

- 1	dCaa0
- 1	ucas9

- 2: dCas9^{VP64}
- 3: dCas9^{p300 Core (WT)}
- 4: dCas9^{p300} Core (1645/1646 RR/EE)
- 5: dCas9^{p300} Core (C1204R)
- 6: dCas9^{p300} Core (D1399Y)[‡]
- 7: dCas9^{p300} Core (Y1467F)[‡]
- 8: dCas9^{p300} Core (1396/1397 SY/WW)[‡]
- 9: dCas9^{p300} Core (H1415A/E1423A/Y1424A/L1428S/Y1430A/H1434A)[‡]

Nature Biotechnology: doi:10.1038/nbt.3199

α-GAPDH

dCas9^{p300 Core} mutant fusion protein activities.

(a) Schematic depiction of the WT dCas9^{p300 Core} fusion protein and p300 Core mutant derivatives. Relative locations of mutated amino acids are displayed as yellow bars within the p300 Core effector domain. (b) dCas9^{p300 Core} variants were transiently co-transfected with four *IL1RN* promoter gRNAs and were screened for hyperactivity¹ (amino acid 1645/1646 RR/EE and C1204R mutations) or hypoactivity^{1, 2} (denoted by \pm) via mRNA production from the *IL1RN* locus (top panel, n=2 independent experiments, error bars: s.e.m.). Experiments were performed in duplicate with one well used for RNA isolation and the other for western blotting to validate expression (bottom panels). The nitrocellulose membrane was cut and incubated with α -FLAG primary antibody (top, Sigma-Aldrich cat.# F7425) or α -GAPDH (bottom, Cell Signaling Technology cat.# 14C10) then α -Rabbit HRP secondary antibody (Sigma-Aldrich cat.# F7425) or α -GAPDH (bottom, Sigma-Aldrich cat.# F7425) or α -GAPDH (bottom, Cell Signaling Technology cat.# 14C10) then α -Rabbit HRP secondary antibody (Sigma-Aldrich cat.# A6154). (c) Full membranes from western blot shown in main text (Figure 1b). The nitrocellulose membrane was cut and incubated with α -FLAG primary antibody (top, Sigma-Aldrich cat.# F7425) or α -GAPDH (bottom, Cell Signaling Technology cat.# 14C10) then α -Rabbit HRP secondary antibody (Sigma-Aldrich cat.# A6154). Membrane was imaged for the indicated durations after careful re-alignment of trimmed pieces.

Target gene activation is unaffected by overexpression of synthetic dCas9 fusion proteins.

dCas9 fusion proteins were transiently co-transfected with an empty gRNA vector backbone and mRNA expression of *IL1RN*, *MYOD*, and *OCT4* was assayed as in the main text. Red dashed line indicates background expression level from No DNA-transfected cells. n=2 independent experiments, error bars: s.e.m., no significant activation was observed for any target gene assayed.

Comparison of Sp. dCas9 and Nm. dCas9 gene induction from the HS2 enhancer with individual and pooled gRNAs.

(a) Schematic display of the human β -globin locus including *Streptococcus pyogenes* dCas9 (*Sp.* dCas9) and *Neisseria meningitidis* dCas9 (*Nm.* dCas9) gRNA locations at the HS2 enhancer. Layered transcription profiles scaled to a vertical viewing range of 8 from nine ENCODE cell lines (GM12878, H1-hESC, HeLa-S3, HepG2, HSMM, HUVEC, K562, NHEK, and NHLF) is shown in addition to ENCODE p300 binding peaks in K562, A549 (EtOH.02), HeLA-S3, and SKN_SH_RA cell lines. An ENCODE HEK293T DNase hypersensitive site (HEK293T DHS) is shown in the HS2 Enhancer inset. (**b–e**) Relative transcriptional induction of *HBE, HBG, HBD*, and *HBD* transcripts from single and pooled *Sp.* dCas9 gRNAs (A–D) or single and pooled *Nm.* dCas9 gRNAs (A–E) in response to co-transfection with *Sp.* dCas9^{p300 Core} or *Nm.* dCas9^{p300 Core} respectively. gRNAs are tiled for each dCas9 ortholog corresponding to their location in GRCh37/hg19. Gray dashed line indicates background expression level in transiently co-transfected HEK293T cells. Note shared logarithmic scale among panels **b–e.** Numbers above bars in **b–e** indicate mean expression (n = at least 3 independent experiments, error bars: s.e.m.).

dCas9^{VP64} and dCas9^{p300 Core} induce H3K27ac enrichment at *IL1RN* gRNA-targeted chromatin.

The *IL1RN* locus on GRCh37/hg19 is shown along with *IL1RN* gRNA target sites. In addition layered ENCODE H3K27ac enrichment from seven cell lines (GM12878, H1-hESC, HSMM, HUVEC, K562, NHEK, and NHLF) is indicated with the vertical range setting set to 50. Tiled *IL1RN* ChIP gPCR amplicons (1–13) are also shown in corresponding locations on GRCh37/hg19. H3K27ac enrichment for dCas9^{VP64} and dCas9^{p300 Core} co-transfected with four *IL1RN*-targeted gRNAs and normalized to dCas9 co-transfected with four *IL1RN* gRNAs is indicated for each ChIP gPCR locus assayed. 5ng of ChIP-prepared DNA was used for each reacton (n = 3 independent experiments, error bars: s.e.m.)

Direct comparison of VP64 and p300 Core effector domains between TALE and dCas9 programmable DNA binding proteins.

(a) The GRCh37/hg19 region encompassing the *IL1RN* transcription start site is shown schematically along with *IL1RN* TALE binding sites and dCas9 *IL1RN* gRNA target sites. (b) Direct comparison of *IL1RN* activation in HEK293T cells when transfected with individual or pooled (A–D) *IL1RN* TALE ^{VP64} fusion proteins or when co-transfected with dCas9^{VP64} and individual or pooled (A–D) *IL1RN* targeting gRNAs. (c) Direct comparison of *IL1RN* activation in HEK293T cells when transfected with individual or pooled (A–D) *IL1RN* targeting gRNAs. (c) Direct comparison of *IL1RN* activation in HEK293T cells when transfected with individual or pooled (A–D) *IL1RN* targeting gRNAs. Note shared logarithmic scale between panels **b** and **c**. Numbers above bars in panels **b** and **c** indicate mean values. Tukey test, **P*-value <0.05, n = at least 3 independent experiments, error bars: s.e.m.

TALE and ZF fusion protein expression.

(a) Western blotting was carried out on cells transiently transfected with individual or pooled *IL1RN* TALE proteins. Nitrocellulose membranes were cut and probed with α -HA primary antibody (1:1000 dilution in TBST + 5% Milk, top, Covance cat.# MMS-101P) or α -GAPDH (bottom, Cell Signaling Technology cat.# 14C10) then α -Mouse HRP (Santa Cruz, sc-2005) or α -Rabbit HRP (Sigma-Aldrich cat.# A6154) secondary antibody, respectively. (b) Western blotting was carried out on cells transiently transfected with *ICAM1* ZF-effector proteins and nitrocellulose membranes were cut and probed with α -FLAG primary antibody (top, Sigma-Aldrich cat.# F7425) or α -GAPDH (bottom, Cell Signaling Technology cat.# 14C10) then α -Rabbit HRP secondary antibody (Sigma-Aldrich cat.# A6154). Red asterisk indicates non-specific band.

dCas9^{p300 Core} and dCas9^{VP64} do not display synergy in transactivation.

(a) dCas9^{p300 Core} was co-transfected at a 1:1 mass ratio to PL-SIN-EF1 α -EGFP³ (GFP), dCas9, or dCas9^{VP64} with four *IL1RN* promoter gRNAs as indicated (n = 2 independent experiments, error bars: s.e.m.). (b) dCas9^{p300 Core} was co-transfected at a 1:1 mass ratio to GFP, dCas9, or dCas9^{VP64} with four *MYOD* promoter gRNAs as indicated (n = 2 independent experiments, error bars: s.e.m.). No significant differences were observed using Tukey's test (n.s).

е

gRNA-Targeted Locus	Overlap DHS in HEK293T	Overlap DHS in Other ENCODE Lines	Multiple gRNAs Required for Maximal dCas9 ^{p300 Core} Target Activation	Overlap Endogenous p300 in ENCODE Lines
IL1RN Promoter	N	Y	N	N
MYOD CE	N	Y	N	Y
MYOD DRR	Marginal	Y	N	N
MYOD Promoter	N	Y	N	N
OCT4 DE	N	Y	Y	Y
OCT4 PE	N	Y	N	Marginal
OCT4 Promoter	N	Y	N	N
HS2 Enhancer	Y	Y	Y	Y

Supplementary Figure 8

Underlying chromatin context of dCas9^{p300 Core} target loci.

(a-d) Indicated loci are shown along with associated *Streptococcus pyogenes* gRNAs used in this study at corresponding genomic locations in GRCh37/hg19. ENCODE HEK293T DNase hypersensitivity enrichment is shown (note changes in scale) along with regions of significant DNase hypersensitivity in HEK293T cells ("DHS"). In addition ENCODE master DNase clusters across 125 cell types are shown. Layered ENCODE H3K27ac and H3K4me3 enrichment across seven cell lines (GM12878, H1-hESC, HSMM, HUVEC, K562, NHEK, and NHLF) is also displayed and scaled to a vertical viewing range of 50 and 150 respectively. Endogenous p300 binding profiles are also indicated for each locus and respective cell line. (e) An overview of the information provided in a-d.

Supplementary Table	I. Ten most enriched n	nRNAs for dCas9 IL	1RN-targeted RNA-seq	experiments
---------------------	------------------------	--------------------	----------------------	-------------

	dCas9 ^{VP64} + 4 <i>IL1RN</i> gRNAs compared to dCas9 + 4 <i>IL1RN</i> gRNAs							
	Refseq ID	Gene	baseMean	log2FoldChange	lfcSE	stat	pvalue	padj
1	NM_173842	IL1RN (transcript variant 1)	14.764	0.529	0.152	3.48	0.000494857	0.99992134
2	NM_173843	IL1RN (transcript variant 4)	13.606	0.517	0.149	3.47	0.000530109	0.99992134
3	NR_073102	ZNF551	21.505	0.505	0.159	3.17	0.00152863	0.99992134
4	NM_000577	IL1RN (transcript variant 3)	14.890	0.497	0.152	3.28	0.001039353	0.99992134
5	NM_001077441	BCLAF1(transcript variant 3)	437.814	0.482	0.153	3.14	0.001665925	0.99992134
6	NM_173841	IL1RN (transcript variant 2)	13.711	0.448	0.15	3.00	0.002716294	0.99992134
7	NM_001268	RCBTB2	46.265	0.440	0.167	2.64	0.008335513	0.99992134
8	NM_000922	PDE3B	143.947	0.439	0.167	2.63	0.008471891	0.99992134
9	NM_001077440	BCLAF1 (transcript variant 2)	463.743	0.439	0.156	2.82	0.004790762	0.99992134
10	NM_014739	BCLAF1 (transcript variant 1)	474.598	0.432	0.158	2.74	0.006232218	0.99992134
		dCas9 ^{p300 Core} + 4 <i>IL1RN</i> gRN	As compa	red to dCas9 +	4 IL1R	N gRl	NAs	
	Refseq ID	Gene	baseMean	log2FoldChange	lfcSE	stat	pvalue	padj
1	NM_173843	IL1RN (transcript variant 4)	45.517	1.548	0.171	9.04	1.52E-19	5.24E-15
2	NM_173841	IL1RN (transcript variant 2)	40.690	1.457	0.171	8.50	1.83E-17	3.16E-13
3	NM_173842	IL1RN (transcript variant 1)	39.568	1.448	0.171	8.45	2.88E-17	3.30E-13
4	NM_000577	IL1RN (transcript variant 3)	41.821	1.437	0.171	8.39	4.88E-17	4.20E-13
5	NM_001429	<i>p300</i>	928.435	0.955	0.171	5.57	2.50E-08	0.000171838
6	NM_002253	KDR	17.477	0.842	0.163	5.17	2.36E-07	0.00135472
7	NM_030797	FAM49A	21.286	0.736	0.166	4.44	8.91E-06	0.043823927
8	NM_012074	DPF3	17.111	0.609	0.164	3.72	0.000202676	0.871938986
9	NM_031476	CRISPLD2	25.148	0.569	0.167	3.41	0.000653132	0.999954424
10	NM_007365	PADI2	99.012	0.554	0.162	3.41	0.000641145	0.999954424
		dCas9 ^{p300 Core (D1399Y)} + 4 <i>IL1RN</i> g	RNAs com	pared to dCas9	+ 4 IL	1 <i>RN</i> g	RNAs	
	Refseq ID	Gene	baseMean	log2FoldChange	lfcSE	stat	pvalue	padj
1	NM_001429	<i>p300</i>	935.659	1.234	0.198	6.24	4.36E-10	1.49E-05
2	NM_001270493	SREK1 (transcript variant 4)	30.118	0.651	0.203	3.20	0.001388089	0.999938051
3	NM_001079802	FKTN (transcript variant 1)	148.558	0.546	0.203	2.69	0.007212168	0.999938051
4	NM_000922	PDE3B	140.122	0.535	0.201	2.66	0.007805491	0.999938051
5	NM_206937	LIG4 (transcript variant 2)	30.589	0.521	0.203	2.56	0.010513626	0.999938051
6	NM_001136116	ZNF879	18.421	0.520	0.201	2.59	0.009600802	0.999938051
7	NM_018374	TMEM106B (transcript variant 1)	280.758	0.516	0.196	2.64	0.008329592	0.999938051
8	NM_019863	F8 (transcript variant 2)	8.048	0.515	0.178	2.89	0.003827553	0.999938051
9	NM_001193349	MEF2C (transcript variant 5)	18.934	0.510	0.202	2.53	0.011492452	0.999938051
10	NM_183245	INVS (transcript variant 2)	38.545	0.497	0.203	2.45	0.014125973	0.999938051

Supplementary Table 2. *IL1RN* TAL effector information.

Name	Target Site	Location	Reference
IL1RN TALE	GGGCTCCTCCTTGTACT	chr2:113875431-113875447	Perez-Pinera et al., Nat. Methods, 2013 ³
IL1RN TALE	ACGCAGATAAGAACCAGT	chr2:113875291-113875308	Perez-Pinera et al., Nat. Methods, 2013 ³
IL1RN TALE ^{VP64 C}	GGCATCAAGTCAGCCAT	chr2:113875356-113875372	Perez-Pinera et al., Nat. Methods, 2013 ³
IL1RN TALE ^{VP64 D}	AGCCTGAGTCACCCTCCT	chr2:113875321-113875338	Perez-Pinera et al., Nat. Methods, 2013 ³
IL1RN TALEP300 Core A	GGGCTCCTCCTTGTACT	chr2:113875431-113875447	This study
IL1RN TALE P300 Core B	ACGCAGATAAGAACCAGT	chr2:113875291-113875308	This study
IL1RN TALEP300 Core C	GGCATCAAGTCAGCCAT	chr2:113875356-113875372	This study
IL1RN TALE P300 Core D	AGCCTGAGTCACCCTCCT	chr2:113875321-113875338	This study

*GRCh37/hg19 assembly

Plasmid Name	<u>Addgene</u> <u>Plasmid #</u>	Reference
pcDNA-dCas9 ^{vp64}	47107	Perez-Pinera et al., Nat. Methods, 2013 ⁴
pcDNA-dCas9-HA	61355	This study
pcDNA3.1-p300	23252	Chen et al., EMBO J., 2002⁵
pcDNA-dCas9 ^{FLp300}	61356	This study
pcDNA-dCas9 ^{p300 Core}	61357	This study
pcDNA-dCas9 ^{p300 Core (D1399Y)}	61358	This study
pcDNA-dCas9 ^{p300 Core (1645/1646 RRVEE)}	61359	This study
pcDNA-dCas9 ^{p300 Core} (C1204R)	61361	This study
pcDNA-dCas9 ^{p300 Core} (Y1467F)	61362	This study
pcDNA-dCas9 ^{p300 Core} (1396/1397 SY/WW)	61363	This study
pcDNA-dCas9 ^{p300 Core} (H1415A/E1423AY1424A/L1428S/Y1430A/H1434A)	61364	This study
pZdonor-pSPgRNA	47108	Perez-Pinera et al., Nat. Methods, 2013 ⁴
pcDNA3.1-300(HAT-)	23254	Chen et al., EMBO J., 2002 ⁵ ; Kraus et al., Mol. Cell Biol.,1999 ⁶
pcDNA3.3-Nm-dCas9 ^{VP64}	48676	Esvelt and Mali et al., Nat. Methods, 20137
pcDNA3.3-Nm-dCas9 ^{p300 Core}	61365	This study
pZDonor-NmCas9-gRNA-hU6	61366	This study
PL-SIN-EF1 -EGFP	21320	Hotta et al., Nat. Methods, 2009 [®]

Supplementary Table 3. Referenced plasmids in this study available at Addgene.

Supplementary Table 4. gRNA information.

	S	p-dCas9	Sp-dCas9				
Target Location	Protospacer Sequence (5'- 3')	<u>Genomic Location</u> (GRCh37/hg19 Assembly)	Reference				
IL1RN Promoter A	TGTACTCTCTGAGGTGCTC	chr2:113875442-113875460	Perez-Pinera et al., Nat. Methods. 2013⁴				
IL1RN Promoter B	ACGCAGATAAGAACCAGTT	chr2:113875291-113875309	Perez-Pinera et al., Nat. Methods, 2013⁴				
IL1RN Promoter C	CATCAAGTCAGCCATCAGC	chr2:113875358-113875376	Perez-Pinera et al., Nat. Methods, 2013 ⁴				
IL1RN Promoter D	GAGTCACCCTCCTGGAAAC	chr2:113875326-113875344	Perez-Pinera et al., Nat. Methods, 2013 ⁴				
MYOD Promoter A	CCTGGGCTCCGGGGCGTTT	chr11:17741056-17741074	Perez-Pinera et al., Nat. Methods, 2013 ^₄				
MYOD Promoter B	GGCCCCTGCGGCCACCCCG	chr11:17740969-17740987	Perez-Pinera et al., Nat. Methods, 2013 ^₄				
MYOD Promoter C	CTCCCTCCCTGCCCGGTAG	chr11:17740897-17740915	Perez-Pinera et al., Nat. Methods, 2013 ⁴				
MYOD Promoter D	AGGTTTGGAAAGGGCGTGC	chr11:17740837-17740855	Perez-Pinera et al., Nat. Methods, 2013 ⁴				
OCT4 Promoter A	ACTCCACTGCACTCCAGTCT	chr6:31138711-31138730	Hu et al., Nucleic Acids Res., 2014 ⁹				
OCT4 Promoter B	TCTGTGGGGGGACCTGCACTG	chr6:31138643-31138662	Hu et al., Nucleic Acids Res., 2014 ⁹				
OCT4 Promoter C	GGGGCGCCAGTTGTGTCTCC	chr6:31138613-31138632	Hu et al., Nucleic Acids Res., 2014 ⁹				
OCT4 Promoter D	ACACCATTGCCACCACCATT	chr6:31138574-31138593	Hu et al., Nucleic Acids Res., 2014 ⁹				
MYOD DRR A	TGTTTTCAGCTTCCAAACT	chr11:17736528-17736546	This Study				
MYOD DRR B	CATGAAGACAGCAGAAGCC	chr11:17736311-17736329	This Study				
MYOD DRR C	GGCCCACATTCCTTTCCAG	chr11:17736158-17736176	This Study				
MYOD DRR D	GGCTGGATTGGGTTTCCAG	chr11:17736065-17736083	This Study				
MYOD CE A	CAACTGAGTCCTGAGGTTT	chr11:17721347-17721365	This Study				
MYOD CE B	CTCACAGCACAGCCAGTGT	chr11:17721257-17721275	This Study				
MYOD CE C	CAGCAGCTGGTCACAAAGC	chr11:17721200-17721218	This Study				
MYOD CE D	CTTCCTATAAACTTCTGAG	chr11:17721139-17721157	This Study				
OCT4 PE A	AGTGATAAGACACCCGCTTT	chr6:31139524-31139543	This Study				
OCT4 PE B	CAGACATCTAATACCACGGT	chr6:31139604-31139623	This Study				
OCT4 PE C	AGGGAGAACGGGGCCTACCG	chr6:31139620-31139639	This Study				
OCT4 PE D	ACTTCAGGTTCAAAGAAGCC	chr6:31139725-31139744	This Study				
OCT4 PE E	TTTTCCCCACCCAGGGCCTA	chr6:31139671-31139690	This Study				
OCT4 PE F	CCCTGGGTGGGGAAAACCAG	chr6:31139675-31139694	This Study				
OCT4 DE A	GGAGGAACATGCTTCGGAAC	chr6:31140809-31140828	This Study				
OCT4 DE B	GTGCCGTGATGGTTCTGTCC	chr6:31140864-31140883	This Study				

OCT4 DE C	GGTCTGCCGGAAGGTCTACA	chr6:31140707-31140726	This Study
OCT4 DE D	TCGGCCTTTAACTGCCCAAA	chr6:31140757-31140776	This Study
OCT4 DE E	GCATGACAAAGGTGCCGTGA	chr6:31140875-31140894	This Study
OCT4 DE F	CCTGCCTTTTGGGCAGTTAA	chr6:31140764-31140783	This Study
HS2 A	AATATGTCACATTCTGTCTC	chr11:5301800-5301819	This Study
HS2 B	GGACTATGGGAGGTCACTAA	chr11:5302108-5302127	This Study
HS2 C	GAAGGTTACACAGAACCAGA	chr11:5302033-5302052	This Study
HS2 D	GCCCTGTAAGCATCCTGCTG	chr11:5301898-5301917	This Study

Nm-dCas9					
Target Location	<u>Protospacer Sequence</u> (<u>5'- 3')</u>	<u>Genomic Location</u> (GRCh37/hg19 Assembly)	<u>Reference</u>		
HBG Promoter A	CCACTGCTAACTGAAAGAGA	chr11:5271570-5271589	This Study		
HBG Promoter B	AGCCACAGTTTCAGCGCAGT	chr11:5271692-5271711	This Study		
HBG Promoter C	CTGTTTCATCTTAGAAAAAT	chr11:5271793-5271812	This Study		
HBG Promoter D	GAATGTTCTTTGGCAGGTAC	chr11:5271942-5271961	This Study		
HBG Promoter E	CGCACATCTTATGTCTTAGA	chr11:5272021-5272040	This Study		
HBE Promoter A	CTTAAGAGAGCTAGAACTGG	chr11:5291618-5291637	This Study		
HBE Promoter B	TCCCAAAGTACAGTACCTTG	chr11:5291758-5291777	This Study		
HBE Promoter C	TCCCTAGAGAGGACAGACAG	chr11:5291785-5291804	This Study		
HBE Promoter D	TCATAGAGAAATGAAAAGAG	chr11:5291840-5291859	This Study		
HBE Promoter E	ATAATATACCCTGACTCCTA	chr11:5292038-5292057	This Study		
HS2 A	AGGCCACCTGCAAGATAAAT	chr11:5301662-5301681	This Study		
HS2 B	TGTTGTTATCAATTGCCATA	chr11:5301708-5301727	This Study		
HS2 C	ATCCCTTCCAGCATCCTCAT	chr11:5302187-5302206	This Study		
HS2 D	GTGCTTCAAAACCATTTGCT	chr11:5302245-5302264	This Study		
HS2 E	GATACATGTTTTATTCTTAT	chr11:5302306-5302325	This Study		

Supplementary Table 5. Quantitative reverse transcription PCR and ChIP-qPCR primers and conditions.

Target	Forward Primer (5'-3')	Reverse Primer (5'-3')	Cycling Parameters
GAPDH	CAATGACCCCTTCATTGACC	TTGATTTTGGAGGGATCTCG	95°C 30 sec 95°C 5 sec 53°C 20 sec 45X
IL1RN	GGAATCCATGGAGGGAAGAT	TGTTCTCGCTCAGGTCAGTG	95°C 30 sec 95°C 5 sec 58°C 20 sec 45X
MYOD	TCCCTCTTTCACGGTCTCAC	AACACCCGACTGCTGTATCC	95°C 30 sec 95°C 5 sec 53°C 20 sec 45X
OCT4	CGAAAGAGAAAGCGAACCAGTATCGAGAAC	CGTTGTGCATAGTCGCTGCTTGATCGC	95°C 30 sec 95°C 5 sec 53°C 20 sec 45X
HBB	GCACGTGGATCCTGAGAACT	ATTGGACAGCAAGAAAGCGAG	95°C 30 sec 95°C 5 sec 58°C 20 sec 45X
HBD	GCACGTGGATCCTGAGAACT	CAGGAAACAGTCCAGGATCTCA	95°C 30 sec 95°C 5 sec 58°C 20 sec 45X
HBG	GCTGAGTGAACTGCACTGTGA	GAATTCTTTGCCGAAATGGA	95°C 30 sec 95°C 5 sec 58°C 20 sec 45X
HBE	TCACTAGCAAGCTCTCAGGC	AACAACGAGGAGTCTGCCC	95°C 30 sec 95°C 5 sec 62°C 20 sec 45X
ICAM1	GCAGACAGTGACCATCTACAGCTT	CAATCCCTCTCGTCCAGTCG	95°C 30 sec 95°C 5 sec 58°C 20 sec 45X
HS2 ChIP Region 1	TGCTTGGACTATGGGAGGTC	GCAGGTGCTTCAAAACCATT	95°C 30 sec 95°C 5 sec 60°C 20 sec 45X
HS2 ChIP Region 2	TCAGGTGGTCAGCTTCTCCT	AAGCAAACCTTCTGGCTCAA	95°C 30 sec 95°C 5 sec 60°C 20 sec 45X
HS2 ChIP Region 3	CCACACAGGTGAACCCTTTT	GGACACATGCTCACATACGG	95°C 30 sec 95°C 5 sec 60°C 20 sec 45X
HBE ChIP Region 1	ATTCGATCCATGTGCCTGA	CAATGCTGGAATTTGTGGAA	95°C 30 sec 95°C 5 sec 60°C 20 sec 45X
HBE ChIP Region 2	GGGGTGATTCCCTAGAGAGG	AAGCAGGACAGACAGGCAAG	95°C 30 sec 95°C 5 sec 60°C 20 sec 45X
HBE ChIP Region 3	GAGGGTCAGCAGTGATGGAT	TGGAAAAGGAGAATGGGAGA	95°C 30 sec 95°C 5 sec 60°C 20 sec 45X
HBG1/2 ChIP Region 1	TGGTCAAGTTTGCCTTGTCA	GGAATGACTGAATCGGAACAA	95°C 30 sec 95°C 5 sec 60°C 20 sec 45X
HBG1/2 ChIP Region 2	CCTCCAGCATCTTCCACATT	GAAGCACCCTTCAGCAGTTC	95°C 30 sec 95°C 5 sec 60°C 20 sec 45X
HBG1/2 ChIP Region 3	CCACAGTTTCAGCGCAGTAATA	ATCAGCCAGCACACACACTT	95°C 30 sec 95°C 5 sec 60°C 20 sec 45X
IL1RN ChIP Region 1	CCCTGTCAGGAGGGACAGAT	GGCTCACCGGAAGCATGAAT	95°C 30 sec 95°C 5 sec 60°C 20 sec 45X
IL1RN ChIP Region 2	AAGCTACAAGCAGGTTCGCT	AATAACAGGGTCCATCCCGC	95°C 30 sec 95°C 5 sec 60°C 20 sec 45X
IL1RN ChIP Region 3	TGTTCCCTCCACCTGGAATA	GGGAAAATCCAAAGCAGGAT	95°C 30 sec 95°C 5 sec 60°C 20 sec 45X

IL1RN ChIP Region 4	TCCTAGGTCCCTCAAAAGCA	GTCCCCAACGCTCTAACAAA	95°C 30 sec 95°C 5 sec 60°C 20 sec 45X
IL1RN ChIP Region 5	GTTAGAGCGTTGGGGACCTT	CACATGCAGAGAACTGAGCTG	95°C 30 sec 95°C 5 sec 60°C 20 sec 45X
IL1RN ChIP Region 6	GTTGGGGTAAGCACGAAGG	TTTCCAGGAGGGTGACTCAG	95°C 30 sec 95°C 5 sec 60°C 20 sec 45X
<i>IL1RN</i> ChIP Region 7	TTCTCTGCATGTGACCTCCC	ACACACTCACAGAGGGTTGG	95°C 30 sec 95°C 5 sec 60°C 20 sec 45X
<i>IL1RN</i> ChIP Region 8	TGAGTCACCCTCCTGGAAAC	CTCCTTCCAGAGCACCTCAG	95°C 30 sec 95°C 5 sec 60°C 20 sec 45X
<i>IL1RN</i> ChIP Region 9	GCTGGGCTCCTCCTTGTACT	GCTGCTGCCCATAAAGTAGC	95°C 30 sec 95°C 5 sec 60°C 20 sec 45X
<i>IL1RN</i> ChIP Region 10	GGACTGTGGCCCAGGTACT	GGCCTCATAGGACAGGAGGT	95°C 30 sec 95°C 5 sec 60°C 20 sec 45X
<i>IL1RN</i> ChIP Region 11	TTATGGGCAGCAGCTCAGTT	GACATTTTCCTGGACGCTTG	95°C 30 sec 95°C 5 sec 60°C 20 sec 45X
<i>IL1RN</i> ChIP Region 12	CCCTCCCCATGGCTTTAGGT	AGCTCCATGCGCTTGACATT	95°C 30 sec 95°C 5 sec 60°C 20 sec 45X
<i>IL1RN</i> ChIP Region 13	AGCGTCCAGGAAAATGTCAA	ATGACCCTCACACTCCAAGG	95°C 30 sec 95°C 5 sec 60°C 20 sec 45X
Upstream - actin ChIP NEG CTRL	GTTGGGTGCTCCAGCTTTTA	CCTCAAAACTCCTGGACTCG	95°C 30 sec 95°C 5 sec 60°C 20 sec 45X

Supplementary Note 1. Amino acid sequences of dCas9 constructs.

dCas9 HA:(Addgene plasmid 61355) amino acid sequence; 3X "Flag" Epitope, Nuclear Localization Sequence, *Streptococcus pyogenes* Cas9 (D10A, H840A), "HA" Epitope

MDYKDHDGDYKDHDIDYKDDDDKMAPKKKRKVGRGMDKKYSIGLAIGTNSVGWAVITDEY **KVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNRICYLQEI** FSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDS TDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASG VDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQ LSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRY DEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDG TEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILT FRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNE **KVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLK** EDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTL FEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKS DGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVD ELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQ LQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDAIVPQSFLKDDSIDNKVLTRSDKNRG KSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETR QITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAH DAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNF FKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGF SKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLG ITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNE LALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADA NLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDA TLIHQSITGLYETRIDLSQLGGDPIAGSKASPKKKRKVGRALINYPYDVPDYAS

dCas9^{VP64}: (Addgene Plasmid 47107)⁴ amino acid sequence; <mark>3X "Flag" Epitope</mark>, Nuclear Localization Sequence, *Streptococcus pyogenes* Cas9 (D10A, H840A), VP64 Effector, "HA"Epitope

MDYKDHDGDYKDHDIDYKDDDDKMAPKKKRKVGRGMDKKYSIGLAIGTNSVGWAVITDEY **KVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNRICYLQEI** FSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDS TDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASG VDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQ LSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRY DEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDG TEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILT FRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNE **KVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLK** EDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTL FEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKS DGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVD ELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQ LQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDAIVPQSFLKDDSIDNKVLTRSDKNRG KSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETR **QITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAH**

DAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNF FKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGF SKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLG ITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNE LALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADA NLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDA TLIHQSITGLYETRIDLSQLGGDPIAGSKASPKKKRKVGRADALDDFDLDMLGSDALDDF DLDMLGSDALDDFDLDMLGSDALDDFDLDMLINYPYDVPDYAS

dCas9^{FL p300}: (Addgene Plasmid 61356) amino acid sequence; <mark>3X "Flag" Epitope</mark>, Nuclear Localization Sequence, *Streptococcus pyogenes* Cas9 (<u>D10A</u>, <u>H840A</u>), Human p300 aa 2-2414, <u>L553M</u>, "<u>HA"</u> <u>Epitope</u>

MDYKDHDGDYKDHDIDYKDDDDKMAPKKKRKVGRGMDKKYSIGLAIGTNSVGWAVITDEY **KVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNRICYLQEI** FSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDS TDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASG **VDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQ** LSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRY DEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDG TEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILT FRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNE **KVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLK** EDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTL FEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKS DGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVD ELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQ LQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDAIVPQSFLKDDSIDNKVLTRSDKNRG KSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETR **QITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAH** DAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNF FKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGF SKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLG ITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNE LALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADA NLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDA TLIHQSITGLYETRIDLSQLGGDPIAGSKASPKKKRKVGRAAENVVEPGPPSAKRPKLSS PALSASASDGTDFGSLFDLEHDLPDELINSTELGLTNGGDINQLQTSLGMVQDAASKHKQ LSELLRSGSSPNLNMGVGGPGQVMASQAQQSSPGLGLINSMVKSPMTQAGLTSPNMGMGT SGPNQGPTQSTGMMNSPVNQPAMGMNTGMNAGMNPGMLAAGNGQGIMPNQVMNGSIGAGR GRQNMQYPNPGMGSAGNLLTEPLQQGSPQMGGQTGLRGPQPLKMGMMNNPNPYGSPYTQN PGQQIGASGLGLQIQTKTVLSNNLSPFAMDKKAVPGGGMPNMGQQPAPQVQQPGLVTPVA **QGMGSGAHTADPEKRKLIQQQLVLLLHAHKCQRREQANGEVRQCNLPHCRTMKNVLNHMT HCQSGKSCQVAHCASSRQIISHWKNCTRHDCPVCLPLKNAGDKRNQQPILTGAPVGLGNP** SSLGVGQQSAPNLSTVSQIDPSSIERAYAALGLPYQVNQMPTQPQVQAKNQQNQQPGQSP QGMRPMSNMSASPMGVNGGVGVQTPSLLSDSMLHSAINSQNPMMSENASVPSMGPMPTAA **QPSTTGIRKQWHEDITQDLRNHLVHKLVQAIFPTPDPAALKDRRMENLVAYARKVEGDMY ESANNRAEYYHLLAEKIYKIQKELEEKRRTRLQKQNMLPNAAGMVPVSMNPGPNMGQPQP GMTSNGPLPDPSMIRGSVPNQMMPRITPQSGLNQFGQMSMAQPPIVPRQTPPLQHHGQLA QPGALNPPMGYGPRMQQPSNQGQFLPQTQFPSQGMNVTNIPLAPSSGQAPVSQAQMSSSS CPVNSPIMPPGSQGSHIHCPQLPQPALHQNSPSPVPSRTPTPHHTPPSIGAQQPPATTIP** APVPTPPAMPPGPQSQALHPPPRQTPTPPTTQLPQQVQPSLPAAPSADQPQQQPRSQQST

AASVPTPTAPLLPPQPATPLSQPAVSIEGQVSNPPSTSSTEVNSQAIAEKQPSQEVKMEA **KMEVDQPEPADTQPEDISESKVEDCKMESTETEERSTELKTEIKEEEDQPSTSATQSSPA** PGQSKKKIFKPEELRQALMPTLEALYRQDPESLPFRQPVDPQLLGIPDYFDIVKSPMDLS TIKRKLDTGQYQEPWQYVDDIWLMFNNAWLYNRKTSRVYKYCSKLSEVFEQEIDPVMQSL **GYCCGRKLEFSPQTLCCYGKQLCTIPRDATYYSYQNRYHFCEKCFNEIQGESVSLGDDPS QPQTTINKEQFSKRKNDTLDPELFVECTECGRKMHQICVLHHEIIWPAGFVCDGCLKKSA RTRKENKFSAKRLPSTRLGTFLENRVNDFLRRQNHPESGEVTVRVVHASDKTVEVKPGMK** ARFVDSGEMAESFPYRTKALFAFEEIDGVDLCFFGMHVQEYGSDCPPPNQRRVYISYLDS VHFFRPKCLRTAVYHEILIGYLEYVKKLGYTTGHIWACPPSEGDDYIFHCHPPDQKIPKP KRLQEWYKKMLDKAVSERIVHDYKDIFKQATEDRLTSAKELPYFEGDFWPNVLEESIKEL EQEEEERKREENTSNESTDVTKGDSKNAKKKNNKKTSKNKSSLSRGNKKKPGMPNVSNDL **SQKLYATMEKHKEVFFVIRLIAGPAANSLPPIVDPDPLIPCDLMDGRDAFLTLARDKHLE FSSLRRAQWSTMCMLVELHTQSQDRFVYTCNECKHHVETRWHCTVCEDYDLCITCYNTKN** HDHKMEKLGLGLDDESNNQQAAATQSPGDSRRLSIQRCIQSLVHACQCRNANCSLPSCQK MKRVVQHTKGCKRKTNGGCPICKQLIALCCYHAKHCQENKCPVPFCLNIKQKLRQQQLQH RLQQAQMLRRRMASMQRTGVVGQQQGLPSPTPATPTTPTGQQPTTPQTPQPTSQPQPTPP NSMPPYLPRTQAAGPVSQGKAAGQVTPPTPPQTAQPPLPGPPPAAVEMAMQIQRAAETQR QMAHVQIFQRPIQHQMPPMTPMAPMGMNPPPMTRGPSGHLEPGMGPTGMQQQPPWSQGGL PQPQQLQSGMPRPAMMSVAQHGQPLNMAPQPGLGQVGISPLKPGTVSQQALQNLLRTLRS PSSPLQQQQVLSILHANPQLLAAFIKQRAAKYANSNPQPIPGQPGMPQGQPGLQPPTMPG QQGVHSNPAMQNMNPMQAGVQRAGLPQQQPQQQLQPPMGGMSPQAQQMNMNHNTMPSQFR DILRRQQMMQQQQQQGAGPGIGPGMANHNQFQQPQGVGYPPQQQQRMQHHMQQMQQGNMG QIGQLPQALGAEAGASLQAYQQRLLQQQMGSPVQPNPMSPQQHMLPNQAQSPHLQGQQIP NSLSNQVRSPQPVPSPRPQSQPPHSSPSPRMQPQPSPHHVSPQTSSPHPGLVAAQANPME QGHFASPDQNSMLSQLASNPGMANLHGASATDLGLSTDNSDLNSNLSQSTLDIHYPYDVP DYAS

dCas9^{P300 Corre}: (Addgene Plasmid 61357) amino acid sequence; 3X "Flag" Epitope, Nuclear Localization Sequence, *Streptococcus pyogenes* Cas9 (D10A, H840A), p300 Core Effector, "HA" Epitope

MDYKDHDGDYKDHDIDYKDDDDKMAPKKKRKVGRGMDKKYSIGLAIGTNSVGWAVITDEY **KVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNRICYLQEI** FSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDS TDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASG VDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQ LSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRY DEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDG TEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILT FRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNE **KVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLK** EDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTL FEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKS DGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVD ELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQ LQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDAIVPQSFLKDDSIDNKVLTRSDKNRG KSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETR QITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAH DAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNF FKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGF SKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLG ITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNE LALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADA

NLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDA TLIHQSITGLYETRIDLSQLGGDPIAGSKASPKKKRKVGRAIFKPEELRQALMPTLEALY RQDPESLPFRQPVDPQLLGIPDYFDIVKSPMDLSTIKRKLDTGQYQEPWQYVDDIWLMFN NAWLYNRKTSRVYKYCSKLSEVFEQEIDPVMQSLGYCCGRKLEFSPQTLCCYGKQLCTIP RDATYYSYQNRYHFCEKCFNEIQGESVSLGDDPSQPQTTINKEQFSKRKNDTLDPELFVE CTECGRKMHQICVLHHEIIWPAGFVCDGCLKKSARTRKENKFSAKRLPSTRLGTFLENRV NDFLRRQNHPESGEVTVRVVHASDKTVEVKPGMKARFVDSGEMAESFPYRTKALFAFEEI DGVDLCFFGMHVQEYGSDCPPPNQRRVYISYLDSVHFFRPKCLRTAVYHEILIGYLEYVK KLGYTTGHIWACPPSEGDDYIFHCHPPDQKIPKPKRLQEWYKKMLDKAVSERIVHDYKDI FKQATEDRLTSAKELPYFEGDFWPNVLEESIKELEQEEEERKREENTSNESTDVTKGDSK NAKKKNNKKTSKNKSSLSRGNKKKPGMPNVSNDLSQKLYATMEKHKEVFFVIRLIAGPAA NSLPPIVDPDPLIPCDLMDGRDAFLTLARDKHLEFSSLRRAQWSTMCMLVELHTQSQDYP YDVPDYAS

dCas9^{p300 Core (D1399Y)}: (Addgene Plasmid 61358) amino acid sequence; <mark>3X "Flag" Epitope</mark>, Nuclear Localization Sequence, *Streptococcus pyogenes* Cas9 (D10A, H840A), p300 Core Effector, D1399Y, "<u>HA" Epitope</u>

MDYKDHDGDYKDHDIDYKDDDDKMAPKKKRKVGRGMDKKYSIGLAIGTNSVGWAVITDEY **KVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNRICYLQEI** FSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDS TDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASG VDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQ LSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRY DEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDG TEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILT FRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNE **KVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLK** EDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTL FEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKS DGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVD ELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQ LQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDAIVPQSFLKDDSIDNKVLTRSDKNRG KSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETR QITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAH DAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNF FKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGF SKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLG ITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNE LALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADA NLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDA TLIHQSITGLYETRIDLSQLGGDPIAGSKASPKKKRKVGRA IFKPEELRQALMPTLEALY RQDPESLPFRQPVDPQLLGIPDYFDIVKSPMDLSTIKRKLDTGQYQEPWQYVDDIWLMFN NAWLYNRKTSRVYKYCSKLSEVFEQEIDPVMQSLGYCCGRKLEFSPQTLCCYGKQLCTIP RDATYYSYQNRYHFCEKCFNEIQGESVSLGDDPSQPQTTINKEQFSKRKNDTLDPELFVE CTECGRKMHQICVLHHEIIWPAGFVCDGCLKKSARTRKENKFSAKRLPSTRLGTFLENRV NDFLRRQNHPESGEVTVRVVHASDKTVEVKPGMKARFVDSGEMAESFPYRTKALFAFEEI DGVDLCFFGMHVQEYGSDCPPPNQRRVYISYLYSVHFFRPKCLRTAVYHEILIGYLEYVK KLGYTTGHIWACPPSEGDDYIFHCHPPDQKIPKPKRLQEWYKKMLDKAVSERIVHDYKDI FKQATEDRLTSAKELPYFEGDFWPNVLEESIKELEQEEEERKREENTSNESTDVTKGDSK NAKKKNNKKTSKNKSSLSRGNKKKPGMPNVSNDLSQKLYATMEKHKEVFFVIRLIAGPAA NSLPPIVDPDPLIPCDLMDGRDAFLTLARDKHLEFSSLRRAQWSTMCMLVELHTQSQDYP

YDVPDYAS

dCas9 ^{p300 Core (1645/1646 RR/EE)}: (Addgene Plasmid 61359) amino acid sequence; <mark>3X "Flag" Epitope</mark>, Nuclear Localization Sequence, *Streptococcus pyogenes* Cas9 (D10A, H840A), p300 Core Effector, <u>1645/1646 RR/EE</u>, "HA" Epitope

MDYKDHDGDYKDHDIDYKDDDDKMAPKKKRKVGRGMDKKYSIGLAIGTNSVGWAVITDEY **KVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNRICYLQEI** FSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDS TDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASG VDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQ LSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRY DEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDG TEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILT FRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNE **KVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLK** EDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTL FEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKS DGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVD ELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQ LQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDAIVPQSFLKDDSIDNKVLTRSDKNRG KSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETR **QITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAH** DAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNF FKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGF SKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLG ITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNE LALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADA NLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDA TLIHQSITGLYETRIDLSQLGGDPIAGSKASPKKKRKVGRAIFKPEELRQALMPTLEALY RQDPESLPFRQPVDPQLLGIPDYFDIVKSPMDLSTIKRKLDTGQYQEPWQYVDDIWLMFN NAWLYNRKTSRVYKYCSKLSEVFEQEIDPVMQSLGYCCGRKLEFSPQTLCCYGKQLCTIP RDATYYSYQNRYHFCEKCFNEIQGESVSLGDDPSQPQTTINKEQFSKRKNDTLDPELFVE CTECGRKMHQICVLHHEIIWPAGFVCDGCLKKSARTRKENKFSAKRLPSTRLGTFLENRV NDFLRRQNHPESGEVTVRVVHASDKTVEVKPGMKARFVDSGEMAESFPYRTKALFAFEEI DGVDLCFFGMHVQEYGSDCPPPNQRRVYISYLDSVHFFRPKCLRTAVYHEILIGYLEYVK KLGYTTGHIWACPPSEGDDYIFHCHPPDQKIPKPKRLQEWYKKMLDKAVSERIVHDYKDI FKQATEDRLTSAKELPYFEGDFWPNVLEESIKELEQEEEERKREENTSNESTDVTKGDSK NAKKKNNKKTSKNKSSLSRGNKKKPGMPNVSNDLSQKLYATMEKHKEVFFVIRLIAGPAA NSLPPIVDPDPLIPCDLMDGRDAFLTLARDKHLEFSSLEEAQWSTMCMLVELHTQSQDYP YDVPDYAS

dCas9^{p300 Core (C1204R)}: (Addgene Plasmid 61361) amino acid sequence; <mark>3X "Flag" Epitope</mark>, Nuclear Localization Sequence, *Streptococcus pyogenes* Cas9 (<u>D10A</u>, <u>H840A</u>), p300 Core Effector, <u>C1204R</u>, "<u>HA" Epitope</u>

MDYKDHDGDYKDHDIDYKDDDDKMAPKKKRKVGRGMDKKYSIGLAIGTNSVGWAVITDEY KVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNRICYLQEI FSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDS TDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASG VDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQ LSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRY DEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDG TEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILT FRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNE **KVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLK** EDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTL FEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKS DGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVD ELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQ LQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDAIVPQSFLKDDSIDNKVLTRSDKNRG KSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETR QITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAH DAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNF FKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGF SKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLG ITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNE LALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADA NLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDA TLIHQSITGLYETRIDLSQLGGDPIAGSKASPKKKRKVGRAIFKPEELRQALMPTLEALY RQDPESLPFRQPVDPQLLGIPDYFDIVKSPMDLSTIKRKLDTGQYQEPWQYVDDIWLMFN NAWLYNRKTSRVYKYCSKLSEVFEQEIDPVMQSLGYCCGRKLEFSPQTLCCYGKQLCTIP **RDATYYSYQNRYHFCEKRFNEIQGESVSLGDDPSQPQTTINKEQFSKRKNDTLDPELFVE** CTECGRKMHQICVLHHEIIWPAGFVCDGCLKKSARTRKENKFSAKRLPSTRLGTFLENRV NDFLRRQNHPESGEVTVRVVHASDKTVEVKPGMKARFVDSGEMAESFPYRTKALFAFEEI DGVDLCFFGMHVQEYGSDCPPPNQRRVYISYLDSVHFFRPKCLRTAVYHEILIGYLEYVK KLGYTTGHIWACPPSEGDDYIFHCHPPDQKIPKPKRLQEWYKKMLDKAVSERIVHDYKDI FKQATEDRLTSAKELPYFEGDFWPNVLEESIKELEQEEEERKREENTSNESTDVTKGDSK NAKKKNNKKTSKNKSSLSRGNKKKPGMPNVSNDLSQKLYATMEKHKEVFFVIRLIAGPAA NSLPPIVDPDPLIPCDLMDGRDAFLTLARDKHLEFSSLRRAQWSTMCMLVELHTQSQDYP **YDVPDYAS**

dCas9^{p300 Core (Y1467F)}: (Addgene Plasmid 61362) amino acid sequence; <mark>3X "Flag" Epitope</mark>, Nuclear Localization Sequence, *Streptococcus pyogenes* Cas9 (D10A, H840A), p300 Core Effector, <u>Y1467F</u>, "HA" Epitope

MDYKDHDGDYKDHDIDYKDDDDKMAPKKKRKVGRGMDKKYSIGLAIGTNSVGWAVITDEY **KVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNRICYLQEI** FSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDS TDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASG VDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQ LSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRY DEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDG TEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILT FRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNE **KVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLK** EDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTL FEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKS DGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVD ELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQ LQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDAIVPQSFLKDDSIDNKVLTRSDKNRG KSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETR

QITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAH DAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNF FKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGF SKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLG ITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNE LALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADA NLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDA TLIHQSITGLYETRIDLSQLGGDPIAGSKASPKKKRKVGRAIFKPEELRQALMPTLEALY RQDPESLPFRQPVDPQLLGIPDYFDIVKSPMDLSTIKRKLDTGQYQEPWQYVDDIWLMFN NAWLYNRKTSRVYKYCSKLSEVFEQEIDPVMQSLGYCCGRKLEFSPQTLCCYGKQLCTIP RDATYYSYQNRYHFCEKCFNEIQGESVSLGDDPSQPQTTINKEQFSKRKNDTLDPELFVE CTECGRKMHQICVLHHEIIWPAGFVCDGCLKKSARTRKENKFSAKRLPSTRLGTFLENRV NDFLRRQNHPESGEVTVRVVHASDKTVEVKPGMKARFVDSGEMAESFPYRTKALFAFEEI DGVDLCFFGMHVQEYGSDCPPPNQRRVYISYLDSVHFFRPKCLRTAVYHEILIGYLEYVK KLGYTTGHIWACPPSEGDDYIFHCHPPDQKIPKPKRLQEW<mark>F</mark>KKMLDKAVSERIVHDYKDI FKQATEDRLTSAKELPYFEGDFWPNVLEESIKELEQEEEERKREENTSNESTDVTKGDSK NAKKKNNKKTSKNKSSLSRGNKKKPGMPNVSNDLSQKLYATMEKHKEVFFVIRLIAGPAA NSLPPIVDPDPLIPCDLMDGRDAFLTLARDKHLEFSSLRRAQWSTMCMLVELHTQSQD<u>YP</u> <u>YDVPDYA</u>S

dCas9^{p300 Core}(1396/1397 SY/WW): (Addgene Plasmid 61363) amino acid sequence; 3X "Flag" Epitope, Nuclear Localization Sequence, *Streptococcus pyogenes* Cas9 (D10A, H840A), p300 Core Effector, 1396/1397 SY/WW, "HA" Epitope

MDYKDHDGDYKDHDIDYKDDDDKMAPKKKRKVGRGMDKKYSIGLAIGTNSVGWAVITDEY **KVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNRICYLQEI** FSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDS TDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASG VDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQ LSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRY DEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDG TEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILT FRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNE **KVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLK** EDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTL FEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKS DGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVD ELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQ LQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDAIVPQSFLKDDSIDNKVLTRSDKNRG KSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETR **QITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAH** DAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNF FKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGF SKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLG ITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNE LALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADA NLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDA TLIHQSITGLYETRIDLSQLGGDPIAGSKASPKKKRKVGRAIFKPEELRQALMPTLEALY RQDPESLPFRQPVDPQLLGIPDYFDIVKSPMDLSTIKRKLDTGQYQEPWQYVDDIWLMFN NAWLYNRKTSRVYKYCSKLSEVFEQEIDPVMQSLGYCCGRKLEFSPQTLCCYGKQLCTIP RDATYYSYQNRYHFCEKCFNEIQGESVSLGDDPSQPQTTINKEQFSKRKNDTLDPELFVE CTECGRKMHQICVLHHEIIWPAGFVCDGCLKKSARTRKENKFSAKRLPSTRLGTFLENRV

NDFLRRQNHPESGEVTVRVVHASDKTVEVKPGMKARFVDSGEMAESFPYRTKALFAFEEI DGVDLCFFGMHVQEYGSDCPPPNQRRVYIWWLDSVHFFRPKCLRTAVYHEILIGYLEYVK KLGYTTGHIWACPPSEGDDYIFHCHPPDQKIPKPKRLQEWYKKMLDKAVSERIVHDYKDI FKQATEDRLTSAKELPYFEGDFWPNVLEESIKELEQEEEERKREENTSNESTDVTKGDSK NAKKKNNKKTSKNKSSLSRGNKKKPGMPNVSNDLSQKLYATMEKHKEVFFVIRLIAGPAA NSLPPIVDPDPLIPCDLMDGRDAFLTLARDKHLEFSSLRRAQWSTMCMLVELHTQSQD<u>YP</u> YDVPDYAS

dCas9^{p300 Core} (H^{115A E1423A Y1424A L1428S Y1430A H1434A)}: (Addgene Plasmid 61364) amino acid sequence; <mark>3X "Flag"</mark> Epitope, Nuclear Localization Sequence, *Streptococcus pyogenes* Cas9 (D10A, H840A), p300 Core Effector, H1415A E1423A Y1424A L1428S Y1430A H1434A, "HA" Epitope

MDYKDHDGDYKDHDIDYKDDDDKMAPKKKRKVGRGMDKKYSIGLAIGTNSVGWAVITDEY **KVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNRICYLQEI** FSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDS TDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASG VDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQ LSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRY DEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDG TEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILT FRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNE **KVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLK** EDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTL FEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKS DGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVD ELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQ LQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDAIVPQSFLKDDSIDNKVLTRSDKNRG KSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETR QITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAH DAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNF FKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGF SKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLG ITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNE LALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADA NLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDA TLIHQSITGLYETRIDLSQLGGDPIAGSKASPKKKRKVGRA RQDPESLPFRQPVDPQLLGIPDYFDIVKSPMDLSTIKRKLDTGQYQEPWQYVDDIWLMFN NAWLYNRKTSRVYKYCSKLSEVFEQEIDPVMQSLGYCCGRKLEFSPQTLCCYGKQLCTIP RDATYYSYQNRYHFCEKCFNEIQGESVSLGDDPSQPQTTINKEQFSKRKNDTLDPELFVE CTECGRKMHQICVLHHEIIWPAGFVCDGCLKKSARTRKENKFSAKRLPSTRLGTFLENRV NDFLRRQNHPESGEVTVRVVHASDKTVEVKPGMKARFVDSGEMAESFPYRTKALFAFEEI DGVDLCFFGMHVQEYGSDCPPPNQRRVYISYLDSVHFFRPKCLRTAVYAEILIGYLAAVK KSGATTGAIWACPPSEGDDYIFHCHPPDQKIPKPKRLQEWYKKMLDKAVSERIVHDYKDI FKQATEDRLTSAKELPYFEGDFWPNVLEESIKELEQEEEERKREENTSNESTDVTKGDSK NAKKKNNKKTSKNKSSLSRGNKKKPGMPNVSNDLSQKLYATMEKHKEVFFVIRLIAGPAA NSLPPIVDPDPLIPCDLMDGRDAFLTLARDKHLEFSSLRRAQWSTMCMLVELHTQSQDYP YDVPDYAS

Nm-dCas9^{VP64}: amino acid sequence (Addgene Plasmid #48676)⁷; *Neisseria meningitidis* Cas9 (D16A, D587A, H588A, N611A), Nuclear Localization Sequence, VP64 Effector

MAAFKPNPINYILGLAIGIASVGWAMVEIDEDENPICLIDLGVRVFERAEVPKTGDSLAMARRLARS VRRLTRRRAHRLLRARRLLKREGVLQAADFDENGLIKSLPNTPWQLRAAALDRKLTPLEW SAVLLHLIKHRGYLSQRKNEGETADKELGALLKGVADNAHALQTGDFRTPAELALNKFEK ESGHIRNQRGDYSHTFSRKDLQAELILLFEKQKEFGNPHVSGGLKEGIETLLMTQRPALS **GDAVQKMLGHCTFEPAEPKAAKNTYTAERFIWLTKLNNLRILEQGSERPLTDTERATLMD** EPYRKSKLTYAQARKLLGLEDTAFFKGLRYGKDNAEASTLMEMKAYHAISRALEKEGLKD KKSPLNLSPELQDEIGTAFSLFKTDEDITGRLKDRIQPEILEALLKHISFDKFVQISLKA LRRIVPLMEQGKRYDEACAEIYGDHYGKKNTEEKIYLPPIPADEIRNPVVLRALSQARKV INGVVRRYGSPARIHIETAREVGKSFKDRKEIEKRQEENRKDREKAAAKFREYFPNFVGE PKSKDILKLRLYEQQHGKCLYSGKEINLGRLNEKGYVEIAAALPFSRTWDDSFNNKVLVL GSEAQNKGNQTPYEYFNGKDNSREWQEFKARVETSRFPRSKKQRILLQKFDEDGFKERNL NDTRYVNRFLCQFVADRMRLTGKGKKRVFASNGQITNLLRGFWGLRKVRAENDRHHALDA **VVVACSTVAMQQKITRFVRYKEMNAFDGKTIDKETGEVLHQKTHFPQPWEFFAQEVMIRV** FGKPDGKPEFEEADTPEKLRTLLAEKLSSRPEAVHEYVTPLFVSRAPNRKMSGQGHMETV KSAKRLDEGVSVLRVPLTQLKLKDLEKMVNREREPKLYEALKARLEAHKDDPAKAFAEPF YKYDKAGNRTQQVKAVRVEQVQKTGVWVRNHNGIADNATMVRVDVFEKGDKYYLVPIYSW QVAKGILPDRAVVQGKDEEDWQLIDDSFNFKFSLHPNDLVEVITKKARMFGYFASCHRGT GNINIRIHDLDHKIGKNGILEGIGVKTALSFQKYQIDELGKEIRPCRLKKRPPVRSRADP KKKRKVEASGSGRADALDDFDLDMLGSDALDDFDLDMLGSDALDDFDLDMLGSDALDDFD **LDMLIN**SR

Nm-dCas9^{p300 Core}: (Addgene Plasmid 61365) amino acid sequence; Neisseria meningitidis Cas9 (D16A, D587A, H588A, N611A), Nuclear Localization Sequence, p300 Core Effector, "HA" Epitope MAAFKPNPINYILGLAIGIASVGWAMVEIDEDENPICLIDLGVRVFERAEVPKTGDSLAMARRLARS VRRLTRRRAHRLLRARRLLKREGVLQAADFDENGLIKSLPNTPWQLRAAALDRKLTPLEW SAVLLHLIKHRGYLSQRKNEGETADKELGALLKGVADNAHALQTGDFRTPAELALNKFEK **ESGHIRNQRGDYSHTFSRKDLQAELILLFEKQKEFGNPHVSGGLKEGIETLLMTQRPALS GDAVQKMLGHCTFEPAEPKAAKNTYTAERFIWLTKLNNLRILEQGSERPLTDTERATLMD EPYRKSKLTYAQARKLLGLEDTAFFKGLRYGKDNAEASTLMEMKAYHAISRALEKEGLKD** KKSPLNLSPELQDEIGTAFSLFKTDEDITGRLKDRIQPEILEALLKHISFDKFVQISLKA LRRIVPLMEQGKRYDEACAEIYGDHYGKKNTEEKIYLPPIPADEIRNPVVLRALSQARKV INGVVRRYGSPARIHIETAREVGKSFKDRKEIEKRQEENRKDREKAAAKFREYFPNFVGE PKSKDILKLRLYEQQHGKCLYSGKEINLGRLNEKGYVEIAAALPFSRTWDDSFNNKVLVL GSEAQNKGNQTPYEYFNGKDNSREWQEFKARVETSRFPRSKKQRILLQKFDEDGFKERNL NDTRYVNRFLCQFVADRMRLTGKGKKRVFASNGQITNLLRGFWGLRKVRAENDRHHALDA VVVACSTVAMQQKITRFVRYKEMNAFDGKTIDKETGEVLHQKTHFPQPWEFFAQEVMIRV FGKPDGKPEFEEADTPEKLRTLLAEKLSSRPEAVHEYVTPLFVSRAPNRKMSGQGHMETV KSAKRLDEGVSVLRVPLTQLKLKDLEKMVNREREPKLYEALKARLEAHKDDPAKAFAEPF YKYDKAGNRTQQVKAVRVEQVQKTGVWVRNHNGIADNATMVRVDVFEKGDKYYLVPIYSW QVAKGILPDRAVVQGKDEEDWQLIDDSFNFKFSLHPNDLVEVITKKARMFGYFASCHRGT GNINIRIHDLDHKIGKNGILEGIGVKTALSFQKYQIDELGKEIRPCRLKKRPPVRSRADP KKKRKVEASGRAIFKPEELRQALMPTLEALYRQDPESLPFRQPVDPQLLGIPDYFDIVKS PMDLSTIKRKLDTGQYQEPWQYVDDIWLMFNNAWLYNRKTSRVYKYCSKLSEVFEQEIDP VMQSLGYCCGRKLEFSPQTLCCYGKQLCTIPRDATYYSYQNRYHFCEKCFNEIQGESVSL **GDDPSQPQTTINKEQFSKRKNDTLDPELFVECTECGRKMHQICVLHHEIIWPAGFVCDGC** LKKSARTRKENKFSAKRLPSTRLGTFLENRVNDFLRRQNHPESGEVTVRVVHASDKTVEV KPGMKARFVDSGEMAESFPYRTKALFAFEEIDGVDLCFFGMHVQEYGSDCPPPNQRRVYI SYLDSVHFFRPKCLRTAVYHEILIGYLEYVKKLGYTTGHIWACPPSEGDDYIFHCHPPDQ KIPKPKRLQEWYKKMLDKAVSERIVHDYKDIFKQATEDRLTSAKELPYFEGDFWPNVLEE SIKELEQEEEERKREENTSNESTDVTKGDSKNAKKKNNKKTSKNKSSLSRGNKKKPGMPN VSNDLSQKLYATMEKHKEVFFVIRLIAGPAANSLPPIVDPDPLIPCDLMDGRDAFLTLAR DKHLEFSSLRRAQWSTMCMLVELHTQSQDYPYDVPDYAS

Supplementary Note 2. Amino acid sequences of *ICAM1* Zinc Finger¹⁰ effectors.

ICAM1 ZF^{VP64} amino acid sequence; 3X "Flag" Epitope, Nuclear Localization Sequence, Zinc Finger Helix, VP64 Effector, "HA" Epitope

MDYKDHDGDYKDHDIDYKDDDDK MAPKKKRKVGRGMAQAALEPGEKPYACPECGKSFSDC RDLARHQRTHTGEKPYKCPECGKSFSRSDDLVRHQRTHTGEKPYKCPECGKSFSQSSNLV RHQRTHTGEKPYACPECGKSFSTSGELVRHQRTHTGEKPYKCPECGKSFSQRAHLERHQR THTGEKPYKCPECGKSFSQAGHLASHQRTHTGKKTSGQAGQASPKKKRKVGRADALDDFD LDMLGSDALDDFDLDMLGSDALDDFDLDMLGSDALDDFDLDMLIN<u>YPYDVPDYAS</u>

ICAM1 ZF^{p300 Core} amino acid sequence; 3X "Flag" Epitope, Nuclear Localization Sequence, Zinc Finger Helix, p300 Core Effector, "<u>HA" Epitope</u>

MDYKDHDGDYKDHDIDYKDDDDK MAPKKKRKVGRGMAQAALEPGEKPYACPECGKSFSDC RDLARHQRTHTGEKPYKCPECGKSFSRSDDLVRHQRTHTGEKPYKCPECGKSFSQSNLV RHQRTHTGEKPYACPECGKSFSTSGELVRHQRTHTGEKPYKCPECGKSFSQRAHLERHQR THTGEKPYKCPECGKSFSQAGHLASHQRTHTGKKTSGQAGQASPKKKRKVGRAIFKPEEL RQALMPTLEALYRQDPESLPFRQPVDPQLLGIPDYFDIVKSPMDLSTIKRKLDTGQYQEP WQYVDDIWLMFNNAWLYNRKTSRVYKYCSKLSEVFEQEIDPVMQSLGYCCGRKLEFSPQT LCCYGKQLCTIPRDATYYSYQNRYHFCEKCFNEIQGESVSLGDDPSQPQTTINKEQFSKR KNDTLDPELFVECTECGRKMHQICVLHHEIIWPAGFVCDGCLKKSARTRKENKFSAKRLP STRLGTFLENRVNDFLRRQNHPESGEVTVRVVHASDKTVEVKPGMKARFVDSGEMAESFP YRTKALFAFEEIDGVDLCFFGMHVQEYGSDCPPPNQRRVYISYLDSVHFFRPKCLRTAVY HEILIGYLEYVKKLGYTTGHIWACPPSEGDDYIFHCHPPDQKIPKPKRLQEWYKKMLDKA VSERIVHDYKDIFKQATEDRLTSAKELPYFEGDFWPNVLEESIKELEQEEEERKREENTS NESTDVTKGDSKNAKKKNNKKTSKNKSSLSRGNKKKPGMPNVSNDLSQKLYATMEKHKEV FFVIRLIAGPAANSLPPIVDPDPLIPCDLMDGRDAFLTLARDKHLEFSSLRRAQWSTMCM LVELHTQSQDYPYDVPDYAS