionye ¢ fERDma

Enzyme cuts at one Fragment size (kb)
random site in five.
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FIGURE 7-13 Production of overlapping restriction of human genomic DNA Shown g the 5au3A recognition sites (red)

gments by partial digestion of human genomic DNA with is shown at the top. Partial digestion of this region of DNA would

A. This restriction endonuclease recognizes the 4-bp sequence yield a variety of overlapping fragments (blue) =20 kb long. Use

and produces fragments with single-stranded sticky ends with of such overlapping fragments increases the probability that all
ilis sequence on the 5' end of each strand. A hypothetical region sequences in the genomic DNA will be represented in a A library.
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Figure 8-2 Human chromosomes.

« |A) Lne cnromosomes as
visuanced as they originally spilled from
the lysed cell. (B) The same chromosomes
artificially lined up in order. This arrange-
ment of the full chromosome set is called a
karyotype. (From E. Schriick et al., Science
273:494-497, 1996.)
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A FIGURE 7-19 Designing oligonucleotide probes based on
protein sequence. An isolated protein is digested with a
selective protease such as trypsin, which specifically cleaves
peptide bonds on the carboxy-terminal side of lysine and arginine
residues. The resulting peptides are separated, and several are
partially sequenced from their N-terminus by sequential Edman
degradation. The determined sequences then are analyzed to
identify the 6- or 7-aa region that can be encoded by the
smallest number of possible DNA sequences. Because of the
degeneracy of the genetic code, the 12-aa sequence (light green)
shown here theoretically could be encoded by any of the DNA
triplets below it, with the possible alternative bases at the same
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Cadle i
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oligonucleotide in the
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sequence

position indicated. For example, Phe-1 is encoded by TTT a

TTC; Leu-2 is encoded by one of six possible triplets (CTT;.
CTA, CTG, TTA, or TTG). The region with the least degener
for a sequence of 20 bases (20-mer) is indicated by the rer
bracket. There are 48 possible DNA sequences in this 20-b
region that could encode the peptide sequence 3-9. Since
actual sequence of the gene is unknown, a degenerate 20
probe’ consisting of a mixture of all the possible 20-base

oligonucleotides is prepared. If a cDNA or genomic library i
screened with this degenerate probe, the one oligonucleoti
that is perfectly complementary to the actual coding seque
{blue) will hybridize to it.
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clone A t MAKE PROBE FROM END OF CLONE A
=
+ USE PROBE TO IDENTIFY NEW CLONE

clone B + MAKE PROBE FROM END OF CLONE B
|
+ USE PROBE TO IDENTIFY NEW CLONE

RESULT: COLLECTION OF

ORDERED OVERLAPPING DNA clone C t etc.
CLONES THAT COVER THE =
ENTIRE CHROMOSOMAL REGION | i —
clone D t
etc.
previously cloned gene or genetic marker

O 7 N S | S | | B | B

chromosomal DNA /

new gene of interest

direction of chromosome walk

(a) Chromosome walking

Clone 1 l Subclone end

— Figure 24.18 Mapping by chromosome walking. (a) Chromosome
l Hybridize to clone library walking. To start the walk, choose a cloned piece of DNA (clone 1)
il and subclone one end of it. Then use this small end plece (red) as a
e probe to identify an overlapping clone (clone 2) in a library. Repeating
Clone 2 l Subclone end the process, subclone the far end of clone 2 to generate a probe to
bl identify yet another overlapping clone (clone 3). Repeat this cycle as
j— many times as needed to build a set of overlapping clones spanning
l Hybridize to clons ibrary large stretches of DNA. (b) Physical mapping of restriction sites or
v STSs in each clone allows one to align the overlapping DNAs and
build a map of the whole contig.

Clone 3 l s

(b} Physical mapping (restriction sites and STSs)

Cone ' D@ ?@
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TREMENDOUS SIZE of the factor VIII gene, the largest gene  with a synthetic DNA probe, the probe hybridized with overlapping
cloned to date, forced workers to apply a cloning technique called gments (1), Pieces of the segments then served as probes to re-
chromosome walking, The factor VIII gene is 186,000 bases long.  screen the library and identify further segments (2). By repeating
In contrast the interferon gene, which was cloned in 1980, incorpo-  this procedure nearly all of the gene was identified (3, 4). (Its begin-
rates only about 600 bases. Because the factor VIII gene is too  ning was found once factor VIII cDNA was available as a probe.)
large to fit into a single phage, segments of it were found in differ- Less than one-twentieth of the gene consists of exons, or coding
ent plaques in the g ic library. When the library was screened sequences (black bands); the 26 exons are separated by 25 introns.
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Figure 12-15 Chromosome walking. One recombinant phage obtained from a phage library made
by the partial EcoRI digest of a eukaryotic genome can be used to isolate another recombinant phage
containing a neighboring segment of eukaryotic DNA, as described in the text. (From J. D. Watson,

J. Tooze, and D. T. Kurtz, Recombinant DNA: A Short Course. Copyright © 1983 by W. H. Freeman

and Company.)
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(a) Identify an ordered series of overlapping genomic clones.

Chromosome
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(b) Analyze each clone for restriction sites and gene locations. Al A
(Restriction sites) &,, oRve
i
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(c) Create maps of overlapping genomic clones. +
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(d) Combine information into a single continuous physical
map that spans the length of the chromosome.

Figure 10.5 Building a whole-chromosome physical map.
(a) To produce a whole-chromosome physical map, you first order a
set of overlapping genomic clones that extend from one end of the
chromosome to the other. Subsequent figures describe various
methods of obtaining this ordered set of clones. (b) You next map the
restriction sites of each clone in the set through restriction analysis,
and analyze individual restriction fragments in other ways, such as
Northern blot analysis, to identify transcription units. (c) Computers
overlay the different types of maps for each clone onto the
overlapping clones to obtain a continuous map. (d) The result is a
single continuous map extending the length of the chromosome.
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HEMOPHILIA-CAUSING MUTATIONS in the factor VIIl gene  gene. The size of the hybridizing fragments is revealed by exposing
can be detected by Southern blotting (fop) If they happen to change  X-ray film to the filter. In the example shown here a point mutation
the way the gene is fragmented by a restriction enzyme. DNA from  in the factor VIII gene of a hemophiliac (H) kas eliminated a Tagl
blood cells is cut into millions of fragments, in this case with the cleavage site. The 2,800- and 1,400-base fragments on the blot pat-

yme Tagl. The fragments are separated nccording to size by terns of his relatives (I-5) are replaced by a single, uncut 4,200-
electrophoresis, unraveled into single strands and blotted onto filter  base fragment. So far seven different mutations have been located
paper. The filter is bathed in a solution of radioactive factor VIII  on hemophilic factor VIII genes (bottom). Four are point mutations,
c¢DNA, which hybridizes only with fragments of the factor VIII  or changes of a single base (dofs); three are extensive deletions (bar).
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18.7  RFLP Mapping
Restriction fragment length polymorphisms are differences in

DNA sequences that serve as genetic markers. More than 1,000
such markers have been described for the human genome.
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Test nucleic Stack of paper towels

Nitrocellulose paper

Sponge
Radioactively m
labeled markers a
with specific -E
sizes | 3
{ 8 Buffer
w
horeti | '
g:c HoRnoretic | 2, The gel is covered with a sheet of nitrocellulose and
placed in a tray of buifer on top of a sponge. Alkaline
W . chemicals in the buffer denature the DNA into single

strands. The buffer wicks its way up through the gel
and nitrocellulose into a stack of paper towels placed
on top of the nitrocellulose.

1. Electrophoresis is performed, using
radioactively labeled markers as a
size guide in the first lane.

- Sealed container

A\ Film

Nitrocellulose paper now
contains nucleic acid "print"

Size

——
g
| ———
el
Hybridized o
nucleic acids \_

| —

: e ;

3. Pattemn on gel is copied faithfully, 4. Blotted nitocellulosa is incubated 5. Photographic film is laid over the paper and
or "blotted®, onto the nitrocellulose. with radioactively labeled nucleic is exposed only in areas that contain
acids, and then rinsed. radioactivity (autoradiography). Nitrocellulose

is examined for radioactive bands, indicating
hybridization of the original nucleic acids with
the radioactively labeled ones.

FIGURE 19.9

The Southern blot procedure. E. M. Southern developed this procedure in 1975 to enable DNA fragments of interest to be visualized in
a complex sample containing many other fragments of similar size. The DNA is separated on a gel, then transferred (“blotted”) onto a
solid support medium such as nitrocellulose paper or a nylon membrane. It is then incubated with a radioactive single-strand copy of the
gene of interest, which hybridizes to the blot at the location(s) where there is a fragment with a complementary sequence. The positions of
radioactive bands on the blot identify the fragments of interest.
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FIGURE 21.7 Diagnosis of B-thalassemia caused by a partial deletion of the B-globin gene.The fam-
ily pedigree is shown positioned above each individual's genotype on a Southern blot. The normal B-globin
gene (B*) contains three exons and two introns. The deleted B-globin gene (B°) has the third exon deleted.
Arrows indicate the cutting sites for restriction enzymes used in this analysis.The normal gene produces a larg-
er fragment (shown as the top row of fragments on the Southern blot); the smaller fragments produced by the
deleted gene are represented at the bottom of the gel. The genotype of each individual in the pedigree can be
determined from the pattern of bands on the blot, and these are shown below the blot.
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Centrifuge =
} Fluid: Composition analysis

Amniotic fluid
: } Cells: Karyotype, sex determination,

Amniotic cavity biochemical and recombinant DNA studies

Uterine wall

Cell culture: Biochemical studies,
chromosomal analysis

Analysis using recombinant

DNA methods

FIGURE 21.6 The technique of amniocentesis. The position of the fetus is first determined by ultrasound, and then
a needle is inserted through the abdominal and uterine wall to recover fluid and fetal cells for cytogenetic and/or biochemi-

cal analysis.
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Figure 10-23 Use of PCR to obtain a
genomic or cDNA clone. (A) To obtain a
genomic clone using PCR, chromosomal
DNA is first purified from cells. PCR
primers that flank the stretch of DNA to b
cioned are added, and many cycles of the
PCR reaction are completed (see Figure
10-22). Since only the DNA between (and
including) the primers is amplified, PCR
provides a way to obtain selectively a
short stretch of chromosomal DNA in an
effectively pure form. (B) To use PCR to
obtain a cDNA clone of a gene, mRNA is
first purified from cells. The first primer is
then added to the population of mRNAs,
and reverse transcriptase is used to make
a complementary DNA strand. The second
primer is then added, and the single-
stranded DNA molecule is amplified
through many cycles of PCR, as shown

in Figure 10-22,
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Figure 14-9  FISH analysis. Chromosomes probed in situ with a
fluorescent probe specific for a gene present in a single copy in each
chromosome set — in this case, a muscle protein. Only one locus shows
a fluorescent spot corresponding to the probe bound to the muscle
protein gene. (From P. Lichter et al., “High-Resolution Mapping of
Human Chromosome 11 by in Situ Hybridization with Cosmid
Clones,” Science 247, 1990, 64.)
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FIBRIN STRANDS stabilize a blood clot at the site of a wound by
trapping the platelets that form the bulk of the clot. The electron
sicrograph, which was made by Jon C. Lewis of Wake Forest Uni-
1sity, shows a clot formed in a suspension of platelets and fibrin,

[FoRmATIons 2F A Bloos Clor)

A clot in the bloodstream is the result of a complex cascade of en-
zymatic reactions culminating in the conversion of fibrinogen, a sol-
uble protein, into insoluble fibrin strands. In hemophiliacs a erucial
protein in the blood-clotting cascade is either missing or defective.
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Factor VIII

Active Ingredients: Antihemophilic Factor (Human)
Pronunciation: an tee hee moe fil' ik fak tir <)

Representative Names: AHF (Human), AHG, Alphanate, Factor VIII,
Hemofil M, Humate-P, Koate-HP, Monoclate-P, Profilate HP

Who is this for?

Your doctor has ordered antihemophilic factor (human), an
antihemophilic factor, to help your blood to clot. The drug will be either
injected directly into your vein or added to an intravenous fluid that will
drip through a needle or catheter placed in your vein for approximately
5-10 minutes. It will be given as often as your doctor determines you
need it, possibly as often as every other day. Antihemophilic factor
(human), a substance naturally produced in your body, activates
substances in your blood to form clots and decrease bleeding episodes.
This medication is sometimes prescribed for other uses; ask your doctor
or pharmacist for more information. Your health care provider (doctor,
nurse, or pharmacist) may measure the effectiveness and side effects
of your treatment using laboratory tests and physical examinations. It
is important to keep all appointments with your doctor and the
laboratory. The length of treatment depends on how your symptoms
respond to the medication.
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