

c e r	e s	Survey Questions
	the e	energy crop company™
	1.	Is corn the United States' best choice for a biofuels feedstock?
		a) Yes
all		b) No
	2.	Should we rely on Brazil or other countries for biofuel supplies?
COMPACE.		a) Yes
		b) No

Corn Is Not The Answer...

JANUARY 2006

"America is *addicted to oil*, which is often imported from unstable parts of the world"...

..."We will also fund additional research in cutting-edge *methods of producing ethanol, not just from corn but from wood chips, stalks or <u>switchgrass</u>"*

..."Our goal is to make this new kind of ethanol practical and *competitive within six years*"

JANUARY 2007

..."We must increase the supply of alternative fuels, by setting a mandatory fuels standard to require **35 billion gallons** of renewable and alternative fuels in 2017 -- and that is nearly five times the current target"

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

- 2006: 5 billion gal/yr of ethanol (U.S only)
- 23 billion gal/yr of biofuels from energy crops will require 11MM acres in 2020*
- Biotechnology enables scale, marginal land use, reduced inputs and lower cost processing

c e r	Survey C	Questions	
	ne energy crop compa	any™	
	1. Should the g in the United	overnment subsidize farmers I States?	
YAN.	a) Yes		
all	b) No		
	2. Should the g biofuels indu	overnment subsidize the stry in the United States?	
North Contraction	a) Yes		
	b) No		

c e r e s	A Brief History of	Life					
the e	the energy crop company™						
h	<u>Event</u>	Years Ago					
	Formation of Earth	4,600,000,000					
	Unicellular life	3,500,000,000					
	Photosynthesis	3,000,000,000					
	Multicellular life	1,000,000,000					
ALLAN	Cambrian explosion	600,000,000					
SA/P	Land plants	400,000,000					
	Flowering plants	150,000,000					
	K/T extinction	65,000,000					
Strate of the	Hominids	7,000,000					
and the second	End of last Ice Age	18,000					
	Agriculture	10,000					
	Green Revolution	40					
	griculture is not "natural", it is	s a distinctly human activity					

But It Can Feed Many People... One bushel of corn produces 92,797 calories One human requires 1,800 calories per day . and IF only the world's corn farmers (146M . hectares) achieved the US average yield (358 bu/ha) = we could feed 7.46B on corn alone IF all the world's corn farmers duplicated the • top 10% of US corn yields (>700 bu/ha) = we could feed over 14B people Incentives, innovation and technology can make it more sustainable

What is Technology Push?

the energy crop company™

 An innovator sees an opportunity to profit from a technology that has little or no current market. An "entirely new" market is created, based on the novel capacities of the technology.

 Users do not know they need a product until it is there.

What is Market Pull?

the energy crop company™

- Occurs when existing firms seek better technologies to reduce their costs of production or to make marginal improvements in the quality of their existing products.
- The market "pulls" technology into it. A need exists, and there is currently no technology to meet the need.

A Third Technological Revolution

"Changes that will have effects comparable to those of the Industrial Revolution and the computer-based revolution are now beginning. The next great era, a genomics revolution, is in an early phase.

Thus far, the pharmacological potentials of genomics have been emphasized, **but the greatest ultimate global impact of genomics will result from the manipulation of the DNA of plants**.

Ultimately, the world will obtain most of its food, fuel, fiber, chemical feedstocks, and some of its pharmaceuticals from genetically altered vegetation and trees." Philip H. Abelson, Editor Science, March 1998

Feedstock Technology Opportunities

Remember: Feedstock = > 50% of cost

Parts of the Equation	Relevant Traits	Impact
Acres	Stress tolerance (e.g. drought, heat, cold, salt)	Growth on marginal acreage helps enable critical mass
Tons per acre	 Increased yield (e.g. photosynthetic efficiency) 	Lower production and transport costs and increased carbon sequestration
Dollars per acre	Nutrient requirements (e.g. nitrogen utilization)	Lower fertilizer costs and less N ₂ O emissions
Gallons per ton	Composition & structure (e.g. C ₅ /C ₆ , cell wall structure)	 Increase theoretical yield of ethanol per ton of biomass
Capital cost of refinery & variable cost per gallon	 Composition, structure & enzyme production (e.g. cellulases) 	• Eliminate need for acid hydrolysis, reduce need for enzymes and bring actual yield closer to theoretical
Co-products	Metabolic engineering & sequestration	Enhance overall economics
		the energy crop company™

Energy Crop Variations

с е

- 40% spread in amount of fermentable sugars within a specific switchgrass variety
- 100% spread in hydrolysis of _ fermentable sugars
- Variability means risk to biorefinery profits
- Game Changing Impact of Composition
 - Increase of ethanol productivity of up to 400 gal/acre*
 - Capital reduction for pretreatment and enzymatic hydrolysis

Transgenic line -

deposition

Wild type

decreased lignin deposition

*Assuming 100% conversion of glucose and xylose sugars to ethanol the energy crop company™

The Best Way to Predict the Future...

December 17, 1903

July 20, 1969

... is to create it!

the energy crop company™

