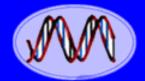


Entire Genetic Code of a Bacteria

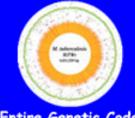
DNA Fingerprinting

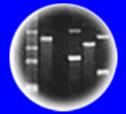
Cloning: Ethical Issues and Future Consequences

Plants of Tomorrow


HC70A & PLSS059 Winter 2020 Genetic Engineering in Medicine, Agriculture, and Law

Professors Bob Goldberg & Channapatna Prakash

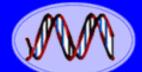

Lecture 5 How Are Genes Cloned & Engineered? The Insulin and Factor XIII Stories



DNA Genetic Code of Life

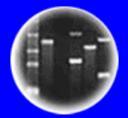
Entire Genetic Code of a Bacteria

DNA Fingerprinting


Cloning: Ethical Issues and Future Consequences

Plants of Tomorrow

THEMES

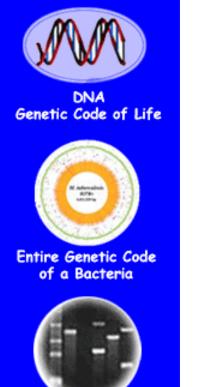

- 1. How Did the Supreme Court Indirectly Give Rise to the Biotechnology Industry?
- 2. What Strategies Were Developed For Cloning Insulin mRNA and Expressing Insulin in Bacterial Cells? What Strategy "Won" Out?
- 3. What is Hemophilia and How is it Inherited?
- 4. How Can a Disease Gene Be Found When It is Not Known Where the Gene is Expressed?
- 5. What Vectors Can Be Used For Cloning DNA?
- 6. What is the Advantage of Using a Virus Vector For Constructing Genome Libraries?
- 7. How To Make a Library of the Human Genome?
- 8. How Find a Gene With Only a Knowledge of the Protein Sequence?
- 9. How Use DNA Testing to Detect Factor VIII Disease Alleles?
- 10. How Isolate a Factor VIII cDNA Clone?
- 11. Genomic vs. cDNA Libraries
- 12. How Produce Factor VIII Protein For Use as a Drug

DNA Genetic Code of Life

of a Bacteria

DNA Fingerprinting

Cloning: Ethical Issues and Future Consequences


Plants of Tomorrow

Drugs Manufactured Using Genetic Engineering

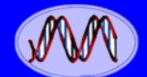
TABLE 1.2	ABLE 1.2 Examples of Recombinant Proteins Manufactured from Cloned Genes								
Product		Application							
Blood Factor VIII (clotting factor)		Treat hemophilia							
Epidermal growth factor		Stimulate antibody production in patients with immune system disorders							
Growth hormone		Correct pituitary deficiencies and short stature in humans; other forms are used in cows to increase milk production							
Insulin		Treat diabetes							
Interferons		Treat cancer and viral infections							
Interleukins		Treat cancer and stimulate antibody production							
Monoclonal antibodies		Diagnose and treat a variety of diseases including arthritis and cancer							
Tissue plasminogen activator		Treat heart attacks and stroke							

TABLE 1.1	*2016—Top 10 Biotechnology Drugs (Each with Worldwide Sales over \$5 Billion)										
Drug Name	Developer	Drug Type	Function (Treatment of Human Disease Conditions)								
Humira	AbbVie	Antibody (monoclonal)	Rheumatoid arthritis, Crohn's disease, Ulcerative colitis								
Harvoni	Gilead Sciences	Small molecule	Hepatitis C								
Rituxan	Roche	Antibody (monoclonal)	Non-Hodgkin's lymphoma								
Revlimid	Celgene	Small molecule	Multiple myeloma								
Avastin	Roche	Antibody (monoclonal)	Colorectal cancer; breast cancer; non–small cell lung cancer; ovarian, brain, and cervical cancer								
Herceptin	Roche	Antibody (monoclonal)	Breast cancer, gastric cancer								
Enbrel	Amgen	Recombinant protein	Rheumatoid arthritis, psoriasis								
Prevnar 13	Pfizer	Vaccine	Pneumococcal (<i>Streptococcus Pneumoniae</i>) antibacterial vaccine								
Lantus	Sanofi	Peptide	Diabetes mellitus types I and II								
Neulasta	Amgen	Recombinant protein	Anemia (neutropenia/leukopenia)								

*Data based on the most recent source available at the time of publication: Morrison C, Lähteenmäki R. Public biotech in 2016-the numbers. *Nat Biotechnol.* 2017;35:623-629.

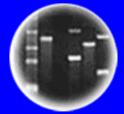
DNA Fingerprinting

Cloning: Ethical Issues and Future Consequences



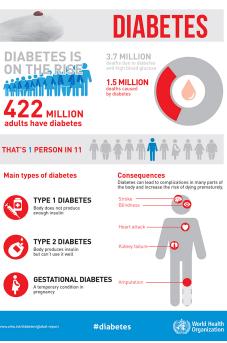
Plants of Tomorrow

The Origins of the Biotech Industry Started in the Supreme Court


Founded in 1976 By Robert Swanson and Herb Boyer First IPO in 1980 for \$88/share Purchased by Hoffmann-La Roche in 2009 for \$47B

DNA Genetic Code of Life

of a Bacteria


DNA Fingerprinting

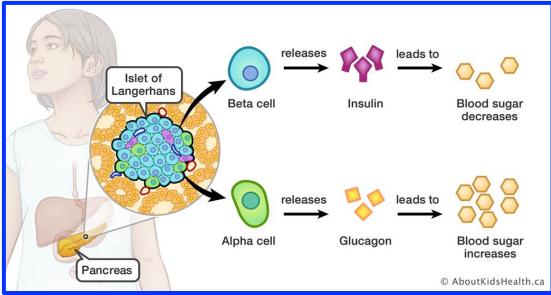
Cloning: Ethical Issues and Future Consequences

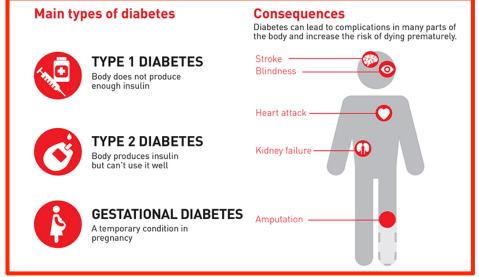

Plants of Tomorrow

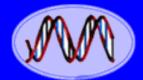
- Sequenced By Fred Sanger 1951-1953
- Nobel Prize in 1958

Insulin - The First Biotech Drug

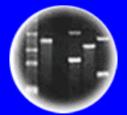
- Discovered in 1921
- Commercial Production By Eli Lilly in 1923
- Nobel Prize 1923







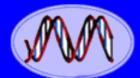
How Does Insulin Control Sugar Levels?


Plants of Tomorrow

DNA Genetic Code of Life

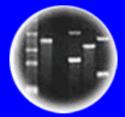
Entire Genetic Code of a Bacteria

DNA Fingerprinting


Cloning: Ethical Issues and Future Consequences

Plants of Tomorrow

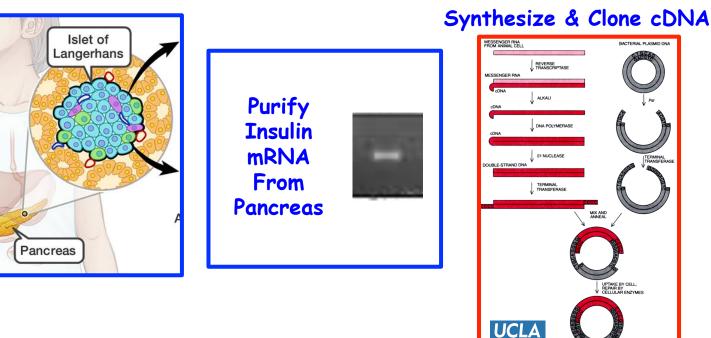
Reasons For Insulin Being the First Biotech Drug


- Diabetes a Major Disease Responsible For Millions of Deaths
- Physiological Basis of the Disease Known
- Site and Mechanism of Insulin Synthesis and Secretion Within the Pancreas Known
- Insulin Was Purified and Amino Acid Sequence Known
- Small Protein Consisting of 51 Amino Acids
- Insulin Protein Structure Understood 110 amino acids Total - A Chain 21 Amino Acids and B Chain 30 Amino Acids)
- Predicted Small Size of mRNA (~390 nts) and Gene
- Insulin Made in Large Quantities in the Pancreas
- Techniques For Cloning mRNA Using Reverse Transcriptase Or Direct DNA Synthesis Known

DNA Genetic Code of Life

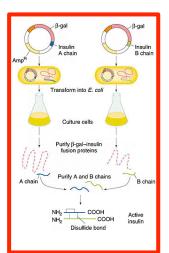
Entire Genetic Code of a Bacteria

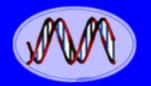
DNA Fingerprinting



Cloning: Ethical Issues and Future Consequences

Plants of Tomorrow




Use cDNA/mRNA Sequence

1		-31) co	ctgaa	atata	agcca	aacta	aati	tctag	ggaad	teta	aagag	ggact	tacgo	cttg	tete	caaca	atcti	ate	gtcaa	-24
	cate	cttc	gcaa	agcga	ataa	ctata	attto	tgg	tccg	ccaaa	agtag	gtata	acget	taaga	aacaa	agag	gaaga	agagt	cgta	aaggt	-16
	ttt	tat	ccca	agccg	ggcga	agago	cagaa	act	gttgi	tcta	aget	geeti	ttetg	ggtci	ttaa	cagga	accat	tttg	getge	gccag	-8
	tgaa	aaaa	ctaad	ctcgg	ggtga	aaaca	aacat	tgg	tgcta	accag	gcct	etcei	tgact	tgtte	ccaa	cggt	gccti	cctcg	gtage	ccaga	-
	í																				
					CTC																6
	Met	ser	lys	phe	leu	leu	gln	ser	his	ser	ala	asn	ala	cys	leu	leu	thr	leu	leu	leu	2
					AAC																12
	thr	leu	ala	ser	asn	leu	asp	ile	ser	leu	ala	*asn	phe	glu	his	ser	cys	asn	gly	tyr	4
					CCG																18
	met	arg	pro	his	pro	arg	gly	leu	cys	gly	glu	asp	leu	his	val	ile	ile	ser	asn	leu	6
					GGG																24
	cys	ser	ser	leu	gly	gly	asn	arg	arg	phe	leu	ala	lys	tyr	met	val	lys	arg	asp	thr	8
					GAC																30
	glu	asn	val	asn	asp	lys	leu	arg	alv	ile	leu	leu	asn	lys	lys	glu	ala	phe	ser	tyr	10
					GAG																36
	leu	thr	lys	arg	glu	ala	ser	gly	ser	ile	thr	cys	glu	cys	cys	phe	asn	gln	cys	arg	12
																				AGA	42
	ile	phe	glu	leu	ala	gln	tyr	cys	arg	leu	pro	asp	his	phe	phe	ser	arg	ile	ser	arg	14
															_						48
					AAC													acat	gttga	raaa	
	thr	gly	arg	ser	asn	ser	gly	his	ala	gln	leu	glu	asp	asn	phe	ser					15
																					56
																				ggttt	
	$\tt tttccacgtgtttgactaaagtttccagatttatttcataccagcgatacccgcaggaatagaaggtcccctaagaagct = 66$											tacc	cgca	ggaa	taga	aggt	cccc	caag	aagct	64	

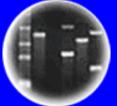
aaggcattattga

Direct Synthesis and Cloning of A Chain & B Chain mRNAs Separately

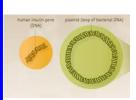


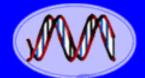
DNA Genetic Code of Life

The Race For the Insulin Gene



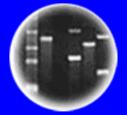
M adversion scrim-


DNA Fingerprinting



Cloning: Ethical Issues and Future Consequences

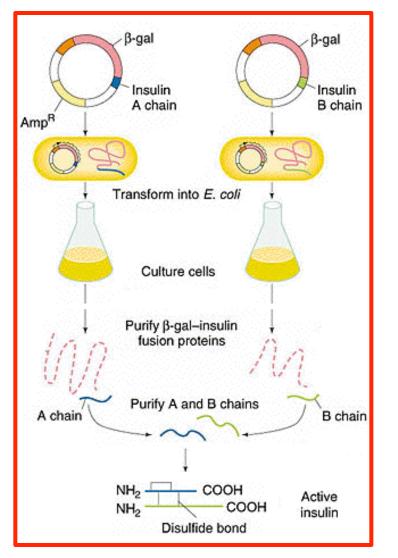
Plants of Tomorrow



DNA Genetic Code of Life

of a Bacteria

DNA Fingerprinting



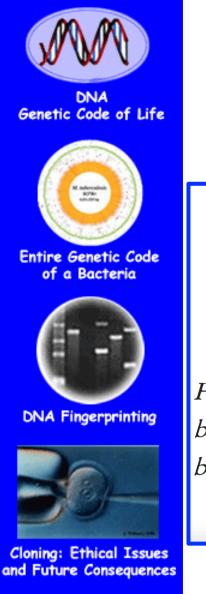
Cloning: Ethical Issues and Future Consequences

Plants of Tomorrow

The Winning Strategy Used For Synthesizing Human Insulin in *E. coli* Cells

\$30B per Year Market!

Each Chain Made Directly in Separate E. coli Cells Combined After Synthesis to Make Recombinant Insulin Note: E. coli cannot process a Pre-Insulin Protein


Need FDA Approval Before Recombinant DNA Drug Can Be Marketed and Used to Treat Patients

Insulin Was the First Recombinant DNA Drug and Got FDA Approval in 1982 - ~10 Years After Cohen and Boyer's Experiments

Plants of Tomorrow

The Factor VIII Story is Different and More Complex Than the Insulin Story

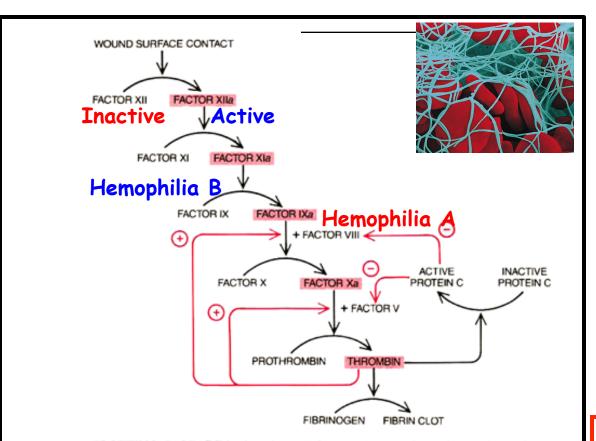
The Molecular Genetics of Hemophilia

Hemophiliacs bleed because a defective gene deprives them of a key blood-clotting protein. The protein has now been made artificially by isolating the normal gene and then inserting it into cultured cells

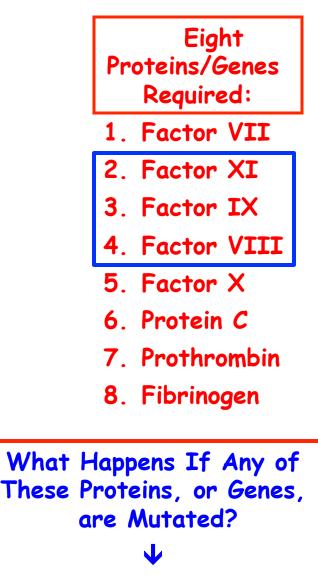
by Richard M. Lawn and Gordon A. Vehar

Hemophilia Has Been Known As An Inherited Disease For >2500 Years!

First Reference to Hemophilia is in the Old Testament


Genesis 17:10-14

'This is My covenant that you shall keep between Me and you and your descendants after you: every male among you shall be circumcised. You shall circumcise the flesh of the foreskin......At the age of eight days every male among you shall be circumcised throughout your generations.....an uncircumcised male...that soul shall be cut off from its people, he has invalidated My covenant.' The Talmud also makes reference to families in whom children have died as a result of circumcision (Babylonian Talmud, Chapter Yevamoth p64b) [6]. Should a mother lose two children or should two sisters lose a child each after circumcision, subsequent children of the woman, the two sisters or of any other sisters of the same family should not be circumcised until they are older, or possibly not at all. This is thought to be the earliest reference to haemophilia; it was recognized in the Talmud that this condition was transmitted by the mother.



Abraham was circumcised at 93 and gave birth to Isaac at 99. His wife - Sarah - was 90!

Protein Factors in Blood Lead To Clotting

CLOTTING CASCADE begins when cell damage at a wound somehow activates the enzyme factor XII; it ends with the conversion of fibrinogen into fibrin by thrombin. At each step an inactive protein is converted into a protease, or protein-cutting enzyme (color), which activates the next protein. Some steps require cofactors such as factors VIII and V. The cascade includes positive- and negative-feedback loops (colored arrows). Thrombin activates factors VIII and V; it also deactivates them (by activating protein C), which helps to halt clotting. Some 85 percent of hemophiliacs lack factor VIII. The rest lack factor IX.

No Blood Clot!

Hemophiliacs Have Mutations in Factor VIII, Factor IX, or Factor XI Genes

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display

TABLE 13.2	2 Some Importan	Some Important Genetic Disorders								
Disorder	Symptom	Defect	Dominant/ Recessive	Frequency Among Human Births						
Cystic fibrosis	Mucus clogs lungs, liver, and pancreas	Failure of chloride ion transport mechanism	Recessive	1/2500 (Caucasians)						
Sickle cell anemia	Blood circulation is poor	Abnormal hemoglobin molecules	Recessive	1/600 (African Americans)						
Tay–Sachs disease	Central nervous system deteriorates in infancy	Defective enzyme (hexosaminidase A)	Recessive	1/3500 (Ashkenazi Jews)						
Phenylketonuria	Brain fails to develop in infancy	Defective enzyme (phenylalanine hydroxylase)	Recessive	1/12,000						
Hemophilia	Blood fails to clot	Defective blood-clotting factor VIII	X-linked recessive	1/10,000 (Caucasian males)						
Huntington disease	Brain tissue gradually deteriorates in middle age	Production of an inhibitor of brain cell metabolism	Dominant	1/24,000						
Muscular dystrophy (Duchenne)	Muscles waste away	Degradation of myelin coating of nerves stimulating muscles	X-linked recessive	1/3700 (males)						
Hypercholesterolemia	Excessive cholesterol levels in blood lead to heart disease	Abnormal form of cholesterol cell surface receptor	Dominant	1/500						

18,000 People in US Have Hemophilia & 400 Babies/Year Are Born With Disorder Prior to 1960s – Average Life Span Was 11 Years

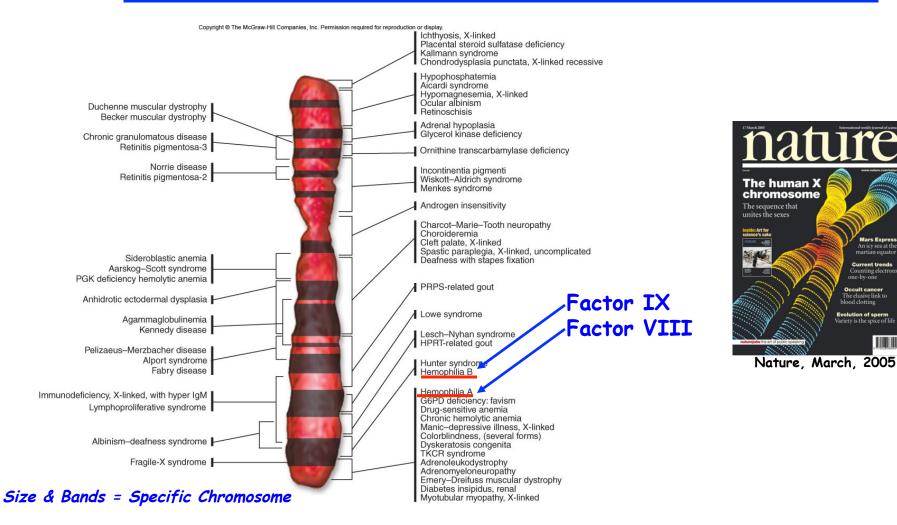
Hemophilia A	Defective Factor VIII Gene	1/10,000 males	80%
Hemophilia B	Defective Factor IX Gene	1/30,000 males	20%
Hemophilia C	Defective Factor XI Gene	Autosomal	<1%

Both Factor VIII & IX Genes

on X-Chromosome $(\mathfrak{P} \rightarrow \mathfrak{Z}' s)$

Factor VIII and Factor IX Genes are Closely Linked on the X Chromosome

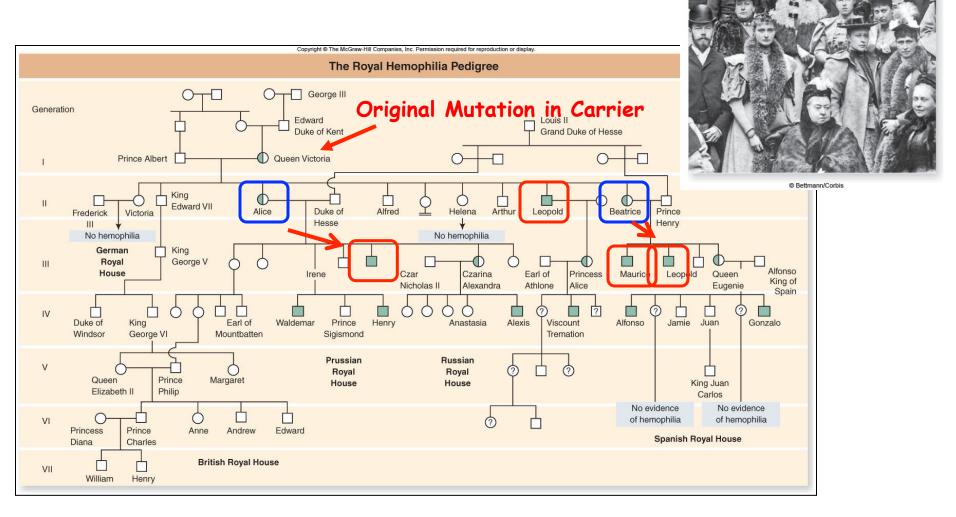
Mars Express


An icy sea at the martian equator

Current trends Counting electrons one-by-one

Occult cancer The elusive link to blood clotting

Evolution of sperm Variety is the spice of life


li li li li ii

The X chromosome has ~1098 Genes and 150,000,000 bp (150 Mb). 168 Mendelian Diseases Explained by 113 X-Linked Genes

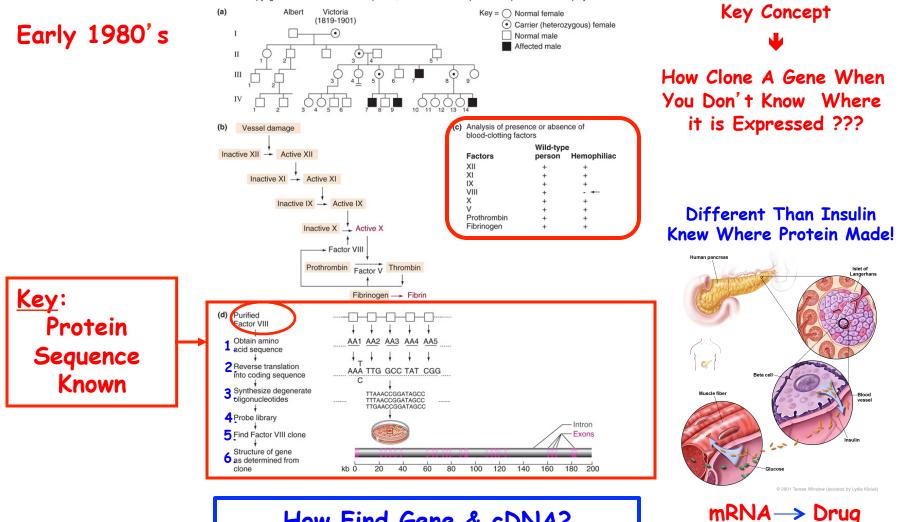
Hemophilia A and B Genes Are Sex Linked & Recessive Traits

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display

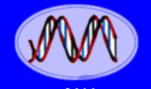
Note: 1. Males Obtain Detective Gene From Mothers

2. 50% of Sons Of A Maternal Carrier Have The Defective Gene

What Was Known About Factor VIII Before Gene Cloned?


- Blood Protein (But Perhaps Synthesized Elsewhere!)
- Not Known Where Site of Synthesis Was
- Could Be Purified In Small Amounts From >20 Liters
 Of Human Blood + Cow Blood + Pig Blood
- Short Stretch Of <u>Protein</u> Sequenced = Known Protein Sequence!
- Hemophilia A Could Be Treated By <u>Blood Transfusions</u> From Normal Individuals, ... Clotting Factor <u>In Blood</u>
- 1980s Aids Epidemic Caused Many Hemophiliacs To Get HIV/AIDs (~50% Of Hemophiliacs Got Aids In 1985)

• .: How To Go From Protein To Gene


The Problem!!

For Factor VIII- <u>Not Known Where Gene Was</u> <u>Expressed</u> : Must Use Genome Library

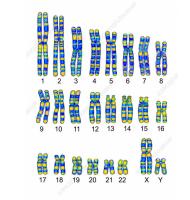
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

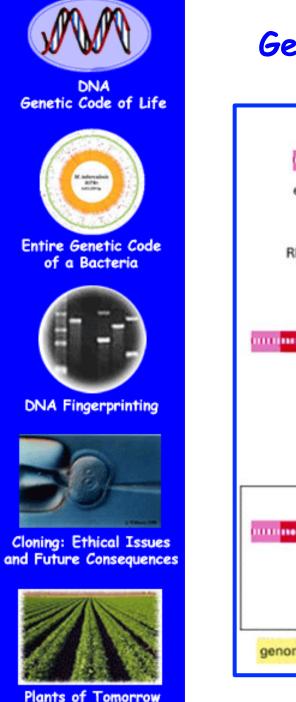
How Find Gene & cDNA? Protein → Gene → mRNA → Drug !

DNA Genetic Code of Life

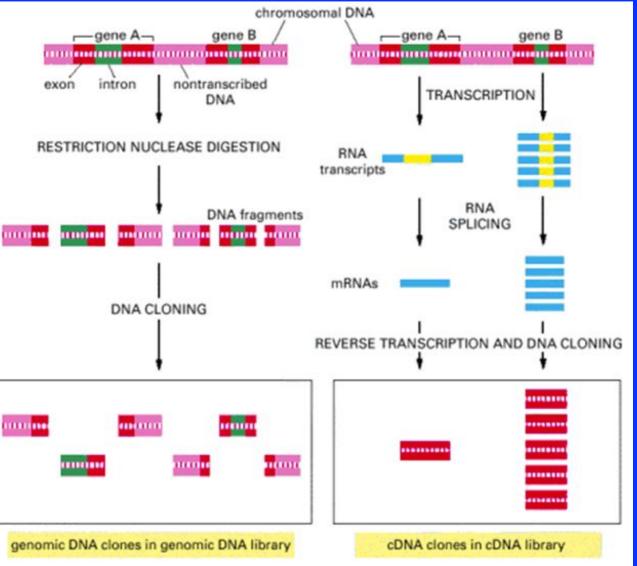
of a Bacteria

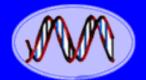
DNA Fingerprinting


Cloning: Ethical Issues and Future Consequences

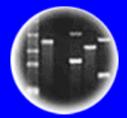

Plants of Tomorrow

If It is Not Known Where Gene is Active Can "Look" to Genome Instead of mRNA to Find + Clone Gene!


How to Construct a Human Genome Library to Find the Factor VIII Gene?



Genomic Libraries vs. cDNA Libraries



DNA Genetic Code of Life

Entire Genetic Code of a Bacteria

DNA Fingerprinting

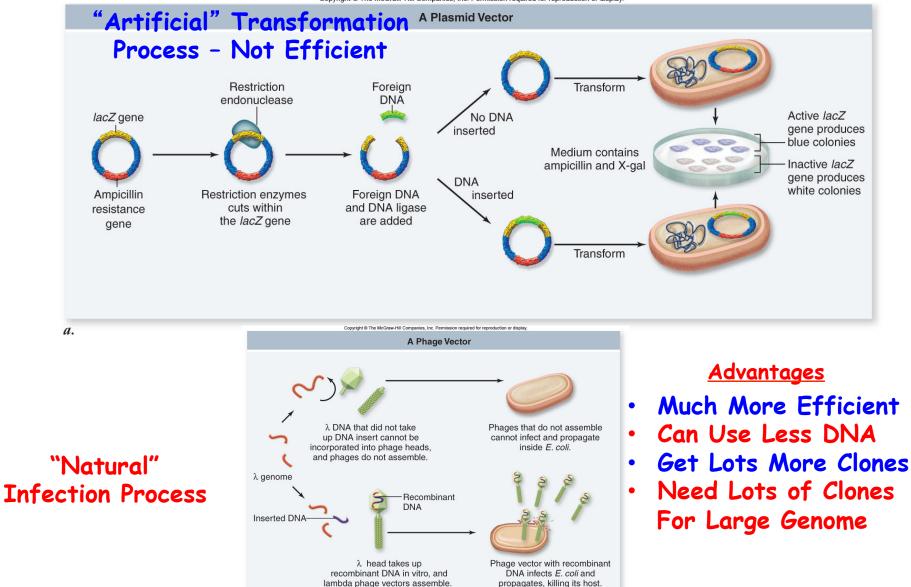
Cloning: Ethical Issues and Future Consequences

Plants of Tomorrow

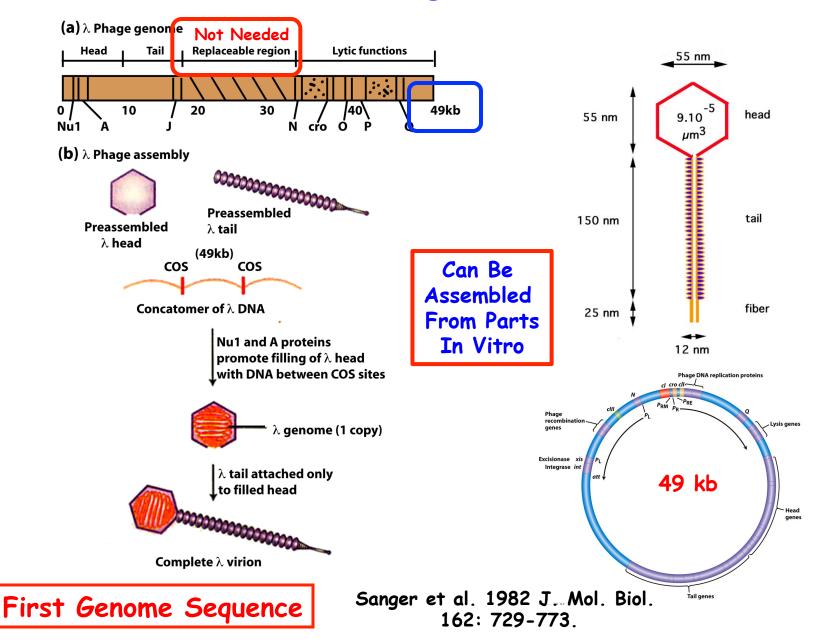
Vectors Used in Genetic Engineering Have Similar Conceptual Properties But are Used in Different Situations

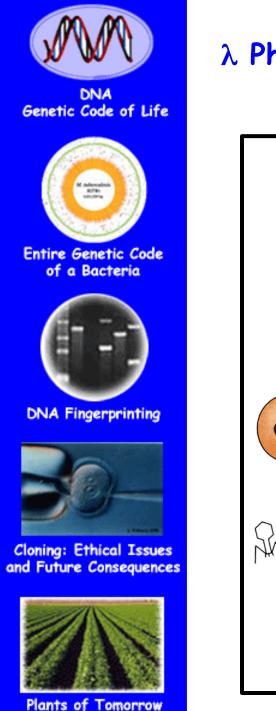
Table 3.2 A COMPARISON OF DNA VECTORS AND THEIR APPLICATIONS

	Vector Type	Maximum Insert Size (kb)	Applications	Limitations
	Bacterial plasmid vectors (circular)	~6-12	DNA cloning, protein expression, subcloning, direct sequencing of insert	Restricted insert size; limited expression of proteins; copy number problems; replication restricted to bacteria
	\frown	DNA	DNA	lestificted to bacteria
Í	Bacteriophage vectors (linear)	~25	cDNA, genomic and expression libraries	Packaging limits DNA insert size; host replication problems
	Cosmid (circular)	~35	cDNA and genomic libraries, cloning large DNA fragments	Phage packaging restrictions; not ideal for protein expres- sion; cannot be replicated in mammalian cells
	Bacterial artificial chromosome (BAC, circular)	~300	Genomic libraries, cloning large DNA fragments	Replication restricted to bacteria; cannot be used for protein expression
	Yeast artificial chromosome (YAC, circular)	200–2,000	Genomic libraries, cloning large DNA fragments	Must be grown in yeast; cannot be used in bacteria
	Ti vector (circular)	Varies depending on type of Ti vector used	Gene transfer in plants	Limited to use in plant cells only; number of restriction sites randomly distributed; large size of vector not easily manipulated

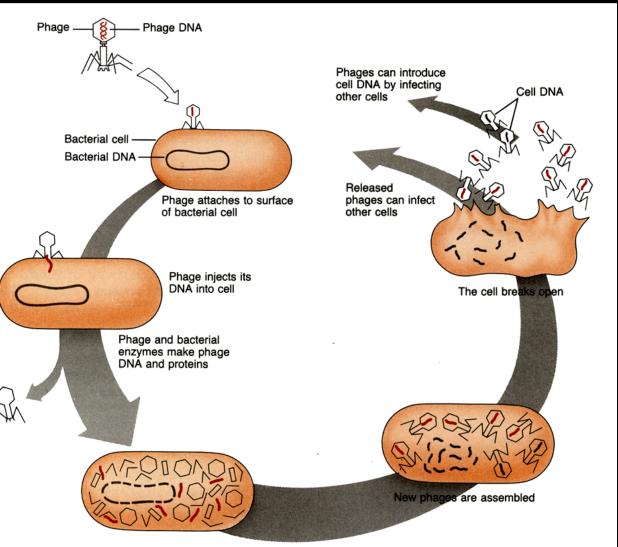

pyright © 2009 Pearson Education, Inc.

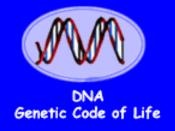
Properties of All Vectors

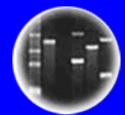

- 1. Replicate
- 2. Selectable
- 3. Can Be Used To Insert Foreign Genes/Restriction Sites
- 4. Easily Isolated + Transferred Back To Cells


Plasmid vs. Bacteriophage Vectors for Cloning DNA Fragments

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

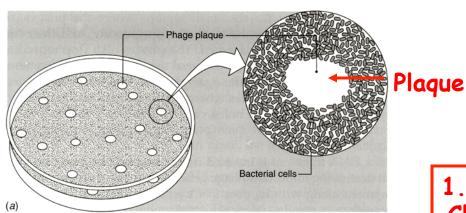


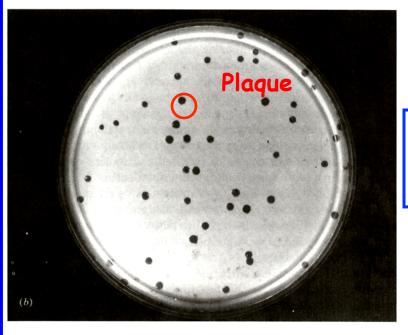

Structure of the λ Phage and Its Genome


λ Phage Infects E.coli & Destroys (Lyses) Cells

of a Bacteria

DNA Fingerprinting

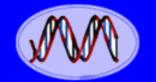



Cloning: Ethical Issues and Future Consequences

Plants of Tomorrow

Lysed Cells Can Be Seen as Clear Plaques on Agar Plates

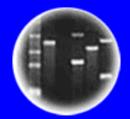
1. Each <u>Plaque</u> is a Virus Clone Representing One Viral Infection!


2. Selectable <u>Marker</u> is Bacterial Cell Destruction & Plaque Formation

Advantages of λ Virus as a Vector for Cloning DNA

- 1. <u>Long DNA Segments</u> Can Be Cloned (~20kb) Need Fewer Clones For Whole Genome!
- 2. Can Clone DNA Segments In Viral Genome & Self-Assemble With Viral Proteins Into Virus In A Test Tube!
 - :. Make <u>Recombinant Viruses In The Lab!</u>
- 3. <u>Use "Natural" Infection</u> Process To Generate Large Number Of Clones For A Eukaryotic Genome Library.

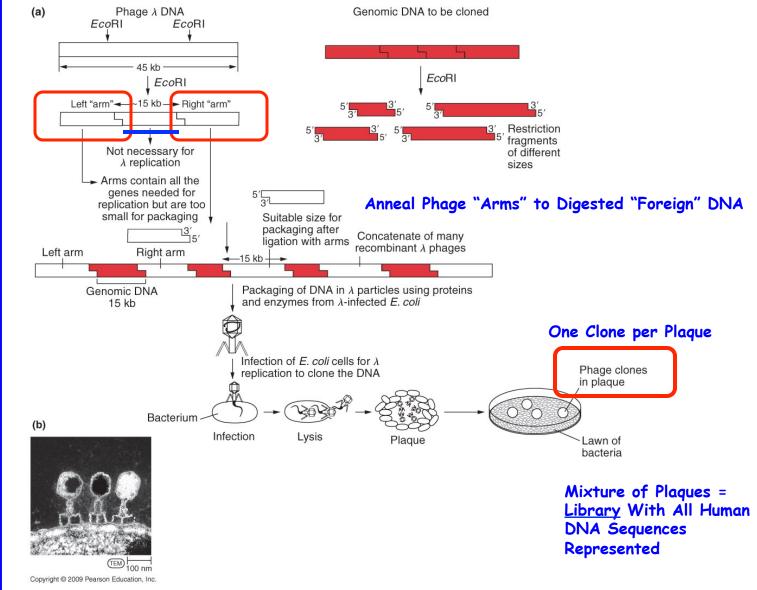
Much Higher Efficiency For Getting Recombinant DNA →Bacterial Cells Compared With Dna Transformation.


... Set More Clones Per Amount Of Recombinant DNA!

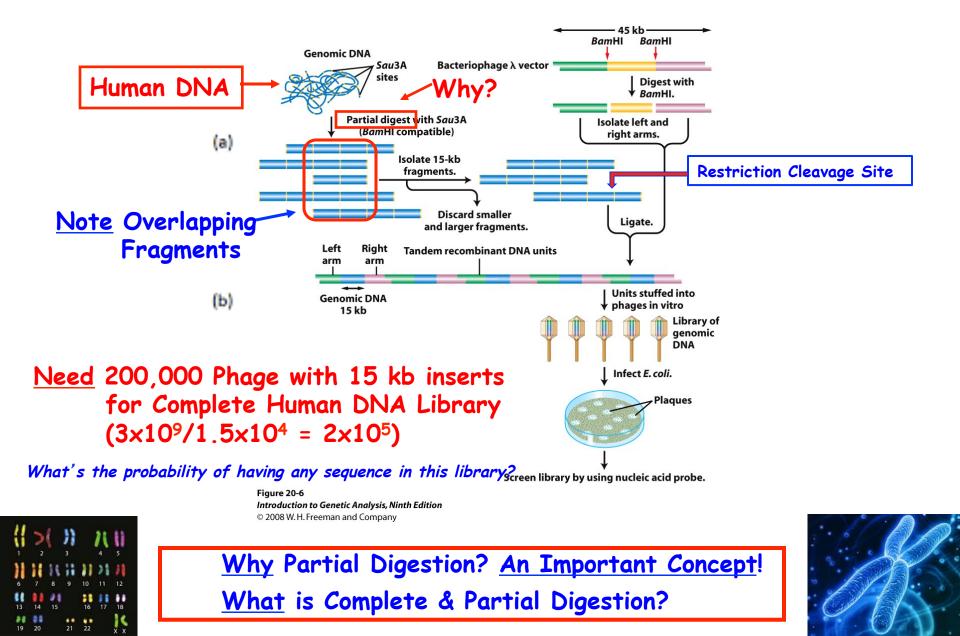
DNA Genetic Code of Life

of a Bacteria

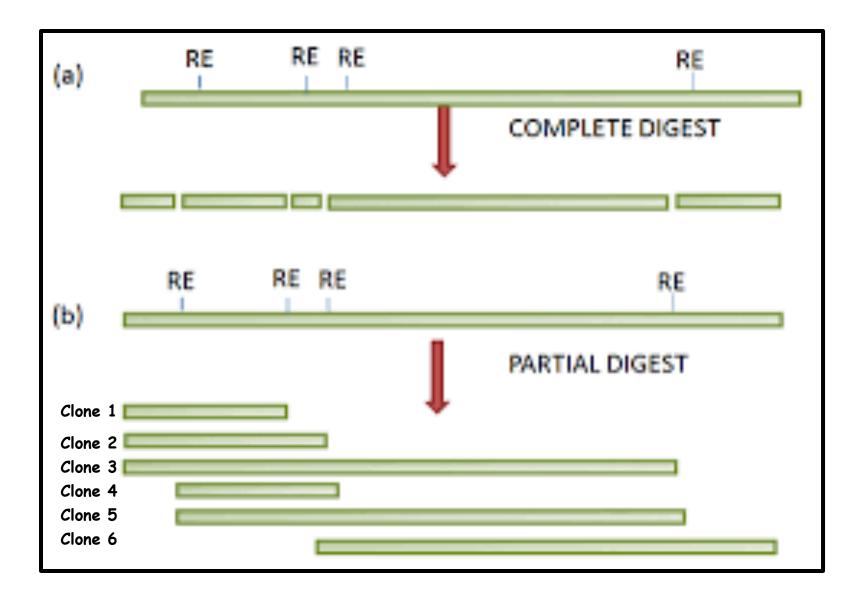
DNA Fingerprinting

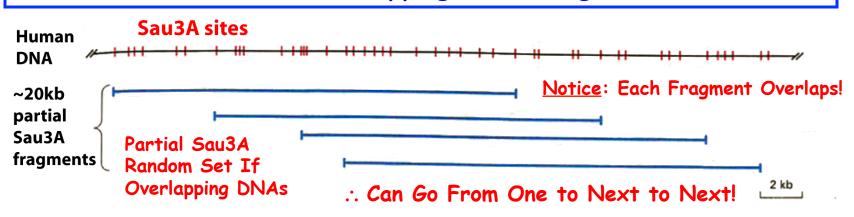


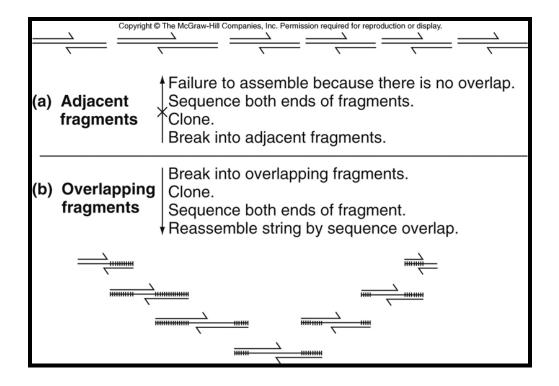
Cloning: Ethical Issues and Future Consequences



Plants of Tomorrow


Using a Bacterial Virus To Clone the Human Genome


Cloning the Human Genome and Screening for the Factor VIII Gene

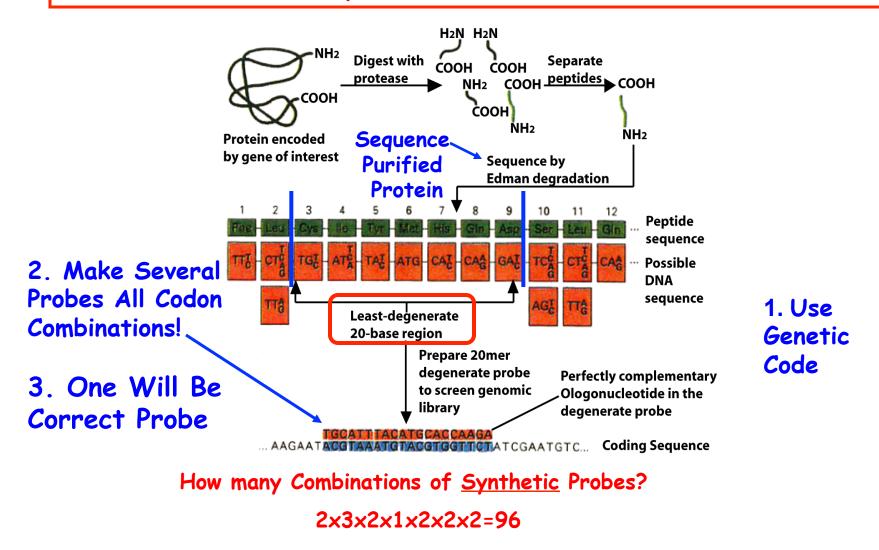


Partial Digestion Permits "Walking" From One DNA Region to the Next

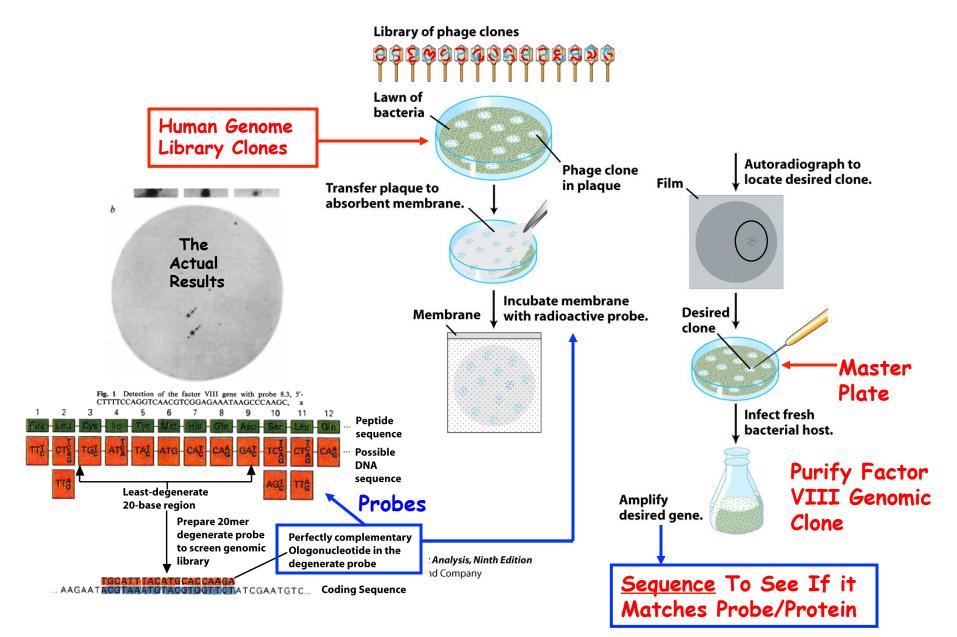
Constructing a Human Genome Library by Partial Digestion Creates a Set of Overlapping DNA Fragments/ Clones

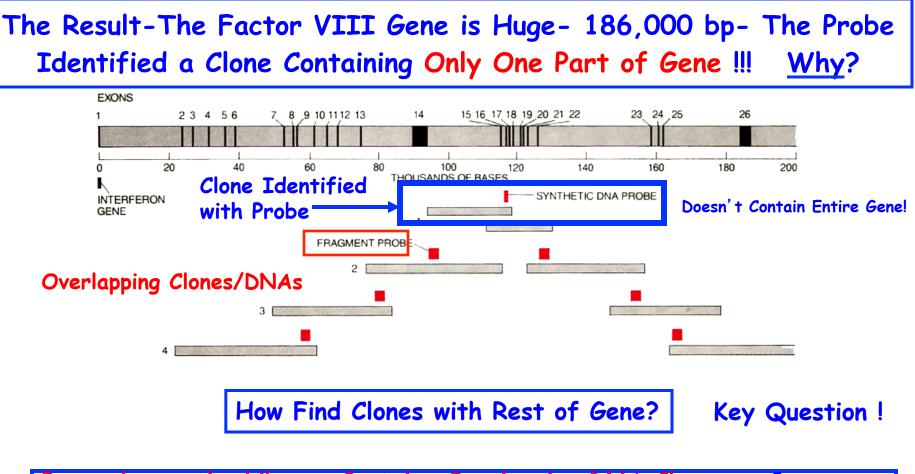
Step Two

How Find the Factor VIII Gene in a Human Genome Library?

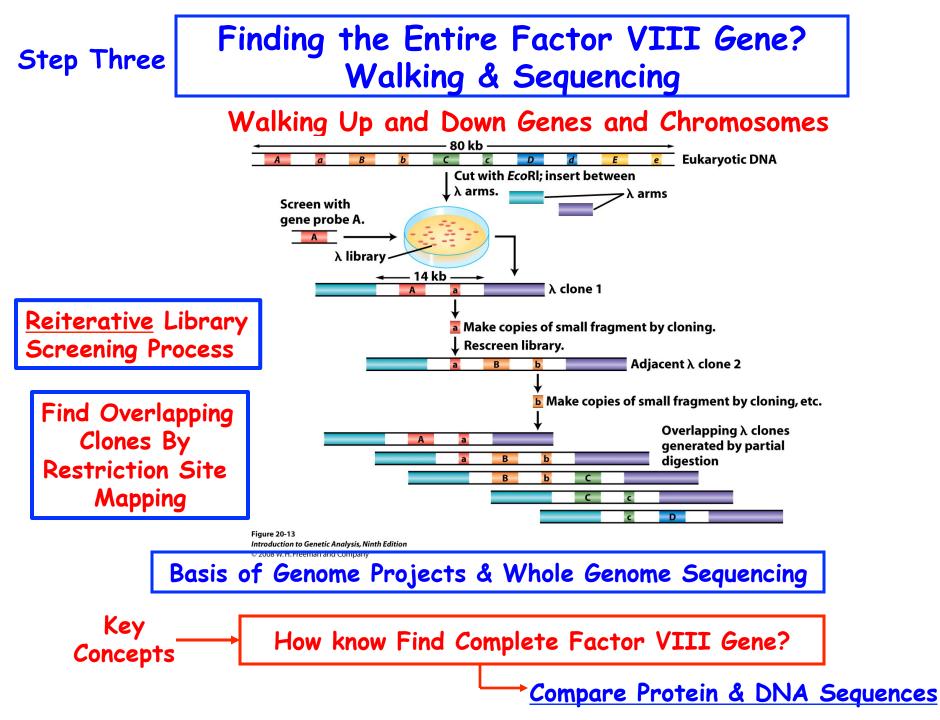

The Genetic Code

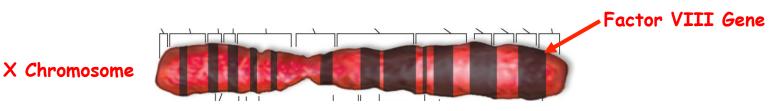
Second Letter


	U		J	(C		Ą	0	;		_
	υ	UUU UUC UUA UUG	Phe Leu	UCU UCC UCA UCG	Ser	UAU UAC UAA UAG	Tyr Stop Stop	UGU UGC UGA UGG	Cys Stop Trp	U C A G	
1st letter	С	CUU CUC CUA CUG	Leu	CCU CCC CCA CCG	Pro	CAU CAC CAA CAG	His Gln	CGU CGC CGA CGG	Arg	U C A G	3rd
	A	AUU AUC AUA AUG	lle Start Met	ACU ACC ACA ACG	Thr	AAU AAC AAA AAG	Asn Lys	AGU AGC AGA AGG	Ser Arg	U C A G	letter
	G	GUU GUC GUA GUG	Val	GCU GCC GCA GCG	Ala	GAU GAC GAA GAG	Asp Glu	GGU GGC GGA GGG	Gly	U C A G	
		<u>Properties</u> • Universal • Three Nucleotides • Punctuation • Degenerate									


Factor VIII Protein → Gene

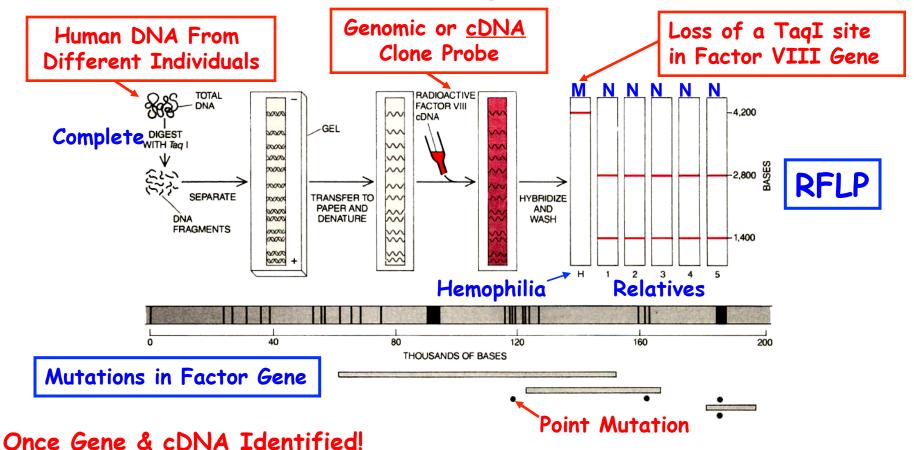
Using the Factor VIII Protein Sequence and Genetic Code as a Guide to <u>Synthesize</u> a Factor VIII Probe


Finding The Factor VIII Gene Or Part of Gene!!

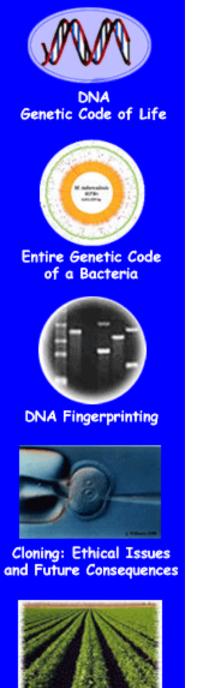

Remember - the Library Contains Overlapping DNA Clones ... Can Use One Part of First Clone to Re-Screen Library & "Walk" to Other Gene Regions - Using Restriction Maps & Sequencing (Compare With Protein Sequence) as Guides!

The Factor VIII Gene Was Found To Be Very Large

- 186,000 Nucleotides in Length (Won't Fit in One Phage Clone)
- · 25 Introns
- 9,000 Nucleotide Coding Sequence (cDNA)
- 2,351 Amino Acids in Protein


Factor VIII Mutations Occur Throughout the Gene

[Haemophilia 11, 481-491 (2005)]


VIII:C (%)	Family history	Consanguinity*	Inversion	Codon†	Mutation	Amino acid change	Exon	Conservation [‡]
L	Sporadic	NC	Normal	51	$TTT \rightarrow TCT$	Phe → Ser	2	FFFF, identical
.20	Sporadic	NC	Normal	80	$GTT \rightarrow GAT$	$Val \rightarrow Asp$	3	VVVV, identical
L	Sporadic	NC	Normal	102	$GGT \rightarrow GTT_{S}$	$Gly \rightarrow Val$	3	GGGG, identical
	Sporadic	NC	Normal	104	$TCC \rightarrow CCC$	Ser \rightarrow Pro	3	SSSS, identical
5	Sporadic	NC	Normal	143	$GAG \rightarrow AAGS$	$Ghu \rightarrow Lys$	4	EEEE, identical
L	Sporadic	NC	Normal	233	delCA§	Thr \rightarrow fs (TGA-264)	6	
2.70	Inherited	NC	Normal	321	$GAA \rightarrow AAA$	$Glu \rightarrow Lys$	8	EEEE, identical
	Sporadic	NC	Normal	372	$CGC \rightarrow CAC$	$Arg \rightarrow His$	8	RRRR, identical
	Inherited	NC	Normal	527	$CGG \rightarrow TGG$	$Arg \rightarrow Trp$	11	RRRR, identical
	Sporadic	NC	Normal	52.8	$TGC \rightarrow TACS$	Cys → Tyr	11	CCCC, identical
L	Inherited	NC	Normal	592	$CAA \rightarrow TAA$	$Gln \rightarrow Stop$	12	QQQQ, identical
	Inherited	NC	Normal	864	delGACA	Gly \rightarrow fs [TAA-867]	14	
					insCAATTAAATGAGAA§			
	Sporadic	NC	Normal	948	insA§	Lys \rightarrow fs (TGA-984)	14	
	Sporadic	NC	Intron 1	1107	$AGG \rightarrow TGGS$	$Arg \rightarrow Trp$	14	RGKK, dissimilar
	Sporadic	NC	Normal	1107	$AGG \rightarrow TGGS$	$Arg \rightarrow Trp$	14	RGKK, dissimilar
	Inherited	NC	Normal	1191-1194	delA	$llc \rightarrow fs$ (TAG-1198)	14	-
.40	Sporadic	NC	Normal	1191-1194	insA	Ile \rightarrow fs (TAA-1220)	14	
	Sporadic	C	Normal	1227	delC§	Leu \rightarrow fs (TGA-1231)	14	
.10	Sporadic	NC	Normal	1241	$GAC \rightarrow GAG$	$Asp \rightarrow Glu$	14	DGGE, similar
	Sporadic	NC	Normal	1392	1392dcl14185	$Pro \rightarrow fs (TAG-1446)$	14	-
	Incrited	C	Normal	1392	1392del14185	Pro \rightarrow fs (TAG-1446)	14	
	Sporadic	NC	Normal	1441	insA§		14	
	Incrited	C	Normal	1441	insA§			
	Inherited	NC	Normal	1.502	$CAG \rightarrow TAGS$	$Gln \rightarrow Stop$	14	QREQ, dissimilar
	Inherited	NC	Normal	1504	delGTS	Val \rightarrow fs (TGA-1517)	14	
	Sporadic	NC	Normal	1535	$TGG \rightarrow TGA$	Trp → Stop	14	WLWM, dissimilar
hibitor 96 BU								,
	Sporadic	NC	Normal	1571	$TAT \rightarrow TAAS$	$Tyr \rightarrow Stop$	14	Y-YY, dissimilar
	Sporadic	NC	Normal	1.581	AAA → TAAS	Lys \rightarrow Stop	14	KEKK, dissimilar
.20	Sporadic	NC	Normal	1696	$CGA \rightarrow GGA$	$Arg \rightarrow Gly$	14	RRRR, identical
.80	Sporadic	NC	Normal	1729	delAS	Gln \rightarrow fs (TAA-1752)	15	
	Inherited	NC	Normal	1751	GAA → AAA§	$Ghu \rightarrow Lys$	15	EEEE, identical
	Sporadic	NC	Normal	1775	$TTC \rightarrow TCCS$	Phe \rightarrow Pro	16	FFFF, identical
	Sporadic	NC	Normal	1835	$TGG \rightarrow TGAS$	Trp → Stop	16	WWWW, identical
.60	Sporadic	C	Normal	1882	ATC \rightarrow ATAS	$lle \rightarrow lle$	17	IIII, identical
1	Inherited	C	Normal	1966	$CGA \rightarrow CAA$	$Arg \rightarrow Glu$	18	RRRR, identical
	Sporadic	NC	Normal	1966	$CGA \rightarrow TGA$	$Arg \rightarrow Stop$	18	RRRR, identical

Need To Screen Across the Gene for Markers -- Family Specific

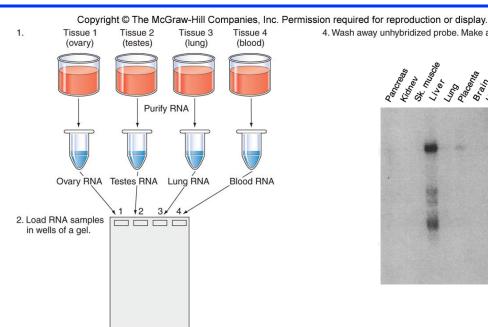
Factor VIII Gene Probes/ Sequence Can Be Used to Characterize Mutant Genes & Do DNA Testing for Carriers

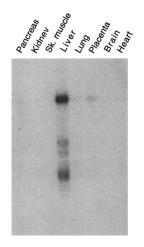
Use DNA Gel Blots (or PCR) & Factor VIII Probes to Investigate Presence of Mutant Alleles in Families (carriers) Mutations Arise Independently in Families

Step Four

How Find Factor VIII mRNA to Generate a cDNA for Protein Production in Host Cells?

<u>Recall</u>: Eukaryotic Genes Provide Obstacles for Efficient Protein Production in Genetically Engineered Cells!

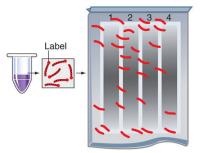

Introns! Switches!


Plants of Tomorrow

Making the Drug

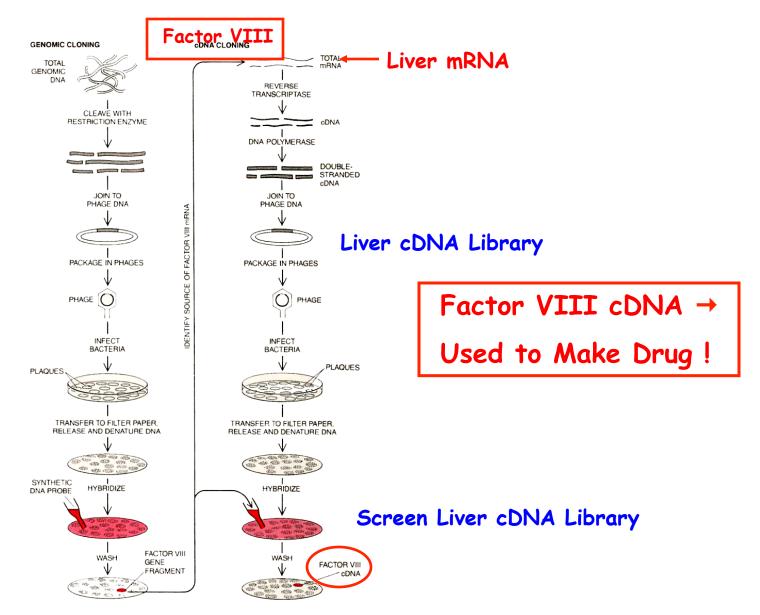
Need cDNA Not Gene

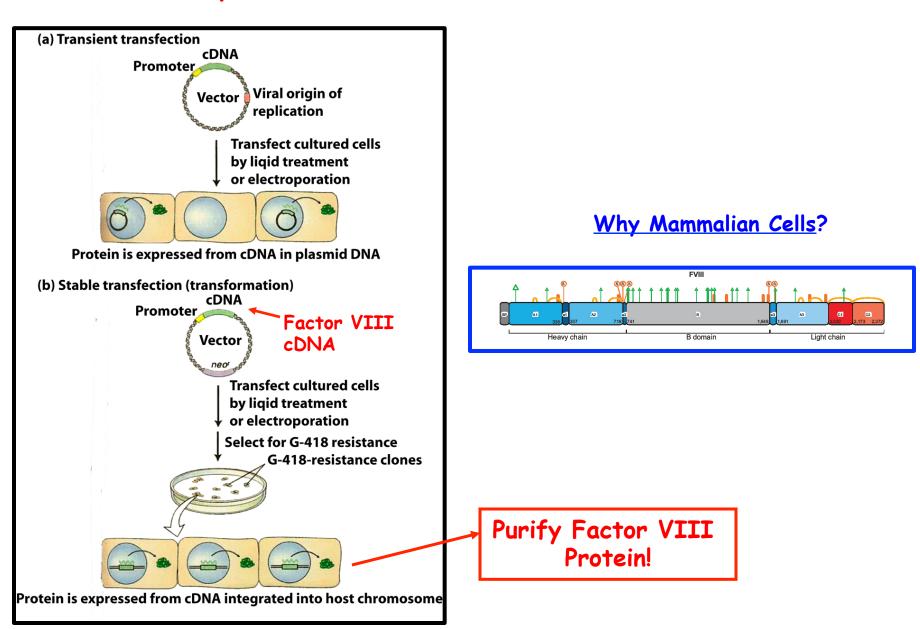
Factor VIII Gene Can Be Used to Find Out Where It is Active Using RNA Blots



4. Wash away unhybridized probe. Make autoradiograph.

RNA Blot Is Like a DNA Blot Except That RNA is on Gel & Blotted


3. Separate RNA samples by gel electrophoresis. Blot onto filter. Expose filter to labeled hybridization probe.



Can Also Use PCR (RT-PCR)

Using Factor VIII Gene Probe to Identify Factor VIII cDNA clone

Engineer Factor VIII cDNA to Produce Protein in Host Cell & Synthesize Factor VIII in Mammalian Cells

M

Home

Recombinant Factor VIII

More Resources Haemophilia Centres in Europe

Related Links

Haemo-QoL Project Hemophilia Research Awards

Recombinant Factor VIII

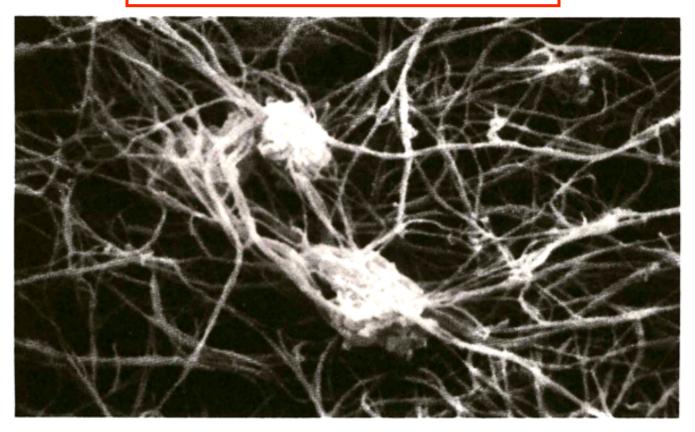
Bayer Biological Products EU

About Us About Haemophilia For Kids Research & Development Press Releases

Recombinant factor VIII

Recombinant factor VIII (rFVIII) is the antihaemophilic factor A, obtained using recombinant DNA technology. With this technology, pure protein is synthesized in the laboratory instead of being extracted from blood. In the following pages, it will be explained in detail how the knowledge and analysis of DNA, using the new instruments of molecular genetics, have represented both the beginning and follow-up stages in the development of recombinant FVIII.

Factor VIII Gene Cloned In 1983 Factor VIII (Recombinant) Approved As Drug In 1993! Ten Years From Gene → Drug! (Off Patent In 2011)



Bayer HealthCare

Biological Products Division Search | Sitemap

Using Factor VIII to Treat Hemophilia

Formation of a Blood Clot

FIBRIN STRANDS stabilize a blood clot at the site of a wound by trapping the platelets that form the bulk of the clot. The electron micrograph, which was made by Jon C. Lewis of Wake Forest University, shows a clot formed in a suspension of platelets and fibrin.

A clot in the bloodstream is the result of a complex cascade of enzymatic reactions culminating in the conversion of fibrinogen, a soluble protein, into insoluble fibrin strands. In hemophiliacs a crucial protein in the blood-clotting cascade is either missing or defective.

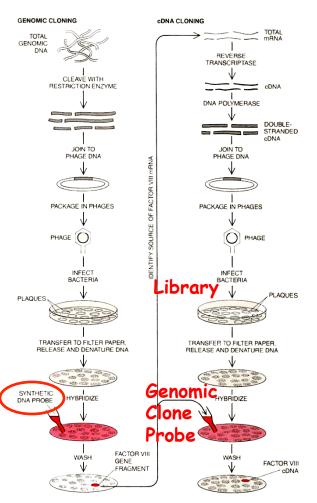
A Triumph of Genetic Engineering

The Future: Gene Therapy - A Permanent "Cure"

December 10, 2011

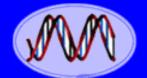
Treatment for Blood Disease Is Gene Therapy Landmark

By NICHOLAS WADE

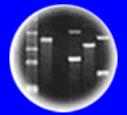

Gene Therapy Shows Promise for Treating Hemophilia By ALICE PARK Monday, December 12, 2011

The First Ever In-Human Gene Editing Will Try and Combat Hemophilia

Summary of Steps Required to Clone Factor VIII Gene and cDNA


- 1. Make Genome Library Because Factor VIII Gene in Genome!
- 2.Purify Protein from Blood- that's where it works (wasn't known where made)
- 3.Reverse Translate using the genetic code a portion of the protein sequence
- 4. Synthesize a DNA probe complementary to Factor VIII gene corresponding to protein sequence
- 5. Screen Genome Library Entire Gene on The Clone?

- 1.Use Gene probe to screen cDNA library for Factor VIII cDNA clone
- 2.How know what mRNA to use to make cDNA library?
- 3.Use gene probe to probe RNA blots containing mRNA from all major organs (liver, kidney, blood, etc.)
- 4.Find Factor VIII mRNA in livermale, liver- secrete into blood
 - Why Need cDNA? Story continued


Want cDNA to Manufacture Factor VIII as a Drug to Treat Hemophilia A!

DNA Genetic Code of Life

Entire Genetic Code of a Bacteria

DNA Fingerprinting

Cloning: Ethical Issues and Future Consequences

Plants of Tomorrow

The Factor VIII Story - A Summary

- 1. Purify Small Amounts of Factor VIII
- 2. Obtain Partial or Complete Amino Acid Sequence
- 3. Use the Genetic Code to Synthesize Degenerate DNA Probes
- 4. Isolate Factor VIII DNA Clones Complementary to Probe in Genome Library
- 5. Determine if Factor VIII Clones Contain the Complete Gene By Sequencing and Comparing With Protein Sequence
- 6. If Not, "Walk" to Obtain Overlapping DNA Clones That Collectively Contain the Factor VIII Gene
- 7. Sequence Clones To Determine Where the Factor VIII Gene Starts and Stops
- 8. Use Factor VIII Genome Probe to Find Out What Body Organ/Tissue Expresses the Factor VIII Gene
- 9. Make a cDNA Library From the Target Organ/Tissue and Isolate a Factor VIII cDNA Clone
- 10. Sequence the Factor VIII cDNA Clone and Compare With Factor VIII Gene Sequence to Map its Anatomy (I.e., introns, exons, swtiches) and Ensure That it Contains the Complete Protein Coding Sequence
- 11. Use Factor VIII cDNA and/or Genome Fragments as a Probe to Find RFLP Markers For Disease Alleles -- Or Sequence Disease Alleles to Find Relevant RFLP Markers By Comparison With Wild-Type Sequence
- 12. Insert Factor VIII cDNA Into an Expression Vector and Synthesize Factor VIII Protein in Host Cells (e.g., Mammalian Cells)