Supplemental Figure 1: SUVR1, SUVR2 and/or SUVR4 are required for nucleolar dominance in *A. suecica*

(A) Phylogenetic relationships among SUVR proteins, displayed as a Neighbor-Joining tree with bootsrap values.

(B) RNA was extracted from wild-type plants or T1 transformants expressing amiRNAs targeting *SUVR1/2/4* (B, left panel) or *SUVR1* alone (B, right panel). *A. thaliana*-derived rRNA gene transcripts were detected by RT-CAPS. Transgenic *A. suecica* expressing double-stranded RNA that targets *DRM2* and disruopts nucleolar dominance was used as a positive control. After RT-PCR amplification of the ITS1 region, amplicons were subjected to *Hha*I digestion to distinguish *A. thaliana*-derived from *A. arenosa*-derived rRNA genes. Reactions in which reverse transcriptase was omitted serve as negative controls (-RT).

(C) Specificity of *SUVR4* amiRNA targeting. To test for off-target effects, RT-PCR was conducted using primers specific for *SUVH4*, *SUVH5*, *SUVH6*, *SUVR1*, *SUVR2* or *ACT2* mRNAs. RNA was purified from wild-type (1/8x, 1/2x or 1x amounts) and four *SUVR4* amiRNA lines (1x RNA amounts).

Supplemental Figure 2: SUVH4, SUVH5 and SUVH6 are not implicated in nucleolar dominance in *A. suecica*.

A) RT-PCR analysis of SUVH4 mRNA levels in T2 progeny of two independent SUVH4 amiRNA lines, compared to wild-type (WT). Actin (ACT2) RT-PCR reactions control for the amount of RNA analysed.

- B) RT-PCR analysis of SUVH5 and SUVH6 mRNA levels in eight transgenic plants expressing an amiRNA that targets both SUVH5 and SUVH6, compared to wildtype (WT) and actin controls.
- C) RT-CAPS analysis of *A. arenosa* and/or *A. thaliana*-derived rRNA gene transcripts in *A. suecica* wild-type or *SUVH4* knockdown lines. The derepression of *A. thaliana*-derived rRNA genes (arrow) in a *DRM2* RNAi line serves as a positive control for loss of nucleolar dominance. Actin (*ACT2*) RT-PCR reactions control for the amount of RNA analysed.
- D) RT-CAPS analysis of *A. arenosa* and/or *A. thaliana*-derived rRNA gene transcripts in *A. suecica* wild-type or transgenic plants expressing an amiRNA targeting both *SUVH5 and SUVH6*. A *DRM2* RNAi line serves as a positive control for loss of nucleolar dominance. Actin (*ACT2*) RT-PCR reactions control for the amount of RNA analysed.
- E) RT-CAPS analysis of *A. arenosa* and/or *A. thaliana*-derived rRNA gene transcripts in *A. suecica* wild-type or *SUVH5 or SUVH6* knockdown lines. A *DRM2* RNAi line serves as a positive control for loss of nucleolar dominance. Actin (*ACT2*) RT-PCR reactions control for the amount of RNA analysed.

Supplemental Figure 3: Quantitative PCR analyses of *A. thaliana*-derived rRNA genes in wild-type and *SUVR4*-amiRNA plants.

Specific TaqMan probes were used to evaluate the relative amounts of *A. thaliana* versus *A. arenosa*-derived rRNA gene transcripts by quantitative RT-PCR in wild-type plants or or plants expressing an amiRNA targeting *SUVR4* mRNAs.

Supplemental Figure 4: H3K27me1 association with rRNA genes

Data derived from a genome-wide ChIP-sequencing study of H3K27me1- associated regions (Jacob et al. 2010) shows the distribution of H3K27me1 throughout an rRNA gene repeat in wild–type *A. thaliana*, ecotype Col-0.

Supplemental Materials and Methods:

Primers for amiRNA production

IFPamiratx12	GATTATAATCATCGGTCAGCGCCTCTCTCTTTTGTATTCC
IIFPamiratx12	GAGGCGCTGAACTATGATTATAATCAAAGAGAATCAATGA
IIIFPamiratx12	GAGACGCTGACCTAAGATTATTATCACAGGTCGTGATATG
IVFPamiratx12	GATAATAATCTTAGGTCAGCGTCTCTACATATATATTCCT
IFPamiratx345	GATCAAGCACATGTCACGTGAACTCTCTTTTGTATTCC
IIFPamiratx34	5 GAGTTCACGTGACATGTGCTTGATCAAAGAGAATCAATGA
IIIFPamiratx34	5 GAGTCCACGTGACATCTGCTTGTTCACAGGTCGTGATATG
IVFPamiratx34	5 GAACAAGCAGATGTCACGTGGACTCTACATATATATTCCT
ImiRSUVH1	GATTCTAAATGACCTTAAAGGGGTCTCTCTTTTGTATTCC
IImiRSUVH1	GACCCCTTTAAGGTCATTTAGAATCAAAGAGAATCAATGA
IIImiRSUVH1	GACCACTTTAAGGTCTTTTAGATTCACAGGTCGTGATATG
IVmiRSUVH1	GAATCTAAAAGACCTTAAAGTGGTCTACATATATATTCCT
IFPamlRSUVH2	2 GATATATGCAAACTCACGGTTCTCTCTTTTGTATTCC
IIFPamlRSUVH	2 GAACCGTGGTGAGTTTGCATATATCAAAGAGAATCAATG
IIIFPamIRSUVI	12 GAACAGTGGTGAGTTAGCATATTTCACAGGTCGTGATAT
IVFPamlRSUVH	I2 GAAATATGCTAACTCACCACTGTTCTACATATATATTCCT
ImiRSUVH3	GATAATTATATAGTCAATGCCGGTCTCTCTTTTGTATTCC
IImiRSUVH3	GACCGGCATTGACTATATAATTATCAAAGAGAATCAATGA
IIImiRSUVH3	GACCAGCATTGACTAAATAATTTTCACAGGTCGTGATATG
IVmiRSUVH3	GAAAATTATTTAGTCAATGCTGGTCTACATATATATTCCT
IFPamlRSUVH1	&3 GATACATATAAAAGAACCGGCACTCTCCTCTTTGTATTCC
IIFpamlRSUVH	1&3 GAGTGCCGGTTCTTTTATATGTATCAAAGAGAATCAATGATGA
IIIFPamlRSUVH	11&3 GAGTACCGGTTCTTTAATATGTTTCACGGTCGTGATATG
IVFPamlRSUVF	1&3 GAAACATATTAAAGAACCGGTACTCTACATATATATTCCT
lamirH13b	GATTAGGTAAAATAAGCATGCCCTCTCTCTTTTGTATTCC
IIamirH13b	GAGGGCATGCTTATTTTACCTAATCAAATAATCATGA
IIIamirH13b	GAGGACATGCTTATTATACCTATTCACAGGTCGTGATATG
IVamirH13b	GAATAGGTATAATAAGCATGTCCTCTACATATATATTCCT
ImiRSUVH4	GATGAAAAAAAACGGTGTCCGACTCTCTCTTTTGTATTCC
IImiRSUVH4	GAGTCGGACACCGTTTTTTTTCATCAAAGAGAATCAATGA
IIImiRSUVH4	GAGCCGGACACCGTATTTTTTCATCACAGGTCGTGATATG
IVmiRSUVH4	GATGAAAAAATACGGTGTCCGGC TCTACATATATATTCCT
ImiRSUVH4b	GATACCAGTTAAGTTATGCCGTCTCTCTCTTTTGTATTCC
IImiRSUVH4b	GAGACGGCATAACTTAACTGGTATCAAAGAGAATCAATGA
IIImiRSUVH4b	GAGAAGGCATAACTTTACTGGTTTCACAGGTCGTGATATG
IVmiRSUVH4b	GAAACCAGTAAAGTTATGCCTTCTCTACATATATATTCCT
ImiRSUVH5	GATTTAACTTTATACCGAGCGCTTCTCTCTTTTGTATTCC
IImiRSUVH5	GAAGCGCTCGGTATAAAGTTAAATCAAAGAGAATCAATGA

IIImiRSUVH5	GAAGA	GCTCG	STATA	TAGTI	CAATT	CACAG	GTCGT	GATATG	, T
IVmiRSUVH5	GAATT	AACTAT	ГАТАС	CGAG	стсттс	CTACAT	TATATA	ТТССТ	
ImiRSUVH6	GATTA	ТААТС	GATAC	CGGCC	TCGTC	стстст	TTTGT	ATTCC	
IImiRSUVH6	GACGA	GGCCGC	TATC	GATTA	TAAT	CAAAG	AGAAT	CAATGA	١
IIImiRSUVH6	GACGC	GGCCGG	TATC	CATTA	TATTO	CACAGO	GTCGTG	ATATG	
IVmiRSUVH6	GAATA	TAATG	GATAC		CGCGT	TACA	ΓΑΤΑΤΑ	ATTCCT	
IFPamlRSUVH5	5&6	GATTA	TGGTT	ГТАТА	AACCA	TGCCT	тстст	CTTTTG	TATTCC
IIFPamlRSUV5	&6	GAAGG	CAGG	ГТТАТ	AAACC	АТААТ	'CAAAG	AGAAT	CAATGA
IIIFPamlRSUVH	15&6	GAAGA	CAGG	ГТТАТ	ATACC	АТАТТ	'CACAG	GTCGT	GATATG
IVFPamlRSUVH	15&6	GAATA	TGGTA	АТАТА	AACCT	GTCTT	'CTACA'	TATAT/	АТТССТ
lamirH56b	GATTA	TGGTTT	ТАТАА	ACGTO	ССТТС	стстст	TTTGT	ATTCC	
IIamirH56b	GAAGG	GACGT	ТАТА	AACCA	TAAT	CAAAG	AGAAT	CAATGA	Ą
IIIamirH56b	GAAAG	GACGT	ТТАТТ	'AACCA	TTAT	CACAG	GTCGT	GATATG	ſ
IVamirH56b	GATAA	TGGTTA	ATAA	ACGT	CTTT	CTACA	ΓΑΤΑΤΑ	ATTCT	
IFPamIRSUVH7	7&8	GATAT	AAAA	GTTCC	GGCTC	GTATT	СТСТС	ГТТБТА	TTCC
IIFPamlRSUV7	&8	GAATA	CGAG	CCGGA	ACTTT	TATAT	CAAAG	AGAAT	CAATGA
IIIFPamlRSUV	17&8	GAATC	CGAGO	CCGGA	AGTTT	TATTT	CACAG	GTCGTC	GATATG
IVFPamlRSUVH	17&8	GAAAT	AAAA	CTTCC	GGCTC	GGATT	CTACA'	ΓΑΤΑΤΑ	АТССТ
lamirH9	GATTA	ATACAT	ГАСТС	CGTTC	САСТС	тстст	TTTGT	ATTCC	
IIamirH9	GAGTG	GAACG	GAGTA	TGTA	ГТААТ	CAAAG	AGAAT	CAATG	4
IIIamirH9	GAGTA	GAACG	GAGTA	AGTA	ГТАТТ	CACAG	GTCGT	GATATO	- 1
IVamirH9	GAATA	ATACT	ГАСТС	ACTCT	ACATA	TATA	ГТССТ		
		_			_				
ImiRSUVR1	GATTT	TGTAC	GACTT	GGGGG	GCTT	стстст	TTTGT	ATTCC	
IImiRSUVR1	GAAGC	GCCCCA	AGTC	GTACA	AAATO	CAAAG	AGAAT	CAATGA	
IIImiRSUVR1	GAAGA	GCCCCA	AGTC	СТАСА	AATTO	CACAG	GTCGTG	ATATG	
IVmiRSUVR1	GAATT	TGTAG	GACTT	GGGGG	TCTT	TACA	ΓΑΤΑΤΑ	ATTCCT	
ImiRSUVR2	GATAT	ATGCA	GATTA	GGTG	CCGTT	стстст	TTTGT	ATTCC	
IImiRSUVR2	GAACG	GCACCT	'AATC'	TGCAT	ATAT	CAAAGA	AGAATO	CAATGA	
IIImiRSUVR2	GAACA	GCACCT	'AATC	AGCAT	ATTT	CACAG	GTCGTG	ATATG	
IVmiRSUVR2	GAAAT	ATGCT	GATTA	GGTG	CTGTT	CTACA	ΓΑΤΑΤΑ	ATTCCT	
ImiRSUVR4	GATTA	ТАТАСС	GACCA	ATTGO	CAGTO	стстст	TTTGT	ATTCC	
IImiRSUVR4	GACTG	GCAATT	GGTC	GTATA	TAAT	CAAAG	AGAAT	CAATGA	١
IIImiRSUVR4	GACTA	GCAATT	GGTC	СТАТА	TATT	CACAG	GTCGTG	ATATG	
IVmiRSUVR4	GAATA	TATAG	GACCA	ATTG	CTAGT	CTACA	ΓΑΤΑΤΑ	АТТССТ	
IFPamlRSUVR1	&2&4	GATTT	TTCAG	GAACCO	CTAGT	СТССТ	стстст	TTTGT	ATTCC
IIFPamlRSUVR	1&2&4	GAGCA	GACTA	AGGGT	TCTGA	ААААТ	'CAAAG	AGAAT	CAATGA
IIIFPamIRSUVI	R1&2&4	GAGCC	GACTA	AGGGT	ГGTGA	АААТТ	CACAG	GTCGT	GATATG
IVFPamlRSUVF	R1&2&4	GAATT	TTCAC	CAACCO	CTAGT	CGGCT	CTACAT	ΓΑΤΑΤΑ	ТТССТ
			-						
IFPamlRSUVR5	5	GATTA	AATTO	GAATT	TCAGC	CCGCT	СТСТСТ	TTTTGT	'ATTCC
IIFPamlRSUVR	5	GAGCG	GGCTC	GAAAT'	ТСААТ	ТТААТ	'CAAAG	AGAAT	CAATGA

IIIFPamIRSUVR5	GAGCAGGCTGAAATTGAATTTATTCACAGGTCGTGATATG
IVFPamIRSUVR5	GAATAAATTCAATTTCAGCCTGCTCTACATATATATTCCT

Primers used for the RT-CAPS assay:

ITS1for	GCGCTACACTGATGTATTCAACGAG
ITS1Rev	CGCACCTTGCGTTCAAAGACTCGA

Primers used for RT-PCR assays :

pre-rRNA 3'ETS For	CTCGAGGTTAAATGTTATTACTTGGTAAGATTCCGG
pre-rRNA 3'ETS Rev	TGGGTTTGTCATATTGAACGTTTGTGTTCATATCACC
5Suvr4CDS For	ATGATCAGTCTCTCCGGACTAACC
3Suvr4CDS Rev	TCATTTGCGCTTTTTAGACACCTC
5ACT2 for	AAGTCATAACCATCGGAGCTG
3ACT2 rev	ACCAGATAAGACAAGACACAC

Taqman primers for qPCR assays:

ETStaqman For	TGACATGGATT	TCTTCGAGGCCT
ETStaqman Rev	CATGACACGCC	CATTCTCTTCG
A. arenosa ETS taqman	ı probe	Vic-TATATTGGGAAAGCGCATGGT-MBG
A. thaliana ETS taqmar	n probe	6Fam-TATATAACTTGTTCGCATGATATT

Actin F:	GAGAGATTCAGATGCCCAGAAGTC	
Actin R:	TGGATTCCAGCAGCTTCCA	
AtSN1 F:	CCAGAAATTCATCTTCTTTGGAAAAG	
AtSN1 R:	GCCCAGTGGTAAATCTCTCAGATAGA	
5'ETS-4241F	: TTGGAACGATTGATGATTTTGAGT	
5'ETS-4316R	: GCCTACGAACACTAGCTATCCGATC	
25S-10062F:	TGTTCACCCACCAATAGGGAA	
25S-10132R:	TCAGTAGGGTAAAACTAACCTGTCTCAC	
IGS-573F:	GTCAAACACTTGGTGATATGAACACA	
IGS-623R:	GCATGGGTTTGTCATATTGAACGT	
3'ETS-84F:	GAATTCCCAACTTTACACGAGCTC	
3'ETS-134R:	AAGTAATAACATTTAACCTCGAGAGACGAG	

A. thaliana-specific probe used for S1 nuclease protection

5'-GGGTTCCCCACGGACTGCCCAGACTCCCTCAACACCCCCCCTATATAGCTGCC-3'

PCR primers for generation of FISH probes

45S rRNA genes-250 to +250 +1 For-250 to +250 +1 RevCAAGCAAGCCCATTCTCCTCCAACTAGACCATGAAAATCC

5S rRNA genes 5Sfor GGATGCGATCATACCAG 5Srev CGAAAAGGTATCACATGCC

A. Phylogenetic tree B. RT-CAPS assay, T1 generation transgenic lines

C. RT-PCR amplification of SUVR or SUVH mRNAs in amiRNA lines targeting SUVR4.

A. RT-PCR analysis of *SUVH4* mRNA knockdown

JCKUUV	SUVH4 amiRNA lines				<i>SUVH4b</i> amiRNA lines				
WT	А	В	С	D	А	В	С	D	
W INE	10.00	ia est	ie ni	1000	lare al	100	in a	Second	SUVH4
***			in a	1	1		1		ACT2
									noRT

B. RT-PCR analysis of *SUVH5* and *SUVH6* mRNA knockdown

.D. RT-CAPS analysis of nucleolar dominance; T1 generation

Pontvianne_Fig.S4

H3K27me1 and bulk H3 association with rRNA genes, determined by ChIP-seq

