Features of the *Arabidopsis* recombination landscape resulting from the combined loss of sequence variation and DNA methylation

Maria Colomé-Tatché^{a,1}, Sandra Cortijo^{b,1}, René Wardenaar^a, Lionel Morgado^a, Benoit Lahouze^b, Alexis Sarazin^b, Mathilde Etcheverry^b, Antoine Martin^b, Suhua Feng^{c,d}, Evelyne Duvernois-Berthet^b, Karine Labadie^e, Patrick Wincker^e, Steven E. Jacobsen^{c,d}, Ritsert C. Jansen^a, Vincent Colot^{b,2}, and Frank Johannes^{a,2}

^aGroningen Bioinformatics Centre, University of Groningen, 9747 AG Groningen, The Netherlands; ^bInstitut de Biologie de l'Ecole Normale Supérieure, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8197, Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 1024, Paris F-75005, France; ^cHoward Hughes Medical Institute and ^dDepartment of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095; and ^eGenoscope, Institut de Génomique, Commissariat à l'Energie Atomique, Evry F-91057, France

Edited by David C. Baulcombe, University of Cambridge, Cambridge, United Kingdom, and approved August 16, 2012 (received for review July 27, 2012)

The rate of meiotic crossing over (CO) varies considerably along chromosomes, leading to marked distortions between physical and genetic distances. The causes underlying this variation are being unraveled, and DNA sequence and chromatin states have emerged as key factors. However, the extent to which the suppression of COs within the repeat-rich pericentromeric regions of plant and mammalian chromosomes results from their high level of DNA polymorphisms and from their heterochromatic state, notably their dense DNA methylation, remains unknown. Here, we test the combined effect of removing sequence polymorphisms and repeat-associated DNA methylation on the meiotic recombination landscape of an Arabidopsis mapping population. To do so, we use genome-wide DNA methylation data from a large panel of isogenic epigenetic recombinant inbred lines (epiRILs) to derive a recombination map based on 126 meiotically stable, differentially methylated regions covering 81.9% of the genome. We demonstrate that the suppression of COs within pericentromeric regions of chromosomes persists in this experimental setting. Moreover, suppression is reinforced within 3-Mb regions flanking pericentromeric boundaries, and this effect appears to be compensated by increased recombination activity in chromosome arms. A direct comparison with 17 classical Arabidopsis crosses shows that these recombination changes place the epiRILs at the boundary of the range of natural variation but are not severe enough to transgress that boundary significantly. This level of robustness is remarkable, considering that this population represents an extreme with key recombination barriers having been forced to a minimum.

decrease in DNA methylation 1 | epigenetic inheritance | DNA methylome | epi-haplotype

M eiotic recombination is a fundamental process in genetics whereby maternally and paternally inherited homologous chromosomes exchange material, either nonreciprocally by gene conversion or reciprocally by crossing over (CO). COs are not distributed uniformly along the genome but occur more often in chromosome arms and are strongly suppressed in pericentromeric regions (1–3), partly as a result of sequence and chromatin determinants (1, 4–8). It is commonly believed that in plants and mammals high levels of DNA sequence polymorphisms as well as heterochromatic features associated with repeats, notably dense DNA methylation and transcriptional silencing, play a central role in this suppression (1, 4).

Suppression of COs by dense DNA methylation has been demonstrated experimentally in the fungus *Ascobolus* (7). Specifically, COs were reduced when the recombination interval was methylated on one homolog and were abolished almost completely when methylated on both homologs. In *Arabidopsis*, two recent mapping studies analyzed F_2 progeny derived from crosses between Columbia *ddm1* and *met1* [Col(*ddm1*),Col(*met1*)] DNA

methylation mutants and wild-type Landsberg [Ler(WT)] accessions and showed that loss of DNA methylation could not alleviate the suppression of COs in pericentromeric regions of chromosomes (9, 10). However, as pointed out by the authors, this experimental design could not rule out an inhibitory effect of sequence divergence between Col and Ler on COs.

An ideal design would use crosses between isogenic individuals, with one of the crossing partners having decreased DNA methylation levels throughout the genome (9). Melamed-Bessudo and Levy (9) implemented such an approach by crossing Col(ddm1) mutant to Col(WT). Using two fluorescent markers spanning a 16-centimorgan (cM) interval on the arm of chromosome 3, they detected increased CO rates in F₂ plants derived from these parents relative to plants derived from a Col (WT)×Col(WT) control cross and concluded that COs in euchromatic regions can be up-regulated by loss of DNA methylation. A similar approach at a genome-wide scale and with high mapping resolution, particularly in pericentromeric regions, has not been attempted because of a lack of appropriate molecular and genetic tools. Hence, the combined effect of DNA methylation and sequence variation on COs has not been tested comprehensively in Arabidopsis or in any other higher eukaryote.

We previously reported the construction of a large population of epigenetic recombinant inbred lines (epiRILs) in *Arabidopsis* (11, 12), which provides a powerful experimental system to conduct such a test. These epiRILs were obtained by first crossing a fourth-generation plant homozygous for the recessive *ddm1-2* mutation with a near-isogenic WT individual. The *ddm1-2* mutation mostly affects transposable elements (TEs) and other repeats, which lose DNA methylation and become transcriptionally reactivated in a transmissible manner in many instances (11–14). However, transposition events are relatively rare (15).

Author contributions: V.C. and F.J. designed research; M.C.-T., S.C., M.E., A.M., S.F., K.L., P.W., S.E.J., V.C., and F.J. performed research; M.C.-T., S.C., R.W., A.S., M.E., A.M., S.F., E.D.-B., K.L., P.W., S.E.J., R.C.J., V.C., and F.J. contributed new reagents/analytic tools; M.C.-T., S.C., R.W., L.M., B.L., A.S., A.M., E.D.-B., V.C., and F.J. analyzed data; and M.C.-T., V.C., and F.J. wrote the paper. The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

Freely available online through the PNAS open access option.

Data deposition: The genome-wide data reported in this paper have been deposited in the Gene Expression Omnibus public functional genomics data repository, http://www.ncbi. nlm.nih.gov/geo/ [GEO accession nos. GSE37284 (methylomes), GSE37106 (transcriptomes), and GSE37285 (methylomes of intermediate generations)].

¹M.C.-T. and S.C. contributed equally to this work.

²To whom correspondence may be addressed. E-mail: colot@biologie.ens.fr or f.johannes@ rug.nl.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. 1073/pnas.1212955109/-/DCSupplemental.

Thus, F_1 individuals can be considered homozygous throughout the genome, except at the *DDM1* locus and at the few loci affected by TE mobilization, but have chromosome pairs that differ markedly in their DNA methylation levels and transcriptional activity over TEs and other repeats (11, 16). A single F_1 *DDM1/ddm1* individual was backcrossed to the WT parental line, and after the progeny homozygous for the WT *DDM1* allele were selected, the epiRILs were propagated through seven rounds of selfing. In this design, more than 85% of all informative recombination events occur in the first two inbreeding generations (F_1 and backcross), with fewer informative events being contributed by each subsequent generation (17).

Previous targeted analysis indicated that many of the parental differences in DNA methylation and transcriptional activity of repeats are inherited stably in the epiRILs (11, 12). Regions with segregating DNA methylation states therefore can serve as physical markers to detect the frequency and distribution of recombination events along chromosomes even though the two homologs have nearly identical DNA sequences.

In this study we report the construction of a recombination map using genome-wide DNA methylation data from 123 epiRILs. This map was derived from 126 meiotically stable differentially methylated regions (DMRs) covering 81.9% of the total genome. Estimates of the genetic length for each chromosome revealed that global recombination rates are comparable with those of classical Arabidopsis crosses. On a local scale, we demonstrate that suppressed recombination activity within repeat-rich, pericentromeric regions of chromosomes is maintained robustly even after the removal of sequence polymorphisms and repeat-associated DNA methylation. Furthermore, we were able to identify 3-Mb regions flanking pericentromeric boundaries that appear to be subject to additional suppression and show that this effect is accompanied by increased recombination activity in chromosome arms. A direct comparison with 17 classical Arabidopsis crosses reveals that these recombination changes place the epiRILs at the

boundary of the range of natural variation but appear not to be severe enough to transgress that boundary significantly.

Results

Construction of a Recombination Map Using Transgenerationally Stable **DMRs.** To demonstrate that transgenerationally stable DMRs can be used for the construction of a recombination map in an isogenic population, we carried out methylated DNA immunoprecipitation followed by hybridization to a whole genome DNA tiling array (MeDIP-chip) on 123 epiRILs and on the two parental lines (256 array experiments including replicates). The 123 epiRILs originally were chosen using a selective (epi)genotyping strategy for two uncorrelated complex traits, flowering time and root length. We used a three-state Hidden Markov Model (HMM) to classify tiling array signals into three underlying DNA methylation states (18): unmethylated (U), intermediate methylation (I), or methylated (M). Benchmarking of these HMM calls against whole-genome bisulphite sequencing data ($\sim 30 \times$) for six epiRILs confirmed that both the MeDIP protocol and the analysis method performed well (SI Appendix, Fig. S1 and Table S1). Comparison of the two parental DNA methylomes revealed 2,611 DMRs representing clear instances of methylation loss in *ddm1* (transitions from M to U). These DMRs (median length: 1,211 bp; range: 318–24,624 bp) were distributed throughout the genome but, as expected, were more abundant in pericentromeric regions (Fig. 1A and SI Appendix, Table S2) (19).

We examined the DNA methylation state at all parental DMRs in each of the 123 epiRILs and inferred their parent of origin (i.e., epigenotypes). Segregation was not compatible with stable inheritance of *ddm1*-induced DNA hypomethylation for 1,744 (66.8%) of the parental DMRs, and in most of these cases our data pointed to fully or partially penetrant reversion to WT DNA methylation. In contrast, 867 (33.2%) of the parental DMRs segregated in the expected 3:1 Mendelian ratio (*SI Appendix*, Fig. S2 and Table S3). Stable DMRs were associated with a comparatively lower abundance of siRNAs in the WT and *ddm1* parental

Fig. 1. Recombination map construction. (*A*) Genome-wide distribution of the 2,611 parental DMRs (*Top*) and the 126 DMRs (i.e., markers; *Middle*) retained for construction of the recombination map (purple, *Bottom*) for each of the five *Arabidopsis* chromosomes. The mapping between physical and genetic positions of markers is shown. (*B*) Inference of inherited WT (green) and ddm1 (red) haplotypes along the genome (*x*-axis) as inferred from the recombination map for each of the 123 epiRILs (*y*-axis) (*SI Appendix*, Table S5). Chromosome extremities not covered by the genetic map are indicated in gray. The genome of epiRIL 344 is indicated by an arrow. A schematic representation of each chromosome is plotted above the map with the physical location of the *DDM1* gene shown at the end of chromosome 5. (*C*) Transgenerational methylation data for epiRIL 344. Shown are the average methylation signals for the 126 markers, with regions that are predicted to become fixed for the *ddm1* haplotypes (thin red lines) and the WT haplotypes (thin green lines) after seven selfing generations. The average signals (red and green thick solid lines) are in agreement with Mendelian inbreeding theory (black solid lines).

lines (*SI Appendix*, Fig. S3). These findings are in agreement with previous analyses (11, 12) and indicated that the 867 stable DMRs are not efficient targets of siRNA-mediated DNA remethylation, even after eight rounds of meiosis. These stable DMRs therefore could serve as physical markers in an extension of the Lander-Green algorithm (20) to derive a genetic map. After application of the algorithm and removal of mainly genetically redundant markers (i.e., markers located less than 0.0001 cM apart), 126 of the original 867 markers were retained (Fig. 1 *A* and *B* and *SI Appendix*, Fig. S2 and Table S4). These 126 markers covered ~81.9% of the total genome (74.7, 77.0, 98.4, 91.1, and 73.0% of chromosomes 1, 2, 3, 4, and 5, respectively).

Many of the 126 markers contained TE sequences, consistent with the targeted effect of *ddm1* on these and other repeats (SI Appendix, Fig. S4). However, in a vast majority of cases, markers included only TE relics, which likely have lost their capacity to be mobilized (SI Appendix, Table S6). Indeed, both comparative genomic hybridization (SI Appendix, Fig. S5) and preliminary whole-genome resequencing suggested that none of the 126 DMRs contain sequences that were mobilized in the parental ddm1 line or the epiRILs (SI Appendix, Table S6). Consistent with this finding, pair-wise recombination fractions between the 126 markers indicated a well-behaved and robust genetic map, reminiscent of those typically seen in classical crosses involving DNA sequence markers, with high correlation among linked loci and virtually no correlations among loci in different chromosomes (SI Appendix, Fig. S6). Moreover, all inferred ddm1-inherited nonrecombinant pericentromeric haplotypes contained significantly less DNA methylation and were more actively transcribed than their WT counterparts (SI Appendix, Figs. S7 and S8).

To test further the transgenerational stability of the 126 markers as well as our inference of the parental epigenotypes at these marker locations, we performed genome-wide DNA methylation analysis for one selected line (epiRIL 344) for each of its seven selfing generations (7×2 replicates = 14 array experiments). Fixation occurred for the predicted parental epigenotype in each case, and the rate of approach toward fixation was consistent with Mendelian inbreeding theory for a backcross-derived RIL (19) (Fig. 1*C*). Taken together, these results rule out any ambiguity in the actual location or DNA methylation state of the stable DMRs used for constructing the genetic map.

Total Genetic Length in the epiRILs Does Not Diverge Significantly from the Natural Range. One approach for evaluating the epiRILs recombination map is by comparison with a Col (WT)×Col(WT)-derived reference cross. In this set-up, changes in recombination patterns can be attributed directly to DNA methylation loss. However, tracking recombination events in such a reference is experimentally challenging. It requires a system akin to the fluorescent marker reporters used by Melamed-Bessudo and Levy (9), which does not easily scale genome-wide. An alternative approach is to evaluate the epiRILs in the context of natural variation. In terms of DNA sequence and DNA methylome divergence of its founder parental lines, the epiRILs can be viewed as representing an extreme situation with key barriers to recombination having been forced to a minimum. An important question therefore is how genome-wide recombination patterns in this population compare with those seen in crosses derived from different pairs of natural accessions.

We estimated the genetic length for each of the five epiRIL chromosomes using Haldane's map function. The lengths were 106.3, 61.4, 101.4, 82.7, and 65.9 cM for chromosomes 1-5, respectively, and correlated positively with physical chromosome length (SI Appendix, Fig. S9). The total length of the genetic map was 417.7 cM, yielding an average marker spacing of ~0.804 Mb (3.45 cM). These estimates are similar to those previously reported for genetic maps based on classical Arabidopsis crosses (21-24). The use of other map functions that account for CO interference, such as the Kosambi or Carter and Falconer functions, yielded very similar results (SI Appendix, Fig. S10). To perform a more direct comparison between the epiRIL map and those of classical Arabidopsis crosses, we reanalyzed recombination data obtained for 17 F_2 populations (24) that were derived from pairs of 18 distinct natural accessions. In total, these populations consisted of 7,045 plants (~410 plants per cross; range: 235-462 plants), which were genotyped at 235 markers on average (range: 215-257 markers) (24). To facilitate a meaningful comparison, we constructed a consensus map using 83 markers that were shared across populations (SI Appendix, Fig. S11 and Table S7). Thorough testing showed that the reduction to 83 markers in the epiRIL and F2 maps led to no significant loss of information in capturing the linkage structure along chromosomes (SI Appendix, Figs. S12 and S13), and the 83 markers therefore were deemed appropriate for this comparative analysis.

Estimates of the genetic length of each of the five chromosomes revealed substantial natural variation among the F_2 populations (Figs. 2B and 3A). However, the genetic lengths of the

Fig. 2. Comparison of global and local recombination patterns in the epiRILs and the 17 F₂ populations (24). (A) Chromosome-wide gene (light gray line) and transposon (dark line) density distribution. The 3-Mb windows bracketing the intersection points between transposon- and genedense regions are indicated in orange. (B) Cumulative cM lengths of the epiRILs (thick purple line) and each of the F₂ populations (thin green lines) using the consensus map. Purple shading shows the $\pm 95\%$ confidence interval (CI). The thick green line denotes the average F₂ cumulative length (in cM). The dotted vertical lines define the pericentromeric regions of each chromosome. (C) The distribution of normalized recombination intensities (cM/Mb of a given marker interval divided by the cM/Mb chromosome average) shows suppression of recombination within pericentromeric regions and elevation at its boundaries. Color coding is as in B.

Fig. 3. Estimated genetic lengths and fold-change recombination intensities. (A) Estimated genetic lengths (±95% CI) of the epiRILs (purple) and each of the 17 F₂ populations (green) (24). (B-D) Fold change in recombination intensity [(cM/Mb) region/(cM/Mb) chromosome average] ±95% CI in pericentromeric regions (B), AT zones defined by a 3-Mb window bracketing the intersection point between transposon- and gene-dense regions at pericentromeric boundaries (C) and chromosome arms (D). Purple arrows indicate the location of the epiRILs when applicable. The values presented in each panel are ordered to highlight trends in the epiRILs recombination landscape. The identifiers of individual F2 crosses corresponding to this ordering can be found in SI Appendix, Table S11.

epiRIL chromosomes did not diverge significantly from the natural range (Figs. 2B and 3A). The exception was chromosome 1, where we observed a significant increase relative to five of the F_2 crosses. Overall, therefore, our data indicate that the global recombination rate in the epiRILs is not altered drastically. Nonetheless, we noted a clear, but nonsignificant, trend toward longer genetic lengths for chromosomes 1–4 as compared with the F_2 populations (Fig. 3A); this trend is at least partly consistent with DNA methylation and DNA sequence polymorphisms acting as barriers to the global recombination rate in *Arabidopsis*.

Suppression of Pericentromeric Recombination Persists in the epiRILs and Shows a Trend Toward Additional Reinforcement. To explore the relationship between the epiRILs map and those of the different F_2 crosses at a subchromosomal scale, we examined in more detail the distribution of recombination intensities, expressed as cM/Mb, for each marker interval along the genome (Fig. 2*C*). All populations, including the epiRILs, had clearly suppressed recombination activity across pericentromeric regions relative to the chromosome averages (Figs. 2*C* and 3*B*). The exception to this trend was chromosome 4, for which the epiRILs showed a slight increase of recombination intensity (Fig. 3*B*). However, the presence of the heterochromatic knob on chromosome 4 in the Columbia accession, but not in other accessions, makes this result difficult to interpret (10).

Specifically, recombination intensities in pericentromeric regions of epiRIL chromosomes 1, 2, 3, and 5 were, respectively, 2.50, 6.88, 2.53, and 2.01 times lower than the chromosome average, which compares to 1.27 (range: 0.97–2.15), 1.51 (range: 0.95–3.68), 1.52 (range: 0.90–2.48), and 1.20 (range: 0.87–1.98) in the F₂ populations (Fig. 3B and SI Appendix, Table S8). This persistent suppression effect in the epiRIL agrees with the results of Melamed-Bessudo and Levy (9) and Mirouze et al. (10), who examined mapping populations derived from a Col(ddm1)×Ler (WT) and a Col(met1)×Ler(WT) cross, respectively. Hence, loss of DNA methylation appears to be insufficient to release pericentromeric suppression of recombination, even in the absence of DNA sequence polymorphisms. On the contrary, we found a clear trend toward enhanced suppression in the epiRILs: Recombination intensities in this population were consistently at the

bottom of the natural range compared with the F_2 populations, even though chromosome-wide recombination rates were comparatively large. Enhanced suppressive effects also were reported by Melamed-Bessudo and Levy (9) and Mirouze et al. (10), thus highlighting an unexpected and complex relationship between DNA methylation and the suppression of recombination in pericentromeric regions of *Arabidopsis* chromosomes.

Reinforced Suppression of Recombination Extends to Pericentromeric Boundaries in the epiRILs and Appears to Be Compensated by Increased Recombination in Chromosome Arms. In contrast to core pericentromeric regions, recombination intensities in the F₂ populations increase rapidly at pericentromeric boundaries with chromosome arms (Figs. 2C and 3C). An important property of these regions is that they correspond to major transitions in genome content from TE-rich to gene-rich sequences (Fig. 2A) and also have been described recently as hotspots of historical recombination activity at the species level (SI Appendix, Fig. S14) (25). We found that nearly 40% of all detected recombination breakpoints in the F₂ populations mapped within a 3-Mb window bracketing the intersection point in these transition zones (henceforth referred to as "annotation transition zones"; AT zones), yielding local recombination intensities that were consistently above the chromosome averages (Fig. 3C and SI Appendix, Fig. S15 and Table S8).

This finding differs strongly from the situation seen in the epiRILs: AT zones accounted for only 25.31% of all detected recombinants in this population, and recombination intensities were close to the chromosome average (in chromosomes 3 and 4) or even below it (in chromosomes 1, 2, and 5) (Fig. 3C and SI Appendix, Table S8). These results suggest that the enhanced suppression of recombination seen in the epiRIL pericentromeric regions (see above) is driven at least in part by the more localized reduction of recombination within AT zones, which cover (on average) only 63.4% of the pericentromeric regions on either side of the centromeres. The two previous studies using mapping populations derived from crosses between Col (ddm1) and Ler(WT) (9) and between Col(met1) and Ler(WT) (10) were not able to delineate these local effects, most likely

because of the sparsity of their genetic markers (two to three markers per pericentromeric region). Marker density in the epiRIL map, in contrast, was relatively high within AT zones and even permitted fine mapping of shared and nonshared recombination breakpoints to a resolution as low as 4 kb (*SI Appendix*, Figs. S16 and S17 and Tables S9 and S10).

Furthermore, our data indicate that suppression of recombination within AT zones in the epiRILs is accompanied by increased recombination in chromosome arms (Fig. 3D and SI Appendix, Fig. S18). This apparent compensatory effect reconciles the enhanced local suppression seen in the epiRILs with the earlier observation that chromosome-wide recombination rates are relatively large compared with the F₂ populations. This effect was most pronounced on epiRIL chromosomes 1, 2, and 5 (the chromosomes with the strongest suppression in the AT zone), with recombination intensities being 1.23, 1.6, and 1.3 times above the chromosomes' average (SI Appendix, Table S8). We failed to identify a similar trend in the F₂ populations (SI Appendix, Fig. S18 and Table S8), suggesting that this effect is a specific feature of the epiRIL recombination landscape.

Discussion

In this study we demonstrate that stable DNA methylation differences can be used as physical markers to derive genomewide recombination patterns in a near isogenic population of epiRILs. We find that recombination suppression is maintained robustly in pericentromeric regions of the epiRILs, despite the extensive loss of sequence variation and of DNA methylation and transcriptional silencing over repeats. This observation indicates that these factors do not play a major role in the suppression of pericentromeric COs. This finding is contrary to common belief and is particularly intriguing given the interplay between recombination and transcription observed in yeast and the mouse (26, 27). Whether mechanisms exist in *Arabidopsis* that actively sequester the recombination machinery away from gene-promoter regions or other genomic elements, as in the mouse (27), remains to be determined.

Nonetheless, our results indicate that loss of DNA methylation over repeat sequences can lead to a local reinforcement of recombination suppression in pericentromeric regions and to increased recombination activity along chromosome arms. Similar results were reported by Melamed-Bessudo and Levy (9) and Mirouze et al. (10) using genetically divergent populations. Therefore we conclude that the absence of sequence polymorphisms is insufficient to counteract the enhanced suppressive effects induced by the loss of DNA methylation in pericentromeric regions. On the other hand, the lack of sequence polymorphisms still may be partly responsible for the increased recombination rates observed in chromosome extremities (9).

Melamed-Bessudo and Levy (9) demonstrated that *ddm1*-induced demethylation of only one homolog produces the same recombination changes seen when both homologs are demethylated. Our results and conclusions therefore should be generalizable to the two-homolog situation. However, it has been shown in *Ascobolus* that DNA methylation of a known recombination hotspot inhibits COs more severely when both homologs are methylated (7). Similar localized dosage effects may therefore also be present in *Arabidopsis*.

Our study and those of Melamed-Bessudo and Levy (9) and Mirouze et al. (10) have used well-characterized *ddm1* and *met1* DNA methylation mutants as a tool to perturb genome-wide methylation levels experimentally. Both *ddm1* and *met1* experience a nearly 70% reduction in DNA methylation levels genomewide. This drastic loss probably sets an upper limit to the amount of demethylation that can be incurred in nature. Indeed, it is difficult to conceive of mechanisms that would elicit similar or more severe changes under natural settings, unless they involve spontaneous mutations in genes important for DNA methylation control, such as *ddm1* or *met1*. Interestingly, a recent analysis of *Arabidopsis* mutation accumulation lines showed that drastic alterations in the methylome of one outlier line were likely caused by a spontaneous mutation in a methyl-transferase gene (28, 29), which must have arisen during just 30 generations of selfing. This observation suggests that similar events are certainly plausible under natural conditions.

An assessment of whether strong methylation loss can elicit recombination changes at magnitudes that are sufficient to drive genome evolution in this species has been lacking. Our study is an initial step in providing such an assessment. Our analysis of the 17 F₂ populations derived from 18 natural accessions (24) allowed us to quantify the magnitude of the recombination changes observed in the epiRILs in the context of natural variation. Although we find that the epiRILs nearly always are situated at the boundary of the natural range, there is no strong evidence that local and global recombination patterns in this population markedly transgress the natural range. Indeed, in many cases, several of the F2 populations displayed even more extreme divergence from the F₂ population average than did the epiRILs. These findings lead us to conclude that severe losses of DNA methylation along Arabidopsis chromosomes have no drastic implications for recombination-mediated genome evolution. This high level of robustness raises questions concerning the precise mechanisms that have shaped the recombination landscape in this species in the first place.

Of course, severe depletion of DNA methylation can drive other important events, such as large-scale structural rearrangements and polyploidization, which may impact the course of genome evolution. In addition, natural epigenetic variation, such as that associated with differential DNA methylation, can act on complex traits that are under natural selection (30), thereby changing linkage disequilibrium relations within and across chromosomes. However, understanding and documenting the impact of epigenetic variants on complex traits is challenging, mainly because of the technical difficulties in ruling out the confounding effect of DNA sequence polymorphisms (31). Because of this limitation, it has been argued that the epiRILs constitute an ideal system for the study of epigenetic inheritance in Arabidopsis (17, 32-34). We and others have shown recently that many adaptive phenotypes, such as plant height, flowering time, and growth rate, are highly heritable in this population (12, 35, 36). Segregating phenotypic effects also have been observed in another epiRIL population which was obtained from a cross between Col(met1) and Col(WT) (37).

A logical next step in the analysis of these populations is to map and characterize the epigenetic basis of these complex traits. The linkage map reported here (Fig. 1B) can be used in conjunction with classical quantitative trait-locus mapping methods to achieve this characterization in the *ddm*1-derived epiRILs. Ultimately, such efforts should contribute significantly to our understanding of epigenetics in adaptive evolution.

Materials and Methods

Methylome Analysis. MeDIP was carried out as previously described (18) followed by hybridization to a custom NimbleGen tiling array covering the Arabidopsis genome at 165 nt resolution (38). Including dye-swaps, we performed a total of 256 array experiments (*SI Appendix*, section 1). For each array, probe signals were classified into three underlying methylation states, methylated (M), intermediate (I), or unmethylated (U), using the HMM presented previously (*SI Appendix*, section 2) (18). These inferred methylation states were cross-validated against whole-genome bisulphite-sequencing data of six epiRILs (*SI Appendix*, section 3, Fig. S1, and Table S1).

Definition of Parental DMRs. We conducted a probe-level comparison of the HMM calls between the *ddm1* and WT parents (*SI Appendix*, section 4). Probe-level methylation calls were denoted as polymorphic when the parents differed (e.g., I in *ddm1* and M in WT) and as nonpolymorphic when they

were identical (e.g., U in *ddm1* and U in WT). Neighboring probes reporting the same polymorphic state were collapsed into single regions. Hence, parental DMRs were defined as regions of at least three consecutive probes that reported the same extreme polymorphic state (i.e., transitions from M in WT to U in *ddm1* or vice versa). We found 2,611 DMRs, all of which were U in the *ddm1*. Detailed summary statistics are given in *SI Appendix*, Table S2.

Calling of Parental Origin of DMRs in the epiRILs. For any given epiRIL the parental origin of each DMR (i.e., epigenotype) was determined using an HMM-based inference method (*SI Appendix*, section 4).

Mendelian Segregation Criterion. Under the assumption that DMRs were stable for eight generations of breeding, both WT- and *ddm1*-like parental states should appear according to Mendelian segregation ratios in the epiRLs. The sampling variation around these ratios was calculated from a binomial distribution taking into account the sample size (n = 123), the cross design, and the 8% F₂ contamination previously reported (12). DMRs in the epiRLs showing a percentage of WT-like states between 62.7% and 83.3% (the expected value being 73%) were taken as putative transgenerationally stable markers. In total 867 parental DMRs fulfilled this criterion and were used subsequently as a starting point for map construction (*SI Appendix*, section 5, Fig. S2, and Table S3).

Extension of Lander–Green Algorithm. Derivation of a genetic map using DMRs was carried out through an extension of the Lander-Green algorithm (20), which was designed to accommodate marker and individual specific error rates. Our implementation of this algorithm is detailed in *SI Appendix*, section 6.

Transcriptome Analysis of epiRILs and *ddm1* **Seedlings.** Whole-genome expression profiling was performed using a custom NimbleGen tiling array (37). For experimental details, see *SI Appendix*, section 7.

Transgenerational Analysis of DMRs. MeDIP-chip was carried out for epiRIL 344 for seven generations of selfing after the backcross, following the protocol described above. At each generation, DNA from five siblings was pooled. The expected signal behavior was derived using a Markov Chain strategy, considering the Mendelian inheritance of the marker probes (*SI Appendix*, section 8).

- 1. Lichten M, de Massy B (2011) The impressionistic landscape of meiotic recombination. *Cell* 147:267–270.
- Mézard C, Vignard J, Drouaud J, Mercier R (2007) The road to crossovers: Plants have their say. Trends Genet 23:91–99.
- Muyt AD, Mercier R, Mézard C, Grelon M (2009) Meiotic recombination and crossovers in plants. Genome Dyn 5:14–25.
- Edlinger B, Schlögelhofer P (2011) Have a break: Determinants of meiotic DNA double strand break (DSB) formation and processing in plants. J Exp Bot 62:1545–1563.
- Chen W, Jinks-Robertson S (1999) The role of the mismatch repair machinery in regulating mitotic and meiotic recombination between diverged sequences in yeast. *Genetics* 151:1299–1313.
- Emmanuel E, Yehuda E, Melamed-Bessudo C, Avivi-Ragolsky N, Levy AA (2006) The role of AtMSH2 in homologous recombination in Arabidopsis thaliana. EMBO Rep 7: 100–105.
- Maloisel L, Rossignol JL (1998) Suppression of crossing-over by DNA methylation in Ascobolus. Genes Dev 12:1381–1389.
- Shi J, et al. (2010) Widespread gene conversion in centromere cores. PLoS Biol 8: e1000327.
- Melamed-Bessudo C, Levy AA (2012) Deficiency in DNA methylation increases meiotic crossover rates in euchromatic but not in heterochromatic regions in Arabidopsis. Proc Natl Acad Sci USA 109:E981–E988.
- Mirouze M, et al. (2012) Loss of DNA methylation affects the recombination landscape in Arabidopsis. Proc Natl Acad Sci USA 109:5880–5885.
- Teixeira FK, et al. (2009) A role for RNAi in the selective correction of DNA methylation defects. Science 323:1600–1604.
- Johannes F, et al. (2009) Assessing the impact of transgenerational epigenetic variation on complex traits. *PLoS Genet* 5:e1000530.
- Vongs A, Kakutani T, Martienssen RA, Richards EJ (1993) Arabidopsis thaliana DNA methylation mutants. Science 260:1926–1928.
- Kakutani T, Munakata K, Richards EJ, Hirochika H (1999) Meiotically and mitotically stable inheritance of DNA hypomethylation induced by *ddm1* mutation of *Arabidopsis thaliana*. *Genetics* 151:831–838.
- 15. Tsukahara S, et al. (2009) Bursts of retrotransposition reproduced in *Arabidopsis*. *Nature* 461:423–426.
- Lippman Z, et al. (2004) Role of transposable elements in heterochromatin and epigenetic control. Nature 430:471–476.
- Johannes F, Colomé-Tatché M (2011) Quantitative epigenetics through epigenomic perturbation of isogenic lines. *Genetics* 188:215–227.
- Cortijo S, Wardenaar R, Colomé-Tatché M, Johannes F, Colot V (2012) Genome-wide analysis of DNA methylation in Arabidopsis using MeDIP-chip. *Plant Epigenome: Understanding and Analysis*, eds McKeown P, Spillane C (Humana Press/Springer, New York).

Construction of the Consensus Map. To facilitate a meaningful comparison of the epiRILs map with those of the 17 different F_2 populations, we constructed a consensus map (*SI Appendix*, section 9 and Fig. 511) by using the epiRILs map as a reference and selecting from each of the F_2 maps the SNPs closest to the reference, allowing a maximum distance of ± 1.39 Mb. The average distance from reference was ± 0.17 Mb, which led to little loss of information in capturing the recombination structure along the genome (*SI Appendix*, Figs. S12 and S13). Markers deemed too distant were not included in the consensus map. This process resulted in 83 markers (*SI Appendix*, Table S7).

Recombination Intensities at Major Annotation Transitions. Fig. 2 *A* and *C* shows that the recombination intensity increases rapidly at the pericentromeric boundaries, which also coincide with major transitions in genome content from genes to transposons. To find the area where the recombination intensity is maximal, we implemented a sliding window approach (*SI Appendix*, section 10 and Fig. S15).

Note Added in Proof. During the reviewing process, Yelina et al (Yelina NE, Choi K, Chelysheva L, Macaulay M, de Snoo B, et al. (2012) Epigenetic Remodeling of Meiotic Crossover Frequency in Arabidopsis thaliana DNA Methyltransferase Mutants. PLoS Genet 8(8): e1002844. doi:10.1371/journal. pgen.1002844) reported elevated centromere-proximal COs, coincident with pericentromeric decreases and distal increases in met1 mutants. However, total numbers of CO events were found to be similar between wild type and met1. These results support the trends observed in the epiRIL population.

ACKNOWLEDGMENTS. We thank Tony Heitkam for help with the TE analysis. This work was funded by grants from the Ministère de la Recherche et de l'Enseignement Supérieur (to S.C., B.L., and M.E.); Agence Nationale de La Recherche TAG and MEIOMETH projects (to V.C.) and EPIMOBILE project (to V.C. and P.W.); European Union Seventh Framework Programme Network of Excellence EpiGeneSys (Award 257082; to VC); Netherlands Organisation for Scientific Research (NWO) (to F.J., M.L., and M.C.-T.); Consortium for Improving Plant Yield (CIPY) (to M.C.-T.); Netherlands Bioinformatics Centre (NBIC) (to R.W.); and EURATRANS (to R.C.J.). Work in the S.E.J. laboratory is supported by National Institutes of Health Grant GM60398. S.F. is a Special Fellow of the Leukemia & Lymphoma Society. S.E.J. is an investigator of the Howard Hughes Medical Institute.

- Bernatavichute YV, Zhang X, Cokus S, Pellegrini M, Jacobsen SE (2008) Genome-wide association of histone H3 lysine nine methylation with CHG DNA methylation in Arabidopsis thaliana. PLoS ONE 3:e3156.
- Lander ES, Green P (1987) Construction of multilocus genetic linkage maps in humans. Proc Natl Acad Sci USA 84:2363–2367.
- Giraut L, et al. (2011) Genome-wide crossover distribution in Arabidopsis thaliana meiosis reveals sex-specific patterns along chromosomes. PLoS Genet 7:e1002354.
- 22. Drouaud J, et al. (2007) Sex-specific crossover distributions and variations in interference level along Arabidopsis thaliana chromosome 4. PLoS Genet 3:e106.
- Drouaud J, et al. (2006) Variation in crossing-over rates across chromosome 4 of Arabidopsis thaliana reveals the presence of meiotic recombination "hot spots" Genome Res 16:106–114.
- 24. Salomé PA, et al. (2012) The recombination landscape in Arabidopsis thaliana F2 populations. Heredity (Edinb) 108:447–455.
- Horton MW, et al. (2012) Genome-wide patterns of genetic variation in worldwide Arabidopsis thaliana accessions from the RegMap panel. Nat Genet 44:212–216.
- Pan J, et al. (2011) A hierarchical combination of factors shapes the genome-wide topography of yeast meiotic recombination initiation. *Cell* 144:719–731.
- Brick K, Smagulova F, Khil P, Camerini-Otero RD, Petukhova GV (2012) Genetic recombination is directed away from functional genomic elements in mice. *Nature* 485:642–645.
- Schmitz RJ, et al. (2011) Transgenerational epigenetic instability is a source of novel methylation variants. *Science* 334:369–373.
- 29. Becker C, et al. (2011) Spontaneous epigenetic variation in the Arabidopsis thaliana methylome. Nature 480:245–249.
- 30. Richards EJ (2008) Population epigenetics. Curr Opin Genet Dev 18:221-226.
- Johannes F, Colot V, Jansen RC (2008) Epigenome dynamics: A quantitative genetics perspective. Nat Rev Genet 9:883–890.
- Richards EJ (2009) Quantitative epigenetics: DNA sequence variation need not apply. Genes Dev 15;23(14):1601–1605.
- Weigel D (2012) Natural variation in Arabidopsis thaliana: From molecular genetics to ecological genomics. Plant Physiol 158:2–22.
- 34. Schmitz RJ, Ecker JR (2012) Epigenetic and epigenomic variation in Arabidopsis thaliana. Trends Plant Sci 17:149–154.
- Roux F, et al. (2011) Genome-wide epigenetic perturbation jump-starts patterns of heritable variation found in nature. *Genetics* 188:1015–1017.
- Latzel V, Zhang Y, Karlsson Moritz K, Fischer M, Bossdorf O (2012) Epigenetic variation in plant responses to defense hormones. Ann Bot (Lond), 10.1093/aob/mcs088.
- Reinders J, et al. (2009) Compromised stability of DNA methylation and transposon immobilization in mosaic Arabidopsis epigenomes. Genes Dev 23:939–950.
- Roudier F, et al. (2011) Integrative epigenomic mapping defines four main chromatin states in Arabidopsis. EMBO J 30:1928–1938.

Supplementary Information Appendix:

Features of the *Arabidopsis* recombination landscape resulting from the combined loss of sequence variation and DNA methylation

Maria Colomé-Tatché^{1†}, Sandra Cortijo^{2†}, René Wardenaar¹, Lionel Morgado¹ Benoit Lahouze², Alexis Sarazin², Mathilde Etcheverry², Antoine Martin², Suhua Feng³, Evelyne Duvernois-Berthet², Karine Labadie⁴, Patrick Wincker⁴, Steven E. Jacobsen³, Ritsert C. Jansen¹, Vincent Colot^{2*} and Frank Johannes^{1*}

¹Groningen Bioinformatics Centre, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands. ²Institut de Biologie de l'École Normale Supérieure (IBENS), CNRS UMR8197-INSERM U1024, 46 rue d'Ulm, 75230 Paris cedex 05, France. ³Howard Hughes Medical Institute, Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095-1606, USA. ⁴Genoscope, Institut de Génomique, CEA, 2 rue Gaston Crémieux, Evry, F-91057, France.

[†]Equal contributions

*To whom correspondence should be addressed; E-mail: f.johannes@rug.nl, colot@biologie.ens.fr

Contents

1	MeDIP protocol	3
2	Hidden Markov Model for methylation state classification	3
3	BS-seq protocol and comparison to MeDIP	4
4	Parental DMRs and epiRILs parent of origin	4
5	Mendelian ratios	5
6	Lander-Green algorithm, inference of parental states and genetic length	5
7	Transcriptome analysis of epiRILs and <i>ddm1</i> seedlings	7
8	Transgenerational data	8
9	Consensus map	9
10	Recombination intensities at major annotation transitions	9

1 MeDIP protocol

The original 123 epiRILs were chosen using a selective (epi)genotyping strategy based on two uncorrelated complex traits, flowering time and root length. Phenotypically informative lines from both tails of the trait distributions were selected for DNA methylation profiling and whole genome resequencing. Extensive simulation studies indicated that local and global recombination distortion effects are negligible as a result of this selection procedure, particuarly for QTL effect sizes that are consistent with the heritability estimates obtained for these traits.

MeDIP-chip was carried out as previously described [1]. Briefly, DNA was extracted using the Qiagen MaxiPrep kit and sonicated using a Diagenode Bioruptor. Sonicated DNA $(1.5\mu g)$ was denaturated at 95° C for 10 minutes in 600μ l of buffer 1 (10 mM Tris HCl pH 7.5, 500 mM NaCl, 1 mM EDTA). Immunoprecipitation was performed by adding $5\mu g$ of anti-5mC monoclonal antibody (Diagenode, cat n° MAb-006-500) to the DNA solution and by incubating the resulting mix overnight at 4°C with gentle agitation. Forty μ l of washed M280 Dynabeads (Invitrogen) were then added and the suspension was incubated at 4°C for 4 hr with gentle agitation. The supernatant was then discarded, 300μ l of buffer 1 were added to the IP pellet and the suspension was incubated 10 min at room temperature with gentle agitation. Three more washes were carried out at room temperature, using 600μ l of buffer 1. The IP fraction was eluted by incubating it 1 hour at 42° C with 300μ l of buffer 2 (30mM Tris HCl pH: 8.0) and 7μ l of Proteinase K (NEB, $20\mu g/\mu l$). DNA from the IP fraction was recovered by phenol-chloroform extraction and ethanol precipitation. IP and INPUT (150ng) DNA were amplified using the Sigma GenomePlex Complete Whole Genome Amplification (WGA) Kit following the manufacturer's instructions. Cy3 and Cy5 labeling was performed using the Nimblegen Dual color DNA labeling kit (Roche NimbleGen) and co-hybridizations in dye-swap were performed using a custom design NimbleGen 3x720K array, as previoulsy described [2].

2 Hidden Markov Model for methylation state classification

We analyze the $\ln(IP/INPUT)$ signal using a Hidden Markov Model (HMM), as described in detail elsewhere [1]. Briefly, we view the signal as a mixture of three underlying components: the unmethylated component (U) for low signal, the intermediately methylated component (I) for middle intensity signal, and the methylated component (M) for high signal. The HMM relies on the following properties of the MeDIP-chip data: i) the probe signals are noisy proxies of an unobserved (hidden) methylated, intermediate or unmethylated state, and ii) the probe signals are spatially correlated along the genome so that neighboring probes provide similar information.

We use the $\ln(IP/INPUT)$ signal distribution of probes corresponding to introns as emission probability for the U component, in order to incorporate the biological knowledge of introns being mostly unmethylated into the estimation procedure. We approximate this distribution to an arbitrary degree using a mixture of 30 normal distributions using the EM algorithm [3]. The signal distribution for intronic sequences is not noticeably affected in ddm1, as expected. As emission probability for the M component we consider a normal distribution with a fixed mean at the 99^{th} percentile of the intron distribution and unknown variance. Finally, as emission probability for the I component we also consider a normal distribution with mean fixed at the mid-point between the other two means, and variance equal to the one of the M emission probability. For the analysis of the ddm1 parent, we use instead the M and I emission probabilities of the wt-parent.

We implement the Baum-Welch algorithm [4, 5] using the above distributional constraints to find the estimates for the variances, the probe-to-probe transition probabilities, and the initial probabilities. Once these parameters are estimated we proceed to calculate the most likely chain of hidden states (U, I or M). We calculate the individually most likely single hidden probe state at each position, given the observed probe signals and the parameters of the HMM. The result of this procedure is the methylome.

3 BS-seq protocol and comparison to MeDIP

Whole genome bisulfite sequencing was carried out as previously described [6], using Illumina sequencing and read lengths of 76nt or 100nt. Reads were mapped using BS Seeker [7]. Average genome coverage was 29X for the 6 epiRILs. Conversion rates were well over 99% in each case (mean conversion rate = 99.28%), based on data obtained for unmethylated chloroplast DNA.

After the production of files with read sequences (fastq files) the read sequences were subjected to several rounds of treatment before alignment to the genome. Parts of the adapter sequence were for example also sequenced when the read length was longer than the molecule that was sequenced. These parts were removed in the first step. The adapter part was found by sliding the adapter sequence over the read sequence starting from the end of the read sequence. We allowed one mismatch for every five bases (sequencing errors). The minimum overlap was set to four bases and the last three bases were removed when the adapter sequence was not found. In the second step we removed read sequences with more than one copy (we kept one copy). These copies were likely produced during the PCR step and were thus deemed not informative. At the end before mapping we also removed read sequences that were shorter than 30bp. The reads were after these treatments aligned to the genome using BS Seeker [7]. Only reads which could be assigned to a single locus with a maximum of three mismatches were used to quantify the methylation status of individual cytosines (settings: -t N -e 73 or 98 -m 3).

In order to make the BS-seq data comparable to the MeDIP-chip data we calculated so called "BS probe signals". These were calculated by dividing the number of methylated cytosine calls by the total number of cytosine calls in each of the windows for which the probes were designed (window length: 165 bp; signal range: 0 - 1). By cytosine calls we mean the individual cytosine call of each read sequence.

For the comparison with the MeDIP data (comparison with HMM classification) we only selected probe windows with 35 or more cytosines, and probes with a conservation score of 95 or less. Also at least half of the cytosines should be covered by one or more reads. We applied these criteria in order to exclude misbehaving probes.

The conservation score of a probe indicates the uniqueness of the probe sequence. These scores were obtained by performing a blast search. Scores are percentage of identity with the second best hit (score range: 45 - 100). The best hit is with the genomic location for which the probe was designed. Probes with a high conservation score are more likely to misbehave.

Figure S1 (SI Appendix) shows the distribution of BS probe signals for the different HMM classifications. This figure shows that both the MeDIP protocol and the analysis method performed well.

For a direct comparison of the HMM classification we needed to classify the BS probe signals into unmethylated, intermediate and methylated. The BS probe signals were classified by applying different sets of signal cutoffs, one cutoff for the transition from U to I and one for transition I to M. The most optimal combination of cutoffs will give the highest percentage of overlapping probe classifications. Table S1 (SI Appendix) shows the total percentage of overlapping probe classifications, and the percentages for each methylation class separately, for the most optimal cutoffs (% of HMM classification with overlap classification BS probes). This table shows that the overlap with the unmethylated and fully methylated classification is substantial (~ 97% and ~ 81%) but that there is a smaller overlap with the intermediate class (~ 16%). For the DMR analysis however, we only focus on probes that make a complete switch from methylated in *ddm1*. For that reason the miscalls in the intermediate class are less relevant.

4 Parental DMRs and epiRILs parent of origin

We conduct a probe-level comparison of the inferred methylation states between the wt and the ddm1 parent. Probes are classified as non-polymorphic if the methylation state is the same between parents, or as polymorphic if the methylation state between parents is different. We collapse into regions the clusters of consecutive probes (minimum of three) which are extreme polymorphisms (M-U) between

the parents. There are 2611 of these regions, which we call parental DMRs. They are all hypomethylated in the ddm1 parent (M in wt, U in ddm1), which is expected from the ddm1-induced loss of methylation reported previously [8].

For each epiRIL j we consider the collection of probes corresponding to a parental DMR i and calculate the average posterior probability from the HMM (Section 2) over these probes for the U, I and M states $(\bar{p}_{ij}(M), \bar{p}_{ij}(I), \bar{p}_{ij}(U))$. A region of the epiRIL is called wt-like or ddm1-like if the state that maximizes \bar{p}_{ij} is M or U, respectively. In the case where I maximizes p_j^i we do not assign a parent of origin. Using the above, we define the measurement error associated with the parent of origin call for each DMR i and epiRIL j as

$$\epsilon_{ij} = 1 - \max(\bar{p}_{ij}). \tag{1}$$

5 Mendelian ratios

Under the assumption that DMRs were stable for eight generations of breeding, both wt- and ddm1-like parental states should appear according to Mendelian segregation ratios in the epiRILs. The sampling variation around these ratios was calculated from a binomial distribution taking into account the sample size (N = 123), the cross design (backcross) and the 8% F₂ contamination previously reported [9]. This yields a confidence interval for the wt mendelian ratios of (62.7%, 83.3%) and for the ddm1 Mendelian ratios of (16.7%, 37.3%).

We determine at each parental DMR the percentage of epiRILs from wt origin (% wt), the percentage of epiRILs from ddm1 origin (% ddm1) and the percentage of epiRILs with intermediate methylation (% I). Of course, for each DMR, % wt + % ddm1 + % I = 100%. We select a region as being stably inherited if the percentage of wt-like epiRILs, ddm1-like epiRILs and intermediate epiRILs fulfill all the following inequalities:

- % wt + % I > 62.7%
- % wt < 83.3%
- %I < %wt
- % I < % ddm1

In this way, we select the DMRs with a low percentage of intermediate epiRILs (smaller proportion than any of the other two categories) and for which the amount of wt-like epiRILs combined with any amount of intermediate epiRILs fulfills the Mendelian criterion of inheritance. Using this definition, we find 871 regions segregating in a Mendelian fashion.

6 Lander-Green algorithm, inference of parental states and genetic length

These selected regions mentioned above are viewed as markers in a genetic map, and their observed marker states (e.g. wt or ddm1-like) are analogously defined as epigenotypes. Since the genomic positions of all markers are known, we need only calculate the map distance between markers, taking into account all sources of error in the parental calls. To achieve this, we develop a generalized version of the Lander-Green algorithm [10] which considers individual and marker dependent epigenotype errors. In this HMM-based algorithm the observations are the parental calls of the markers (i.e. wt-like, ddm1-like or I), and the hidden states are the real (unobserved) parental origins (wt-like or ddm1-like).

We define the probability $\Pr(c_j^i|h_j^i) = q_j^i(c_j^i, h_j^i)$ that the epigenotype c_j^i ($c_j^i = \{wt - \text{like}, ddm1 - \text{like}, I\}$) is observed at marker j in epiRIL i, given that the true epigenotype is h_j^i at that marker ($h_j^i = \{wt - \text{like}, ddm1 - \text{like}\}$). The set of probabilities q is called emission probabilities. We relate these emission probabilities to the measurement error ϵ_{ij} (Eq. 1) and to some amount of stochastic epigenetic changes, s, that could have occurred during inbreeding. These two sources of error thus quantify the quality of the parent of origin call at each DMR:

$$q_j^i(c_j^i, h_j^i) = \begin{cases} 1 - \epsilon_{ij} + s, & \text{if } c_j^i = h_j^i, \\ \epsilon_{ij} + s, & \text{if } c_j^i \neq h_j^i. \end{cases}$$
(2)

The variable q is a matrix of real numbers with dimension $(2 \times M)$, where M is the number of markers for each epiRIL.

We also define the probability that the true epigenotype at a marker j in epiRIL i is h_j^i ($h_j^i = \{wt - \text{like}, ddm1 - \text{like}\}$) given that the observed epigenotype at that marker is c_j^i ($c_j^i = \{wt - \text{like}, ddm1 - \text{like}, I\}$). This probability can be calculated from q_j^i using the Bayes theorem:

$$p_j^i(h_j^i, c_j^i) = \Pr(h_j^i | c_j^i) = \frac{\Pr(c_j^i | h_j^i) \Pr(h_j^i)}{\Pr(c_j^i)}$$

where $\Pr(c_j^i|h_j^i) = q_j^i(c_j^i, h_j^i)$, $\Pr(c_j^i) = \sum_{y \in \{(wt, ddmI) \text{-like}\}} \Pr(c_j^i|h_j^i = y)$, and the initial probabilities $\Pr(h_j^i) = cte$ are given by the Mendelian ratios. The variable p is a matrix of real numbers with dimension $(2 \times M)$ for each epiRIL.

Denote by R_j the probability of a recombinant type between locus j and j + 1. Therefore the transition probabilities between two loci are

$$\Pr(h_{j+1}^{i} = y | h_{j}^{i} = z) = \begin{cases} 1 - R_{j}, & \text{if } y = z, \\ R_{j}, & \text{if } y \neq z, \end{cases}$$

where $y = z = \{$ wt-like,*ddm1*-like $\}$. The matrix of transition probabilities is:

$$T_{j,j+1} = \begin{pmatrix} t_{j,j+1}^{\text{wt-like,wt-like}} & t_{j,j+1}^{\text{wt-like,ddml-like}} \\ t_{j,j+1}^{\text{ddml-like,wt-like}} & t_{j,j+1}^{\text{ddml-like,ddml-like}} \end{pmatrix} = \begin{pmatrix} 1 - R_j & R_j \\ R_j & 1 - R_j \end{pmatrix}.$$

For each epiRIL *i*, we calculate the forward variable $\alpha_i^i(h)$ as

$$\begin{split} \alpha_1^i(h) &= p_1^i(h, c_1^i), \\ \alpha_{j+1}^i(h) &= \left[\sum_{z = \{(\text{wt}, ddml) \text{-like}\}} \alpha_j^i(z) \ t_{j,j+1}^{z,h}\right] \ q_{j+1}^i(c_{j+1}^i, h) \end{split}$$

where $h = \{$ wt-like,ddml-like $\}$ and $1 \le j \le M_C - 1$, where M_C is the number of markers per chromosome. We also define the backward variable $\beta_i^i(h)$ as:

$$\begin{split} \beta^{i}_{M_{C}}(h) &= 1, \\ \beta^{i}_{j-1}(h) &= \sum_{z = \{(\text{wt}, ddml) \text{-like}\}} t^{h, z}_{j-1, j} \, q^{i}_{j}(c^{i}_{j}, z) \, \beta^{i}_{j}(z), \end{split}$$

where $h = \{$ wt-like,ddml-like $\}$ and $M_C \ge j \ge 2$.

 R_j is estimated iteratively using:

$$R_{j} = \frac{1}{N} \sum_{i=1}^{N} \frac{\left(\alpha_{j}^{i}(y), \ \alpha_{j}^{i}(z)\right) \cdot T_{j,j+1}^{*} \cdot \left(\beta_{j+1}^{i}(y) \ q_{j+1}^{i}(c_{j+1}^{i}, y), \ \beta_{j+1}^{i}(z) \ q_{j+1}^{i}(c_{j+1}^{i}, z)\right)^{tr}}{\left(\alpha_{j}^{i}(y), \ \alpha_{j}^{i}(z)\right) \cdot T_{j,j+1} \cdot \left(\beta_{j+1}^{i}(y) \ q_{j+1}(c_{j+1}^{i}, y), \ \beta_{j+1}^{i}(z) \ q_{j+1}(c_{j+1}^{i}, z)\right)^{tr}},$$

where $1 \le j \le M_C - 1$, $y = z = \{$ wt-like,ddml-like $\}$, and $T^*_{j,j+1} = ((0, R_j), (R_j, 0))$ is a 2×2 matrix. The amount of stochastic changes, s, is fixed at some value.

We use the final estimates \hat{R}_j (for j = 1, ..., M) to calculate the likelihood of the data as

$$\log(L(\hat{R})) = \sum_{i=1}^{N} \sum_{j=1}^{M} \log\left(\left(\alpha_{j}^{i}(y), \ \alpha_{j}^{i}(z)\right) \cdot T_{j,j+1} \cdot \left(\beta_{j+1}(y), \ \beta_{j+1}(z)\right)^{tr}\right),$$
(3)

where again $y = z = \{$ wt-like,ddm1-like $\}$, and N is the total number of epiRILs. The whole procedure is repeated for a series of fixed values for s and the value that maximizes the profile likelihood is taken as an estimate for the biological rate of stochasticity.

Finally, we infer parental haplotypes along the genome by selecting at each DMR the parental call that maximizes the probability of the observations given the model:

$$w_i^i = \operatorname{argmax}(\Pr(h_i^i | c_i^i, \operatorname{model})), \tag{4}$$

where argmax stands for the argument of the maximum. We refer to this latter inference as the epigenotype reconstruction step.

The epigenotype reconstruction step assigns unlikely epigenotypes (e.g. DMRs with initial intermediate methylation calls or DMRs with high measurement error) to the most likely wt-like or *ddm1*like epigenotype. This process can change the Mendelian segregation ratios. We therefore reevaluate Mendelian inheritance at each DMR, such that the wt-like epigenotype percentage falls within (% wt < 83.3%) and (% wt > 62.7%). From the initial 871 markers, after epigenotype reconstruction 867 are selected according to this criterion. We find that among these 867 markers, only 262 map to unique genetic locations (i.e. they are more than 0.0001 cM apart from each other), the rest being genetically redundant and uninformative. We remove these redundant markers and iterate through the following steps: i) Remove markers at the same map position (distance< 0.0001cM). ii) Recalculate R_j using the Lander-Green algorithm (with constant epigenotyping error). iii) Obtain the most likely haplotype map. After 5 iterations the procedure converges to a robust map containing 184 markers. Finally, we remove problematic markers showing strong correlations across chromosomes. This final cleaning step is performed in R/qtl [11] and follows closely the relevant section on map cleaning described in Broman [12]. Our final map contains 126 robust markers.

Finally, we convert the recombination at fixation R for the epiRIL to the value of r at meiosis. We can use the result at fixation (because generation = 8 here) [13]:

$$r = \frac{2R}{3 - 4R}.\tag{5}$$

This estimator is biased [14], the modified estimator for r is given by

$$r = \frac{2R}{N(3-4R)^3} \left(9N - 24NR + 16R^2N - 12R + 12\right),\tag{6}$$

where N = 123 is the number of lines. This new estimator has a bias which is proportional to $1/N^2$.

7 Transcriptome analysis of epiRILs and *ddm1* seedlings

Whole-genome expression profiling was performed using tiling microarrays on 10 day-old seedlings grown in liquid 1/2MS media, 16 hours of light at 22°C and 8 hours of night at 19°C. Total RNA was extracted using Rneasy Plant Minikit (Qiagen) according to the supplier's instructions. One ug of total RNA was amplified with one round of in vitro transcription 10h at 37°C using the MessageAmp II aRNA Amplification Kit (Ambion). Double stranded cDNA synthesis was then performed on 2 ug of aRNA using the SuperScript Double-Stranded cDNA Synthesis Kit (Invitrogen). Cy3 and Cy5 labeling was

performed using the Nimblegen Dual color DNA labeling kit (Roche NimbleGen) according to manufacturer's instructions. Co-hybridization in dye-swap experiment was performed using the NimbleGen 3x720K array design and following manufacturer's instructions. Data acquisition was performed according to Roche Nimblegen instructions. Hybridization data was normalized using an ANOVA model, and data were averaged on the dye-swap to remove tile-specific dye biases.

8 Transgenerational data

In order to observe further evidence of the stable inheritance of methylation states, we performed measurements of the methylome of one epiRIL (line 344) for seven generations following the backcross. At each generation, the DNA of five siblings was pooled together to perform a MeDIP chip analysis, as described in Section 1. The data was normalized as described in [1].

For each of the 126 stable markers, we calculate the mean signal of all probes corresponding to that marker at every generation. We classified the markers in two different categories: wt-inherited or ddm1-inherited, based on the genetic map information at the last generation (Section 6).

In order to obtain a theoretical model to describe the expected behavior of the signal over generation time we calculate the expected proportions of wt/wt epigenotype, ddm1/ddm1 epigenotype and wt/ddm1 epigenotype at every generation of inbreeding following the backcross. For the wt-inherited markers, we implemented a Markov Chain with selection against the ddm1 homozygotes at every generation. For the markers inherited from the ddm1 parent, we implemented a Markov Chain with selection against the proportions of each of the three epigenotypes at any generation t:

$$p_{ddm1}(t) = \left\{ \frac{1}{2^t + 2}, \frac{2}{2^t + 2}, 1 - \frac{3}{2^t + 2} \right\};$$

$$p_{wt}(t) = \left\{ 1 - \frac{3}{3 \times 2^t + 2}, \frac{2}{3 \times 2^t + 2}, \frac{1}{3 \times 2^t + 2} \right\},$$
(7)

where $p_{ddm1} = \{\Pr(wt/wt), \Pr(wt/ddm1), \Pr(ddm1/ddm1)\}$ are the proportions of wt/wt, wt/ddm1 and ddm1/ddm1 epigenotypes at every generation t for the probes getting fixed in a ddm1 haplotype at generation S7, and $p_{wt} = \{\Pr(wt/wt), \Pr(wt/ddm1), \Pr(ddm1/ddm1)\}$ are the proportions of wt/wt, wt/ddm1, and ddm1/ddm1 epigenotypes at every generation t for the probes getting fixed in a wt haplotype at generation S7.

Since five plants were used at each generation to provide the DNA material for the MeDIP protocol, we needed to approximate the signal at each generation by a weighted sum over the three different epigenotypes multiplied by the mean of their signal at each generation:

$$s_{ddm1}(t) = p_{ddm1}^{(1)}(t) * \mu_{wt/wt}(t) + p_{ddm1}^{(2)}(t) * \mu_{wt/ddm1}(t) + p_{ddm1}^{(3)}(t) * \mu_{ddm1/ddm1}(t);$$

$$s_{wt}(t) = p_{wt}^{(1)}(t) * \mu_{wt/wt}(t) + p_{wt}^{(2)}(t) * \mu_{wt/ddm1}(t) + p_{wt}^{(3)}(t) * \mu_{ddm1/ddm1}(t),$$
(8)

where $p^{(i)}$ is the component *i* of vector *p*. At every generation *t* we use as mean value for the signal of the ddm1/ddm1 epigenotype $(\mu_{ddm1/ddm1}(t))$ the $\ln(IP/INPUT)$ signal distribution of probes corresponding to introns, and we calculate its mean by approximating this distribution to an arbitrary degree using a mixture of 30 normal distributions using the EM algorithm [3]. For the signal of the wt/wt epigenotype $(\mu_{wt/wt}(t))$, we consider the 99th percentile of the intron distribution at every generation *t*, and for the signal of the wt/*ddm1* epigenotype $(\mu_{wt/ddm1}(t))$ we consider the methylated component with the epigenotype wt/wt and the unmethylated component with the epigenotype ddm1/ddm1 because all the parental DMRs are methylated in the wt parent and unmethylated in the *ddm1* one.

9 Consensus map

We evaluated the inferred epiRILs map by comparing it to genetic maps of classical Arabidopsis experimental crosses. To this end, we re-analyzed 17 recently published F_2 populations that were derived from pairs of 18 different *Arabidopsis* natural accessions [15]. In total, 7045 plants had been genotyped (an average of 410 plants per cross, range=(235 - 462)) at an average of 235 genome positions (range=(215 - 257)) [15].

In order to perform a meaningful comparison of the genetic and epigenetic maps, we needed them to have similar coverage. We selected a subset of markers for each cross such that the number of markers and the bp position of those markers is the same across maps.

In particular, we chose a reference genome with markers at the position of the epigenetic markers. For each reference marker, we selected from the 17 natural accessions crosses the marker which is closest to it. For these selected markers we used the R-qtl package [11] implemented in R (http://www.r-project.org) to re-estimate the genetic map (function *est.map* using map.function=haldane). In the cases where there was no marker close enough to the reference position, we artificially added a marker at the reference position and we used R-qtl to re-estimate the map (function *est.map* using map.function=haldane) and to simulate the most likely genotype at that position (function *fill.geno* with method=argmax).

In Fig. S11 (SI Appendix) we can see the representation of the consensus map in base pair positions. The mean distance from the consensus map markers is 0.17Mb and the furthest marker is at 1.39Mb from the reference marker. The main map characteristics are not affected by the use of this common map, as can be seen in Fig. S12 (SI Appendix). At the same time, the difference in recombination intensity between the accession crosses and the epiRIL at each reference marker interval $\left(\frac{cM}{Mb}\right)_{acc \ cross} - \left(\frac{cM}{Mb}\right)_{epiRIL}$) is not correlated with the difference in the size of the marker interval ($\Delta Mb_{acc \ cross} - \Delta Mb_{reference}$), which is due to the slight mismatch of the marker positions between the reference map (i.e. the epiRIL marker positions) and the position of the accessions markers (Fig. S13 (SI Appendix)). This allows us to do a meaningful comparison of the features of the maps for each cross.

10 Recombination intensities at major annotation transitions

Figure 2A and C show how the recombination intensity increases rapidly at the pericentromeric boundaries, which also coincide with major transitions in genome content from genes to transposons. In order to find the area where the recombination intensity is maximal we implemented a sliding window approach (window size: 3 Mb, step size: 100 kb). We used the transition in genome content as a reference point. The recombination intensity of each window was calculated by dividing the percentage of recombination events within each window (% of all recombination events) by the percentage of bp covered by the same overlapping marker intervals (% of all marker intervals). This calculation was done across all sliding windows. Marker intervals with a small overlap with the window were excluded when the non-overlapping part was bigger than 1 Mb. The maximum recombination intensity of the F_2 populations was found at a distance of +100 kb (middle position window; in the direction of the arms; Fig. S15 (SI Appendix)).

The windows with the maximum recombination intensity (located +100 kb from the transition towards the arms) were further examined for the presence of shared breakpoints. In an effort to fine-map shared breakpoints within these windows, we resorted to probe-level tiling array data of specific epiRILs that were recombinant in these windows. For this analysis we only considered differentially methylated probes (M in wt and U in *ddm1*) that showed Mendelian segregation patterns in the epiRILs. To avoid misclassified probes due to cross-hybridization issues we also considered probes with a conservation score of 85 or less (high quality probes). We selected differentially methylated probes as being stably inherited if the percentage of wt-like epiRILs (% wt), *ddm1*-like epiRILs (% ddm1) and intermediate epiRILs (% I) fulfill all the following inequalities:

- % wt > 62.7
- % wt < 83.3

• % ddm1 > % I

Shared breakpoints were fine-mapped by visual inspection of the probe classification (probes that fulfill the above criteria) of the recombinant epiRILs. For this purpose we only plotted probes that were M (green; wt-like) or U (red; *ddm1*-like). We considered a breakpoint as being shared if at least three epiR-ILs were having an overlapping breakpoint interval. The shared breakpoint interval length was calculated by taking the difference of the minimum start position and the maximum stop position of all intervals. Using the above criteria we found 12 shared breakpoints (Table S10 (SI Appendix)).

References

- Cortijo S, Wardenaar R, Colomé-Tatché M, Johannes F, Colot V (2012) Genome-wide analysis of dna methylation in arabidopsis using medip-chip. Methods in Molecular Biology (in press).
- [2] Roudier F, Ahmed I, Bérard C, Sarazin A, Mary-Huard T, et al. (2011) Integrative epigenomic mapping defines four main chromatin states in arabidopsis. EMBO Journal 30: 1928–1938.
- [3] McLachlan G, Peel D (2000) Finite Mixture Models. John Wiley and Sons, Inc.
- [4] Baum L, Petrie T, Soules G, Weiss N (1970) A maximization technique occurring in the statistical analysis of probabilistic functions of markov chains. Ann Math Stat 41: 164–171.
- [5] Rabiner L (1989) A tutorial on hidden markov models and selected applications in speech recognition. Proceedings of the IEEE 77: 257–286.
- [6] Cokus S, Feng S, Zhang X, Chen Z, Merriman B, et al. (2010) Shotgun bisulphite sequencing of the arabidopsis genome reveals dna methylation patterning. Nature 452: 215–219.
- [7] Chen P, Cokus S, Pellegrini M (2010) Bs seeker: precise mapping for bisulfite sequencing. BMC Bioinformatics 11:203, doi 10.1186/1471-2105-11-203.
- [8] Vongs A, Kakutani T, Martienssen R, Richards E (1993) Arabidopsis thaliana dna methylation mutants. Science 260: 1926-1928.
- [9] Johannes F, Porcher E, Teixeira F, Saliba-Colombani V, Simon M, et al. (2009) Assessing the impact of transgenerational epigenetic variation on complex traits. PLoS Genetics 5: e1000530.
- [10] Lander E, Green P (1987) Construction of multilocus genetic linkage maps in humans. Proceedings of the National Academy of Sciences 84: 2363–2367.
- [11] Broman K, Wu H, Sen S, Churchill G (2003) R/qtl: Qtl mapping in experimental crosses. Bioinformatics 19: 889–890.
- [12] Broman K (2010) Genetic map construction with r/qtl. Technical report 214.
- [13] Johannes F, Colomé-Tatché M (2011) Quantitative epigenetics through epigenomic pertubation of isogenic lines. Genetics 188: 215-227.
- [14] Martin O, Hospital F (2006) Two- and three-locus tests for linkage analysis using recombinant inbred lines. Genetics 173: 451–459.
- [15] Salomé P, Bomblies K, Fitz J, Laitinen RAE, Warthmann N, et al. (2011) The recombination landscape in arabidopsis thaliana f2 populations. Heredity 108: 447-455.

Supplementary Information Appendix (Figures and Tables):

Features of the *Arabidopsis* recombination landscape resulting from the combined loss of sequence variation and DNA methylation

Maria Colomé-Tatché^{1†}, Sandra Cortijo^{2†}, René Wardenaar¹, Lionel Morgado¹, Benoit Lahouze², Alexis Sarazin², Mathilde Etcheverry², Antoine Martin², Suhua Feng³, Evelyne Duvernois-Berthet², Karine Labadie⁴, Patrick Wincker⁴, Steven E. Jacobsen³, Ritsert C. Jansen¹, Vincent Colot^{2*} and Frank Johannes^{1*}

¹Groningen Bioinformatics Centre, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands. ²Institut de Biologie de l'École Normale Supérieure (IBENS), CNRS UMR8197-INSERM U1024, 46 rue d'Ulm, 75230 Paris cedex 05, France. ³Howard Hughes Medical Institute, Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095-1606, USA. ⁴Genoscope, Institut de Génomique, CEA, 2 rue Gaston Crémieux, Evry, F-91057, France.

[†]Equal contributions

*To whom correspondence should be addressed; E-mail: f.johannes@rug.nl, colot@biologie.ens.fr

Supplemental figure legends

Figure S1: Comparison BS-seq and MeDIP-chip (HMM classification): The distribution of the BS probe signals for the three methylation categories of the HMM classification. White, gray and dark gray box: unmethylated, intermediate and methylated probes respectively. Numbers at the top of the figure are line numbers of the epiRILs that were sequenced.

Figure S2: Segregation ratios: Segregation ratios for the 867 Mendelian DMRs (left) and the 126 Mendelian DMRs used for map construction. The green and red horizontal bars indicate the expected Mendelian ratios (73% for the wt inheritance and 27% for the *ddm1* inheritance), and the green and red areas show the $\pm 99\%$ CI (62.7% - 83.3% for the wt, and 16.7% - 37.3% for the *ddm1*). At the position of each DMR (x-axes) the green cross represents the percentage of wt inherited epiRILs and the red dot represents the percentage of *ddm1* inherited epiRILs.

Figure S3: Small RNA abundance: Hit-normalized density (reads per kb per 1 million reads) of 24nt small RNA (sRNA) corresponding to stable and reversible DMRs in the wt and *ddm1* parental lines. Isolation was performed as described in Pfeffer et al. (Curr. Protoc. Mol. Biol 2005). Wt and *ddm1* sRNA libraries were prepared and sequenced by Fasteris (Switzerland) using Illumina Hi-Seq 2000 technology and 200 μ g of total RNA extracted from whole seedlings. Sequence reads were matched against the *Arabidopsis thaliana* genome (TAIR8) using MUMmer v3.0 software (Kurtz et al., Genome Biol. 2004). Only sRNA reads with perfect match over their entire length (15-30nt) were analyzed further (79402397 and 63798837 reads for wt and *ddm1*, respectively). The number of 24-nt reads matching the DMRs is expressed as a normalized density, as describe in Teixeira et. al. (Science 2009). A full description of the sRNA sequence data will be presented elsewhere.

Figure S4: Sequence annotation of DMRs and markers: Percentage of DMRs or markers that contain (parts of) genes, transposable elements (TE) or intergenic regions for the categories: Non-Mendelian DMRs (A), Mendelian DMRs (B) and Markers (C).

Figure S5: CGH analysis: A comparison of the log₂ input signals of all wt (WT.R1, WT.R2 and WT.R3) and ddm1 (DDM1.R1 and DDM1.R2) replicates used for the detection of DMRs. For each gene, transposable element and non-Mendelian DMR (S5-1), Mendelian DMR (S5-2) or marker (S5-3) the average input signal was calculated. The signal distributions were quantile normalization. Transposable element signals and gene signals are indicated with dark gray and gray respectively. DMRs or markers are indicated with red. Numbers in the figure correspond to correlation coefficients of transposable elements (dark gray), genes (gray) and DMRs or markers (red).

Figure S6: Recombination fractions: Recombination fractions for each pair of markers along the genome. Red corresponds to small recombination fractions, blue corresponds to a large recombination fractions. This image was generated using the R-qtl package implemented in R.

Figure S7: Methylation levels of inherited non-recombinant pericentromeric regions: Percentage of unmethylated probes for the epiRILs with a non-recombinant pericentromere. Red: *ddm1*-inherited pericentromere; green: wt-inherited pericentromere. **Figure S8: Transcriptome analysis:** Shown is the expression difference between wild type and epiRIL 98, epiRIL 202 and ddm1 across the genome for probes that are hypo methylated between the parents (M in wt and U in ddm1). The top part of the figure shows the location of the centromere (the dot), the pericentromere (dark grey surrounding the centromere) and the chromosomal arms (gray). The part that is not covered by the genetic map is indicated with light gray. The inference of inherited wt and ddm1 haplotypes along the genome is indicated with green and red respectively. Results show that expression is higher compared to wt in ddm1 inherited regions and comparable to wt in wt inherited regions. These observations indicate that the transcriptomal changes induced by ddm1 are inherited in the epiRILs.

Figure S9: Correlation between physical length and genetic length: The physical length of each of the five Arabidopsis chromosomes in Mb and their genetic length in cM are positively correlated. In the inset, the table shows the numerical values for the physical and genetic lengths for each chromosome.

Figure S10: Use of different map functions: Map increase between each pair of markers (Δ cM) for the epiRIL recombination map, calculated using different map functions: Morgan's map function (black), Haldane's map function (blue), Kosambi's map function (red) and Carter and Falconer's map function (orange). Changes in map lengths are modest, and do not alter any of the conclusions concerning local recombination changes observed in the epiRILs (see main text).

Figure S11: Consensus map: For each chromosome, the markers for the epiRIL (top) and the 17 different accession crosses are represented in light gray circles. The markers selected for the consensus map are represented with solid colored dots, and the light colored vertical lines show the position of the reference marker. If one cross between accessions had no marker closer enough to the reference marker, one extra marker was added (colored cross). The color code is a guide to the eye.

Figure S12: Change in genetic length: The genetic length (cM) versus the marker position (Mb) for the 17 accession crosses (top) and the epiRIL (bottom) is shown, both for the consensus map (in red) and the original map for each accession cross and the epiRIL (black). No major deviations from the original map are observed when the consensus map is utilized.

Figure S13: Correlation between Δ (**bp**) and Δ (**cM**/**Mb**): Correlation plot between the difference in inter-marker length for the epiRIL map compared to the accession crosses map $(\Delta$ (bp)= Δ (bp)_{accession cross} – Δ (bp)_{epiRIL}), and the difference in recombination activity at that marker interval $(\Delta$ (cM/Mb)= Δ (cM/Mb)_{accession cross} – Δ (cM/Mb)_{epiRIL}). The fraction of variance explained by the model is R²=0.000274.

Figure S14: Location of historical recombination hotspots: Shown are the locations of hotspots detected by Horton et al. (Nat. Genet. 2012). Top: gene (gray line) and transposon (black line) density along the chromosomes. Middle: location of the centromere (dot), the pericentromere (dark grey) and the chromosomal arms (light gray). Bottom: location of the hotspots. The hotspot density of all detected hotspots is indicated in gray. This hotspot density is

determined with the use of a sliding window approach (window size: 1 Mb; step size: 200 kb). The blue lines indicate hotspots that were identified in at least eight of the nine regional samples (Horton et al., Nat. Genet. 2012).

Figure S15: Recombination intensity around major annotation transitions: Shown is the recombination intensity of 3 Mb windows at different distances from the major annotation transitions. The recombination intensity is calculated across all sliding windows at the same distance from the transitions. The maximum recombination intensity of the F2 populations was found at a distance of +100 kb (in the direction of the arms).

Figure S16: Gene density and Recombination rates along pericentromeric regions: Gene density is shown along the pericentromeric regions of all five chromosomes in successive 105kb windows (red dots; the heterochromatic knob on chr4 is also shown) and for the 67 breakpoint point intervals that have been narrowed down to less than 500 kb (blue crosses). The proportion of COs contributed by each interval to the total number of COs for that chromosome is indicated by vertical purple bars.

Figure S17: Fine mapping shared recombination breakpoints within AT-zones in the epiRILs: Shown are three examples of shared recombination breakpoints that map within AT-zones, that is, within 3 Mb of the inflection points between transposon and gene density at pericentromeric boundaries (grey rectangle). For each example, we plot all the tiling array probes that were M in wt and U in *ddm1* and which showed Mendelian segregation patterns in the epiRILs. Shared breakpoints are shown by an arrow and could be fine-mapped within 158 kb, 93 kb and 68 kb on chromosomes 2, 3 and 4 respectively.

Figure S18: Regression plot of fold change recombination intensity: A comparison of recombination intensity fold changes (cM/Mb of a given region divided by cM/Mb chromosome average; see Figure 3 in the main text) between AT-zones and chromosome arms. There is a negative relationship between AT-zones and chromosome arms in the epiRILs and (on average) a positive relationship in the F2 populations. This indicates that the recombination suppression in AT-zones is compensated by increased recombination in chromosome arms in the epiRILs, and that this effect is a specific feature of this population.

Supplemental table legends

Table S1: Correspondence between HMM and BS-seq: Overlap between HMM and BS-seq (in %) for all probes, and for probes that are classified as U, I or M by HMM for the epiRILs that were sequenced.

Table S2: Parental DMRs: The chromosome and position (start bp and stop bp) for the 2611 parental DMRs are given.

Table S3: DMRs with Mendelian segregation: The chromosome and position (start bp and stop bp) are given for the 867 parental DMRs that show Mendelian segregation

Table S4: Markers: The chromosome, position (start bp and stop bp) and genetic position (cM) are given for the 126 non-redundant markers.

Table S5: epiRIL line numbers: epiRIL numbers in Figure 1B and their corresponding line numbers.

Table S6: Analysis of transposable elements (TEs) which are located within or overlap with markers: Column 1 (marker_id) provides identifiers for the markers used for map construction which overlap with TEs. Column 8 (mobilization) denotes potential mobility of TEs (highlighted in gray) located within or overlapping markers based on bioinformatic analysis (Buisine et al., Genomics 2008). Column 10 (evidence sequencing) provides information about the actual mobility of TEs based on preliminary re-sequencing data. The remaining columns contain information about the ID of the TE (TE_id), the family (TE_family), the clade (TE_clade), the order (TE_order), the class (TE_class) and if the TE encodes its own transposase protein (autonomy). See also legend at the bottom of the table.

Table S7: Consensus map: For each of the 83 markers of the consensus map, the chromosome and position (bp start and bp stop) corresponding to the epiRIL markers are given, and the position and name of the retained SNPs for each of the 17 natural accession crosses are shown.

Table S8: Fold change recombination intensities: Recombination intensity (cM/Mb) of pericentromeric regions, AT - zones and chromosome arms compared to chromosome average. For the F_2 populations the median value is shown with its range. (A): fold-increase relative to chromosome average (intensity region / intensity chromosome average). (B): fold-decrease relative to chromosome average (intensity chromosome average / intensity region).

Table S9: Fine-mapping individual recombination breakpoints: Name refers to the left DMR that was used initially to identify each breakpoint interval within pericentromeric regions. Intervals were narrowed down first by considering all of the parental DMRs included in these intervals and that fulfill the Mendelian segregation criterion. Some intervals could be further narrowed down by considering individual probes outside of DMRs and for which parental DNA methylation states (M in wild type and U in *ddm1*) segregate in Mendelian fashion. Column F indicates the number of epiRILs with breakpoints in the corresponding interval and column G the

proportion of breakpoints contributed by this interval to the total number of recombinants for that chromosome.

Table S10: Fine-mapping of shared recombination breakpoints: Location and length of shared breakpoint intervals, and the number of epiRILs with a shared breakpoint interval.

Table S11: Genetic lengths and fold change recombination intensity: Estimated genetic lengths (A), and fold change in recombination intensity (FC) of pericentromeric regions (B), AT-zones (C) and chromosome arms (D). FC = intensity of region / intensity chromosome average. Lower and upper bounds are given by 95% confidence intervals. These tables show the ordering of the 17 F_2 crosses (Salomé et al, Heredity 2012) shown in Figure 3 of the main text. These crosses are: P2:Lov-5×Sha, P3:Bur-0×Bay-0, P6:Van-0×Bor-4, P7:NFA-8×Van-0, P8:Est-1×RRS7, P9:Tsu-1×RRS10, P10:Bur-0×Cvi-0, P12:Est-1×Br-0, P15:Br-0×C24, P17:Cvi-0×RRS7, P19:Bay-0×Lov-5, P20:Bor-4×NFA-8, P35:Tamm-2×Col-0, P66: Fei-0×Col-0, P129:C24×RRS10, P145:Sha×Fei-0, P169:Ts-1×Tsu-1.

Figure S1

BS signal for HMM classification

126 Mendelian DMRs

WT ddm1 14 -14 # 24nt siRNA hit-normalised density (reads per kb per 1 million reads) 12 -12 -10 10 8 8 6 6 -4 4 2 2 0 0 _ Reversible Stable Stable Reversible DMRs **DMRs** DMRs DMRs

> Wilcoxon rank test p-value = 0.0003155

Wilcoxon rank test p-value < 2.2e-16

Figure S4

Figure S5-1

log₂ Input

Figure S5-2

log₂ Input

Figure S5-3

log₂ Input

Figure S6

Recombination fractions

Markers

Figure S7

Parental origin of non-recombinant pericentromere

```
Figure S8-1
```


chromosome length (Mb)

Mb

0.0e+00

chromosome1

chromosome4

2.0e+07

 $\Delta(cM/Mb)$ vs $\Delta(Mb)$


```
Figure S14-1
```


Figure S14-2


```
Figure S14-3
```


Figure S14-4

7 Annotation Density $^{\circ}$ ~ Hotspot Density Ш $^{\circ}$ 18 0 10 12 16 2 6 8 14 4 Position (Mb)

```
Figure S14-5
```


Recombination intensity around transition

Table S1

	R60	R98	R202	R260	R344	R480
% Overlap	87.97	87.20	86.56	86.66	86.06	81.00
% U probes	98.23	97.77	97.53	97.79	98.15	95.37
% I probes	9.37	16.34	19.07	12.45	9.91	28.11
% M probes	83.91	78.53	80.83	86.14	81.21	73.30

Table S2

dmr_id	chromosome	start_bp	stop_bp
DMR-1	1	525857	526242
DMR-2	1	4145856	4146121
DMR-3	1	4330606	4332076
DMR-4	1	5098227	5098853
DMR-5	1	5353427	5354443
DMR-6	1	5691687	5695344
DMR-7	1	5893659	5893999
DMR-8	1	5913461	5915811
DMR-9	1	6010663	6013983
DMR-10	1	6156483	6158964
DMR-11	1	6302732	6303012
DMR-12	1	7073762	7074092
DMR-13	1	7254722	7257249
DMR-14	1	7430002	7432267
DMR-15	1	7745823	7748073
DMR-16	1	8159758	8160748
DMR-17	1	8453446	8453821
DMR-18	1	8456761	8459067
DMR-19	1	8461252	8461915
DMR-20	1	8490901	8491751
DMR-21	1	8779330	8780036
DMR-22	1	8801988	8802650
DMR-23	1	8816171	8816837
DMR-24	1	8830699	8831320
DMR-25	1	8931514	8932319
DMR-26	1	9004728	9015770
DMR-27	1	9018095	9018740
DMR-28	1	9370023	9373488
DMR-29	1	9464911	9465256
DMR-30	1	9574179	9575333
DMR-31	1	9585538	9585888
DMR-32	1	9676596	9681110
DMR-33	1	9682045	9691308
DMR-34	1	9928550	9929215
DMR-35	1	10007603	10007973
DMR-36	1	10152819	10153458
DMR-37	1	10154128	10156602
DMR-38	1	10357405	10358870
DMR-39	1	10545345	10545839
DMR-40	1	10591542	10592022
DMR-41	1	10602467	10602964
DMR-42	1	10745827	10746132
DMR-43	1	10930125	10930458

DMR-44	1	11044649	11045616
DMR-45	1	11047114	11051415
DMR-46	1	11089513	11090028
DMR-47	1	11096911	11100708
DMR-48	1	11102419	11102716
DMR-49	1	11148121	11152847
DMR-50	1	11155054	11155344
DMR-51	1	11301045	11301528
DMR-52	1	11302214	11303059
DMR-53	1	11305681	11306466
DMR-54	1	11309661	11310311
DMR-55	1	11322798	11324178
DMR-56	1	11366246	11367244
DMR-57	1	11502846	11503351
DMR-58	1	11511756	11512571
DMR-59	1	11517887	11518652
DMR-60	1	11519343	11519828
DMR-61	1	11752127	11754934
DMR-62	1	11789416	11794100
DMR-63	1	11984511	11984824
DMR-64	1	11992096	11992401
DMR-65	1	12018333	12019768
DMR-66	1	12037760	12038430
DMR-67	1	12176188	12176848
DMR-68	1	12222214	12223049
DMR-69	1	12273252	12276332
DMR-70	1	12315004	12316774
DMR-71	1	12403422	12409842
DMR-72	1	12477035	12477365
DMR-73	1	12568561	12569061
DMR-74	1	12570419	12571041
DMR-75	1	12591046	12591497
DMR-76	1	12627186	12628276
DMR-77	1	12631300	12632109
DMR-78	1	12665781	12666246
DMR-79	1	12667939	12671224
DMR-80	1	12674514	12675189
DMR-81	1	12691357	12691647
DMR-82	1	12698951	12699226
DMR-83	1	12699935	12701714
DMR-84	1	12711641	12722880
DMR-85	1	12724010	12728956
DMR-86	1	12741147	12741472
DMR-87	1	12753406	12760337
DMR-88	1	12856990	12862085
DMR-89	1	12886199	12886839
DMR-90	1	12922989	12923311

DMR-91	1	12953326	12953821
DMR-92	1	12987529	12987854
DMR-93	1	12997426	13001226
DMR-94	1	13003181	13008641
DMR-95	1	13018502	13019187
DMR-96	1	13021477	13023341
DMR-97	1	13098250	13102655
DMR-98	1	13139284	13140168
DMR-99	1	13181421	13183006
DMR-100	1	13183871	13186306
DMR-101	1	13238644	13239154
DMR-102	1	13239811	13242134
DMR-103	1	13243578	13244443
DMR-104	1	13245769	13246224
DMR-105	1	13264736	13265031
DMR-106	1	13292792	13293122
DMR-107	1	13303473	13304498
DMR-108	1	13311395	13313565
DMR-109	1	13329072	13340087
DMR-110	1	13340457	13340972
DMR-111	1	13348682	13349007
DMR-112	1	13354819	13355104
DMR-113	1	13372768	13377246
DMR-114	1	13377891	13380727
DMR-115	1	13382192	13386947
DMR-116	1	13391912	13397522
DMR-117	1	13406151	13407751
DMR-118	1	13410597	13416544
DMR-119	1	13419144	13422650
DMR-120	1	13427752	13429697
DMR-121	1	13433353	13434184
DMR-122	1	13435634	13436504
DMR-123	1	13441785	13444705
DMR-124	1	13447666	13448656
DMR-125	1	13483008	13484797
DMR-126	1	13486951	13488601
DMR-127	1	13491291	13491906
DMR-128	1	13499704	13500341
DMR-129	1	13502344	13502970
DMR-130	1	13505971	13507291
DMR-131	1	13546183	13546503
DMR-132	1	13561188	13566504
DMR-133	1	13574775	13575380
DMR-134	1	13575905	13578212
DMR-135	1	13609050	13611740
DMR-136	1	13614690	13616505
DMR-137	1	13618483	13621742

DMR-138	1	13628014	13629692
DMR-139	1	13680349	13682839
DMR-140	1	13690605	13696354
DMR-141	1	13711542	13711832
DMR-142	1	13715007	13715657
DMR-143	1	13719771	13720576
DMR-144	1	13723276	13726066
DMR-145	1	13730541	13731347
DMR-146	1	13736274	13736584
DMR-147	1	13745340	13746177
DMR-148	1	13752141	13752791
DMR-149	1	13755266	13756219
DMR-150	1	13762371	13762816
DMR-151	1	13767461	13767792
DMR-152	1	13779346	13779696
DMR-153	1	13780371	13780806
DMR-154	1	13814841	13815321
DMR-155	1	13815957	13817799
DMR-156	1	13819638	13820442
DMR-157	1	13826895	13828486
DMR-158	1	13833771	13837234
DMR-159	1	13844188	13848140
DMR-160	1	13849806	13850281
DMR-161	1	13859059	13859839
DMR-162	1	13872096	13873549
DMR-163	1	13874905	13878010
DMR-164	1	13879195	13879640
DMR-165	1	13924397	13925524
DMR-166	1	13927386	13927651
DMR-167	1	13931632	13932637
DMR-168	1	13937767	13938707
DMR-169	1	13949477	13950282
DMR-170	1	13956862	13960687
DMR-171	1	13964788	13965280
DMR-172	1	13969593	13972424
DMR-173	1	13976502	13977367
DMR-174	1	13983607	13984268
DMR-175	1	13984918	13985273
DMR-176	1	13986093	13986393
DMR-177	1	13988207	13989704
DMR-178	1	13990239	13990519
DMR-179	1	13997825	13998275
DMR-180	1	14000766	14001618
DMR-181	1	14021704	14022069
DMR-182	1	14037747	14039365
DMR-183	1	14039913	14040404
DMR-184	1	14041565	14044311

DMR-185	1	14050129	14050964
DMR-186	1	14052579	14054259
DMR-187	1	14055047	14061305
DMR-188	1	14063657	14066620
DMR-189	1	14066965	14070057
DMR-190	1	14077334	14077690
DMR-191	1	14083297	14084617
DMR-192	1	14099117	14099611
DMR-193	1	14103543	14104753
DMR-194	1	14112958	14119383
DMR-195	1	14131943	14137208
DMR-196	1	14139558	14141023
DMR-197	1	14146506	14147761
DMR-198	1	14189208	14189839
DMR-199	1	14190383	14191339
DMR-200	1	14197654	14198638
DMR-201	1	14220243	14222676
DMR-202	1	14302730	14306046
DMR-203	1	14326954	14327284
DMR-204	1	14335079	14335886
DMR-205	1	14347579	14349784
DMR-206	1	14353688	14355518
DMR-207	1	14362323	14362593
DMR-208	1	14372715	14374834
DMR-209	1	14393152	14394827
DMR-210	1	14399266	14401046
DMR-211	1	14407851	14408131
DMR-212	1	14418868	14420507
DMR-213	1	14449277	14449602
DMR-214	1	14460170	14462150
DMR-215	1	14464620	14465570
DMR-216	1	14472698	14473024
DMR-217	1	14513578	14514098
DMR-218	1	14541178	14545088
DMR-219	1	14819493	14820677
DMR-220	1	14842923	14845383
DMR-221	1	14848035	14849200
DMR-222	1	14878434	14879599
DMR-223	1	14882406	14884716
DMR-224	1	14896905	14899681
DMR-225	1	15003185	15009456
DMR-226	1	15142085	15142725
DMR-227	1	15152615	15153335
DMR-228	1	15154819	15157109
DMR-229	1	15164718	15165353
DMR-230	1	15165828	15168298
DMR-231	1	15219602	15223099

DMR-232	1	15243886	15246170
DMR-233	1	15284161	15284806
DMR-234	1	15285451	15288751
DMR-235	1	15290116	15290735
DMR-236	1	15305127	15307087
DMR-237	1	15308042	15308542
DMR-238	1	15309072	15309419
DMR-239	1	15315689	15318775
DMR-240	1	15340915	15343024
DMR-241	1	15382315	15383010
DMR-242	1	15383660	15386750
DMR-243	1	15388250	15388769
DMR-244	1	15403289	15404904
DMR-245	1	15406219	15406584
DMR-246	1	15407209	15407571
DMR-247	1	15440759	15445345
DMR-248	1	15446035	15446975
DMR-249	1	15513196	15513631
DMR-250	1	15522224	15525362
DMR-251	1	15528192	15531620
DMR-252	1	15550286	15550766
DMR-253	1	15551291	15552086
DMR-254	1	15577694	15578529
DMR-255	1	15582994	15587070
DMR-256	1	15593660	15594495
DMR-257	1	15620432	15625706
DMR-258	1	15628145	15632000
DMR-259	1	15635301	15636893
DMR-260	1	15647454	15648484
DMR-261	1	15689530	15690065
DMR-262	1	15748293	15748923
DMR-263	1	15759657	15762012
DMR-264	1	15769894	15772746
DMR-265	1	15779308	15779644
DMR-266	1	15782808	15784123
DMR-267	1	15800451	15800900
DMR-268	1	15815259	15817608
DMR-269	1	15821251	15822576
DMR-270	1	15870396	15872217
DMR-271	1	15874382	15874697
DMR-272	1	15881127	15881601
DMR-273	1	15911298	15911993
DIMR-2/4	1	15946135	15947260
DMR-275	1	15952423	15953198
DIMR-276	1	15955564	15956344
DMR-277	1	15974046	15974863
DMR-278	1	15987243	15987706

DMR-279	1	15994140	15994835
DMR-280	1	15998574	15999264
DMR-281	1	16004875	16005860
DMR-282	1	16011660	16012459
DMR-283	1	16042016	16046253
DMR-284	1	16055053	16055378
DMR-285	1	16056198	16058308
DMR-286	1	16058654	16061269
DMR-287	1	16065722	16066417
DMR-288	1	16073021	16075146
DMR-289	1	16077497	16079431
DMR-290	1	16098889	16101755
DMR-291	1	16109836	16111806
DMR-292	1	16120838	16124817
DMR-293	1	16125493	16125788
DMR-294	1	16174023	16174303
DMR-295	1	16174849	16176279
DMR-296	1	16179459	16183728
DMR-297	1	16188329	16189474
DMR-298	1	16194477	16195744
DMR-299	1	16197618	16198273
DMR-300	1	16209336	16213457
DMR-301	1	16216220	16217715
DMR-302	1	16219891	16221036
DMR-303	1	16223133	16224143
DMR-304	1	16226442	16227752
DMR-305	1	16229783	16230098
DMR-306	1	16241631	16242456
DMR-307	1	16252521	16253186
DMR-308	1	16283898	16285198
DMR-309	1	16288200	16288860
DMR-310	1	16292636	16292986
DMR-311	1	16300039	16301513
DMR-312	1	16321198	16321833
DMR-313	1	16329784	16330219
DMR-314	1	16331866	16337035
DMR-315	1	16338796	16341818
DMR-316	1	1636/839	16368499
DMR-317	1	16372020	16377961
DMR-318	1	163/8251	163/9910
DMR-319	1	16393296	16393971
DIMR-320	1	16406///	16409124
	Ţ	1042510/	10425602
	1	16451532	10452325
	1	1640244031	16404454
	1	10492119	10494454
DIVIK-325	1	10203303	10510446

DMR-326	1	16532567	16536974
DMR-327	1	16554298	16559608
DMR-328	1	16567689	16568185
DMR-329	1	16571345	16577420
DMR-330	1	16583872	16585347
DMR-331	1	16605662	16606482
DMR-332	1	16610222	16612082
DMR-333	1	16614871	16615176
DMR-334	1	16662920	16665717
DMR-335	1	16676929	16678204
DMR-336	1	16680244	16684809
DMR-337	1	16695209	16700209
DMR-338	1	16713569	16713884
DMR-339	1	16718975	16720795
DMR-340	1	16727043	16732876
DMR-341	1	16733536	16733986
DMR-342	1	16734832	16739267
DMR-343	1	16745085	16745530
DMR-344	1	16748385	16748665
DMR-345	1	16757075	16757410
DMR-346	1	16809934	16810420
DMR-347	1	16844050	16845568
DMR-348	1	16848979	16849677
DMR-349	1	16855805	16857585
DMR-350	1	16858275	16860405
DMR-351	1	16861208	16861524
DMR-352	1	16870325	16870805
DMR-353	1	16883688	16884463
DMR-354	1	16885141	16886116
DMR-355	1	17025691	17031861
DMR-356	1	17037470	17038124
DMR-357	1	17039259	17052316
DMR-358	1	17106923	17107383
DMR-359	1	17184427	17184752
DMR-360	1	17206100	17208560
DMR-361	1	17232970	17234090
DMR-362	1	17242364	17243167
DMR-363	1	17257708	17258178
DMR-364	1	17258838	17264340
DMR-365	1	17265653	17266923
DMR-366	1	17284412	17285075
DMR-367	1	17363118	17368434
DMR-368	1	17450795	17451090
DMR-369	1	17491702	17492657
DMR-370	1	17523013	17526003
DMR-371	1	17536099	17536719
DMR-372	1	17543357	17543652

DMR-373	1	17546641	17547096
DMR-374	1	17549782	17550257
DMR-375	1	17624374	17624644
DMR-376	1	17627467	17629817
DMR-377	1	17671709	17675959
DMR-378	1	17678326	17685879
DMR-379	1	17824180	17824625
DMR-380	1	18005691	18010925
DMR-381	1	18093468	18093752
DMR-382	1	18098191	18099679
DMR-383	1	18166541	18168193
DMR-384	1	18217549	18218148
DMR-385	1	18232348	18232723
DMR-386	1	18275136	18275794
DMR-387	1	18510569	18510863
DMR-388	1	18850321	18850821
DMR-389	1	18910876	18911807
DMR-390	1	18966470	18967584
DMR-391	1	18968104	18968769
DMR-392	1	18969287	18970411
DMR-393	1	18971211	18972691
DMR-394	1	19026209	19026524
DMR-395	1	19027171	19027481
DMR-396	1	19321236	19322201
DMR-397	1	19340045	19343672
DMR-398	1	19344617	19349263
DMR-399	1	19376283	19376622
DMR-400	1	19599419	19600065
DMR-401	1	19602225	19603333
DMR-402	1	19680428	19682370
DMR-403	1	19683515	19684030
DMR-404	1	19709973	19710245
DMR-405	1	19912915	19913197
DMR-406	1	20036792	20037443
DMR-407	1	20088798	20093878
DMR-408	1	20316625	20317155
DMR-409	1	20319443	20320248
DMR-410	1	20323573	20324233
DMR-411	1	20337631	20338751
DMR-412	1	20628519	20629294
DMR-413	1	20687106	20689701
DMR-414	1	20930450	20930960
DMR-415	1	21022509	21022839
DMR-416	1	21247900	21253007
DMR-417	1	21288034	21288524
DMR-418	1	21351066	21352716
DMR-419	1	21354006	21354966

DMR-420	1	21393773	21395395
DMR-421	1	21396092	21396592
DMR-422	1	21457161	21459296
DMR-423	1	21459776	21460452
DMR-424	1	21634333	21634698
DMR-425	1	21695576	21696186
DMR-426	1	21750810	21758234
DMR-427	1	21759069	21761386
DMR-428	1	21779239	21780706
DMR-429	1	21800299	21800659
DMR-430	1	21801669	21802299
DMR-431	1	21815497	21816819
DMR-432	1	21837927	21838792
DMR-433	1	21851635	21853262
DMR-434	1	21961370	21961666
DMR-435	1	22066299	22066950
DMR-436	1	22104456	22106077
DMR-437	1	22106752	22107377
DMR-438	1	22118472	22118807
DMR-439	1	22167103	22168133
DMR-440	1	22234806	22236246
DMR-441	1	22699760	22702905
DMR-442	1	22783409	22783734
DMR-443	1	23121950	23126900
DMR-444	1	23144235	23144720
DMR-445	1	23155970	23156822
DMR-446	1	23333374	23333649
DMR-447	1	23513865	23514160
DMR-448	1	23570478	23572928
DMR-449	1	24045514	24045970
DMR-450	1	24275688	24276121
DMR-451	1	24280311	24280761
DMR-452	1	24354337	24357855
DMR-453	1	24432541	24433101
DMR-454	1	24458485	24458985
DMR-455	1	24459659	24460449
DMR-456	1	24609800	24610085
DMR-457	1	24646941	24647261
DMR-458	1	24670998	24671353
DMR-459	1	25061359	25061734
DMR-460	1	26200063	26200847
DMR-461	1	26760223	26761023
DMR-462	1	27070457	27071391
DMR-463	1	28707900	28708696
DMR-464	1	28969586	28970097
DMR-465	1	28998776	28999419
DMR-466	1	29382087	29382603

DMR-467	1	29385346	29385711
DMR-468	1	29481415	29483540
DMR-469	2	21659	22979
DMR-470	2	25420	26945
DMR-471	2	50017	50512
DMR-472	2	53000	53493
DMR-473	2	65042	66062
DMR-474	2	245700	249332
DMR-475	2	373127	378679
DMR-476	2	531631	537604
DMR-477	2	576205	576535
DMR-478	2	639111	639386
DMR-479	2	678363	678853
DMR-480	2	721561	721884
DMR-481	2	904535	905356
DMR-482	2	925027	929979
DMR-483	2	930664	930979
DMR-484	2	963169	963436
DMR-485	2	1196278	1196748
DMR-486	2	1198126	1198622
DMR-487	2	1199222	1204062
DMR-488	2	1214740	1215580
DMR-489	2	1217765	1220349
DMR-490	2	1221499	1222489
DMR-491	2	1226299	1226634
DMR-492	2	1227799	1231951
DMR-493	2	1246133	1246638
DMR-494	2	1251574	1252848
DMR-495	2	1267915	1268856
DMR-496	2	1295597	1296262
DMR-497	2	1305333	1306837
DMR-498	2	1308157	1308462
DMR-499	2	1312475	1313135
DMR-500	2	1326824	1327598
DMR-501	2	1330073	1330408
DMR-502	2	1342327	1343977
DMR-503	2	1345741	1346236
DMR-504	2	1349600	1350075
DMR-505	2	1352048	1352343
DMR-506	2	1387172	1387692
DMR-507	2	1401845	1402997
DMR-508	2	1420825	1421650
DMR-509	2	1434558	1435223
DMR-510	2	1469377	1469822
DMR-511	2	1485511	1488641
DMR-512	2	1490016	1490456
DMR-513	2	1505637	1506007

DMR-514	2	1508652	1510106
DMR-515	2	1512106	1512456
DMR-516	2	1549565	1551889
DMR-517	2	1601884	1602316
DMR-518	2	1606657	1607947
DMR-519	2	1650532	1651672
DMR-520	2	1665553	1668318
DMR-521	2	1728091	1728591
DMR-522	2	1740813	1741133
DMR-523	2	1758406	1759278
DMR-524	2	1761384	1763397
DMR-525	2	1765892	1766192
DMR-526	2	1772150	1772628
DMR-527	2	1773473	1774760
DMR-528	2	1781534	1782394
DMR-529	2	1783524	1787124
DMR-530	2	1798189	1798685
DMR-531	2	1804778	1805118
DMR-532	2	1810255	1811557
DMR-533	2	1814183	1815673
DMR-534	2	1816373	1817973
DMR-535	2	1828697	1836838
DMR-536	2	1840248	1840943
DMR-537	2	1885678	1886283
DMR-538	2	1906578	1912199
DMR-539	2	1944372	1946238
DMR-540	2	1949643	1953330
DMR-541	2	1956620	1958940
DMR-542	2	1968834	1969119
DMR-543	2	1970651	1974556
DMR-544	2	1989408	1989799
DMR-545	2	1996055	2010863
DMR-546	2	2019170	2019605
DMR-547	2	2021747	2022427
DMR-548	2	2024781	2025091
DMR-549	2	2031037	2031871
DMR-550	2	2036129	2041384
DMR-551	2	2041761	2046373
DMR-552	2	2047493	2054088
DMR-553	2	2075543	2080503
DMR-554	2	2089615	2092240
DMR-555	2	2093085	2094872
DMR-556	2	2098311	2101640
DMR-557	2	2102270	2102605
DMR-558	2	2103304	2104922
DMR-559	2	2107257	2109372
DMR-560	2	2130214	2130978

DMR-561	2	2133346	2134939
DMR-562	2	2158380	2158700
DMR-563	2	2162548	2163707
DMR-564	2	2165972	2167117
DMR-565	2	2168983	2170432
DMR-566	2	2176518	2176853
DMR-567	2	2205113	2206099
DMR-568	2	2221580	2222586
DMR-569	2	2263184	2264626
DMR-570	2	2274197	2282139
DMR-571	2	2293691	2295652
DMR-572	2	2302422	2306737
DMR-573	2	2311820	2312175
DMR-574	2	2365305	2370917
DMR-575	2	2373250	2373893
DMR-576	2	2378013	2380298
DMR-577	2	2382603	2384109
DMR-578	2	2384915	2388386
DMR-579	2	2390901	2395673
DMR-580	2	2396463	2399270
DMR-581	2	2410511	2410881
DMR-582	2	2414809	2417754
DMR-583	2	2419949	2420229
DMR-584	2	2437115	2437760
DMR-585	2	2440051	2441182
DMR-586	2	2444174	2447627
DMR-587	2	2475369	2483949
DMR-588	2	2503921	2504271
DMR-589	2	2512486	2513326
DMR-590	2	2514499	2516255
DMR-591	2	2517275	2518891
DMR-592	2	2522902	2523372
DMR-593	2	2526197	2529458
DMR-594	2	2534900	2535230
DMR-595	2	2536051	2537221
DMR-596	2	2538418	2542172
DMR-597	2	2562315	2562785
DMR-598	2	2568290	2569725
DMR-599	2	2570893	2572250
DMR-600	2	2573865	2574690
DMR-601	2	2594011	2597826
DMR-602	2	2617748	2618258
DMR-603	2	2625665	2627800
DMR-604	2	2631790	2634105
DMR-605	2	2635275	2635750
DMR-606	2	2637571	2638023
DMR-607	2	2638878	2639404

DMR-608	2	2640539	2647445
DMR-609	2	2649242	2651942
DMR-610	2	2660192	2662657
DMR-611	2	2663597	2664147
DMR-612	2	2665751	2667118
DMR-613	2	2667773	2678628
DMR-614	2	2685438	2687867
DMR-615	2	2694995	2695794
DMR-616	2	2701279	2703422
DMR-617	2	2704358	2706366
DMR-618	2	2709500	2711941
DMR-619	2	2720089	2720364
DMR-620	2	2724540	2727810
DMR-621	2	2739723	2742328
DMR-622	2	2747969	2754895
DMR-623	2	2780469	2780914
DMR-624	2	2781904	2785919
DMR-625	2	2790525	2791671
DMR-626	2	2793825	2798924
DMR-627	2	2800772	2804200
DMR-628	2	2810488	2812438
DMR-629	2	2813088	2815069
DMR-630	2	2815734	2818226
DMR-631	2	2821172	2821557
DMR-632	2	2834244	2836894
DMR-633	2	2844963	2849723
DMR-634	2	2873846	2876972
DMR-635	2	2883554	2887211
DMR-636	2	2902365	2906971
DMR-637	2	2908131	2911267
DMR-638	2	2913614	2914734
DMR-639	2	2916439	2917749
DMR-640	2	2932412	2934057
DMR-641	2	2936732	2937882
DMR-642	2	2941839	2942339
DMR-643	2	2943664	2943969
DMR-644	2	2949575	2949910
DMR-645	2	2969042	2973142
DMR-646	2	2995907	2997947
DMR-647	2	3004829	3005335
DMR-648	2	3010774	3012591
DMR-649	2	3025667	3028583
DMR-650	2	3029291	3039973
DMR-651	2	3040627	3041959
DMR-652	2	3044295	3045090
DMR-653	2	3078261	3078746
DMR-654	2	3107993	3109458

DMR-655	2	3111250	3112458
DMR-656	2	3113911	3114603
DMR-657	2	3124002	3126297
DMR-658	2	3136549	3137209
DMR-659	2	3148720	3149420
DMR-660	2	3152664	3155154
DMR-661	2	3158763	3159258
DMR-662	2	3160083	3166217
DMR-663	2	3171525	3173945
DMR-664	2	3175617	3179447
DMR-665	2	3198725	3200570
DMR-666	2	3204341	3206116
DMR-667	2	3213591	3215382
DMR-668	2	3220524	3220809
DMR-669	2	3224299	3225754
DMR-670	2	3231426	3237483
DMR-671	2	3258618	3259576
DMR-672	2	3509906	3511411
DMR-673	2	3511866	3512581
DMR-674	2	3517313	3522464
DMR-675	2	3575941	3577261
DMR-676	2	3585513	3587605
DMR-677	2	3588971	3589608
DMR-678	2	3590616	3591760
DMR-679	2	3593550	3594530
DMR-680	2	3655625	3656786
DMR-681	2	3658771	3659101
DMR-682	2	3662570	3663515
DMR-683	2	3665539	3667151
DMR-684	2	3681026	3681503
DMR-685	2	3694187	3699137
DMR-686	2	3708543	3709532
DMR-687	2	3710862	3712045
DMR-688	2	3715177	3715697
DMR-689	2	3717513	3719475
DMR-690	2	3730709	3734122
DMR-691	2	3751176	3753797
DMR-692	2	3760229	3761179
DMR-693	2	3762179	3763333
DMR-694	2	3792071	3793211
DMR-695	2	3796541	3797346
DMR-696	2	3800181	3802306
DMR-697	2	3806565	3806943
DMR-698	2	3807762	3808546
DMR-699	2	3809379	3810738
DMR-700	2	3811670	3814515
DMR-701	2	3826246	3826876

DMR-702	2	3896015	3899776
DMR-703	2	3911334	3912049
DMR-704	2	3915511	3915782
DMR-705	2	3930500	3932810
DMR-706	2	3943883	3945538
DMR-707	2	3946163	3949501
DMR-708	2	3950471	3951286
DMR-709	2	3966794	3968787
DMR-710	2	3985597	3986917
DMR-711	2	4019793	4023584
DMR-712	2	4024079	4025709
DMR-713	2	4047681	4047996
DMR-714	2	4050941	4051416
DMR-715	2	4057224	4060549
DMR-716	2	4064959	4066429
DMR-717	2	4068137	4072757
DMR-718	2	4073370	4074222
DMR-719	2	4077151	4077694
DMR-720	2	4096636	4098118
DMR-721	2	4099158	4103448
DMR-722	2	4117083	4127012
DMR-723	2	4157341	4159712
DMR-724	2	4207071	4209481
DMR-725	2	4232776	4233119
DMR-726	2	4233904	4243647
DMR-727	2	4251452	4252084
DMR-728	2	4253414	4253709
DMR-729	2	4255076	4256068
DMR-730	2	4258216	4260323
DMR-731	2	4265789	4268889
DMR-732	2	4274528	4275024
DMR-733	2	4283957	4289392
DMR-734	2	4300231	4301118
DMR-735	2	4302395	4302875
DMR-736	2	4315145	4315625
DMR-737	2	4327684	4329273
DMR-738	2	4330654	4332079
DMR-739	2	4369562	4376666
DMR-740	2	4390545	4393955
DMR-741	2	4395965	4397775
DMR-742	2	4413304	4414579
DMR-743	2	4442801	4444172
DMR-744	2	4447576	4448566
DMR-745	2	4458850	4459959
DMR-746	2	4466119	4467049
DMR-747	2	4467379	4468559
DMR-748	2	4475957	4477492

DMR-749	2	4480603	4481108
DMR-750	2	4493012	4494987
DMR-751	2	4508511	4509821
DMR-752	2	4514581	4516262
DMR-753	2	4557515	4560500
DMR-754	2	4561444	4561983
DMR-755	2	4562281	4563962
DMR-756	2	4573697	4574192
DMR-757	2	4580300	4581770
DMR-758	2	4590359	4592466
DMR-759	2	4630787	4633086
DMR-760	2	4639696	4640135
DMR-761	2	4642276	4643001
DMR-762	2	4648274	4649875
DMR-763	2	4651574	4656324
DMR-764	2	4661457	4662777
DMR-765	2	4667899	4669564
DMR-766	2	4671171	4675645
DMR-767	2	4676466	4678911
DMR-768	2	4679751	4681281
DMR-769	2	4683078	4685013
DMR-770	2	4699863	4700193
DMR-771	2	4707170	4710941
DMR-772	2	4715743	4716393
DMR-773	2	4731391	4733565
DMR-774	2	4740293	4742159
DMR-775	2	4746911	4747216
DMR-776	2	4792295	4794449
DMR-777	2	4798413	4799877
DMR-778	2	4816409	4824622
DMR-779	2	4825317	4828747
DMR-780	2	4829117	4833409
DMR-781	2	4837036	4838525
DMR-782	2	4839164	4839464
DMR-783	2	4840291	4840936
DMR-784	2	4841817	4842447
DMR-785	2	4842797	4844132
DMR-786	2	4847592	4849862
DMR-787	2	4865030	4866025
DMR-788	2	4868225	4868702
DMR-789	2	4869197	4869837
DMR-790	2	4872152	4872809
DMR-791	2	4875636	4876633
DMR-792	2	4877735	4878448
DMR-793	2	4880256	4882045
DMR-794	2	4882870	4893593
DMR-795	2	4894408	4895093

DMR-796	2	4901685	4905985
DMR-797	2	4907777	4908435
DMR-798	2	4911777	4912737
DMR-799	2	4917349	4917889
DMR-800	2	4926280	4927745
DMR-801	2	4930711	4931211
DMR-802	2	4948853	4949180
DMR-803	2	4974484	4977779
DMR-804	2	4978274	4979538
DMR-805	2	4980067	4980867
DMR-806	2	5001007	5001352
DMR-807	2	5009416	5009936
DMR-808	2	5022134	5023985
DMR-809	2	5029060	5029595
DMR-810	2	5031903	5034043
DMR-811	2	5037008	5037822
DMR-812	2	5041137	5044059
DMR-813	2	5069490	5074931
DMR-814	2	5081047	5081402
DMR-815	2	5081732	5082012
DMR-816	2	5082392	5082827
DMR-817	2	5083677	5086973
DMR-818	2	5097551	5099876
DMR-819	2	5113058	5113414
DMR-820	2	5128201	5130079
DMR-821	2	5156299	5158583
DMR-822	2	5178526	5179696
DMR-823	2	5180836	5185459
DMR-824	2	5188488	5188798
DMR-825	2	5190125	5191893
DMR-826	2	5224127	5225413
DMR-827	2	5246735	5252667
DMR-828	2	5287758	5288603
DMR-829	2	5294867	5295382
DMR-830	2	5296067	5298812
DMR-831	2	5299866	5300320
DMR-832	2	5300980	5302445
DMR-833	2	5303949	5304949
DMR-834	2	5305476	5306594
DMR-835	2	5307779	5312901
DMR-836	2	5313356	5313891
DMR-837	2	5314331	5317026
DMR-838	2	5319771	5320292
DMR-839	2	5322108	5323078
DMR-840	2	5324931	5326759
DMR-841	2	5328402	5328687
DMR-842	2	5331180	5333627

DMR-843	2	5335970	5336625
DMR-844	2	5347055	5348028
DMR-845	2	5388300	5392536
DMR-846	2	5393698	5395343
DMR-847	2	5411065	5413051
DMR-848	2	5418788	5423063
DMR-849	2	5448142	5449465
DMR-850	2	5453121	5461071
DMR-851	2	5463152	5463983
DMR-852	2	5467337	5468494
DMR-853	2	5469133	5470783
DMR-854	2	5476711	5477371
DMR-855	2	5477871	5478696
DMR-856	2	5479201	5479856
DMR-857	2	5480321	5480651
DMR-858	2	5482668	5485614
DMR-859	2	5486459	5491875
DMR-860	2	5494371	5497859
DMR-861	2	5503799	5505724
DMR-862	2	5524264	5526363
DMR-863	2	5533166	5534486
DMR-864	2	5544374	5544679
DMR-865	2	5588058	5588943
DMR-866	2	5607898	5608853
DMR-867	2	5609728	5612998
DMR-868	2	5620955	5638234
DMR-869	2	5672931	5675838
DMR-870	2	5717424	5723216
DMR-871	2	5724071	5724695
DMR-872	2	5725548	5726670
DMR-873	2	5730013	5730467
DMR-874	2	5731670	5732105
DMR-875	2	5737238	5738103
DMR-876	2	5781463	5781937
DMR-877	2	5784628	5785619
DMR-878	2	5799639	5804892
DMR-879	2	5822403	5823023
DMR-880	2	5823703	5824399
DMR-881	2	5825509	5826979
DMR-882	2	5828689	5829154
DMR-883	2	5833146	5834416
DMR-884	2	5836440	5837900
DMR-885	2	5853244	5858829
DMR-886	2	5859874	5864604
DMR-887	2	5885224	5886049
DMR-888	2	5887429	5889404
DMR-889	2	5903091	5905071

DMR-890	2	5907512	5908713
DMR-891	2	5952108	5953203
DMR-892	2	5954252	5955362
DMR-893	2	6016231	6020356
DMR-894	2	6036569	6038344
DMR-895	2	6068765	6072694
DMR-896	2	6079939	6082789
DMR-897	2	6084244	6085367
DMR-898	2	6088718	6089886
DMR-899	2	6098739	6099889
DMR-900	2	6101372	6105228
DMR-901	2	6112653	6114906
DMR-902	2	6116421	6119529
DMR-903	2	6123025	6126954
DMR-904	2	6128280	6129447
DMR-905	2	6132727	6134918
DMR-906	2	6141480	6146148
DMR-907	2	6156813	6159798
DMR-908	2	6165904	6169694
DMR-909	2	6201229	6201754
DMR-910	2	6204002	6206334
DMR-911	2	6263910	6268205
DMR-912	2	6336693	6341318
DMR-913	2	6342498	6352006
DMR-914	2	6356024	6356689
DMR-915	2	6358149	6360646
DMR-916	2	6379786	6380400
DMR-917	2	6384215	6384680
DMR-918	2	6386213	6386693
DMR-919	2	6427640	6434345
DMR-920	2	6440446	6447922
DMR-921	2	6454345	6456350
DMR-922	2	6468890	6470820
DMR-923	2	6472662	6473668
DMR-924	2	6481756	6485377
DMR-925	2	6497412	6497752
DMR-926	2	6515230	6515876
DMR-927	2	6531258	6531583
DMR-928	2	6536026	6538326
DMR-929	2	6539511	6540121
DMR-930	2	6557162	6558127
DMR-931	2	6560592	6561729
DMR-932	2	6562407	6565398
DMR-933	2	6566883	6567663
DMR-934	2	6587142	6589792
DMR-935	2	6595097	6598396
DMR-936	2	6631522	6633512

DMR-937	2	6654516	6655011
DMR-938	2	6693942	6694279
DMR-939	2	6707645	6713853
DMR-940	2	6726895	6727440
DMR-941	2	6743447	6743923
DMR-942	2	6774793	6779739
DMR-943	2	6787490	6788605
DMR-944	2	6790136	6793881
DMR-945	2	6849039	6849668
DMR-946	2	6851311	6853826
DMR-947	2	6866817	6867332
DMR-948	2	6918509	6921589
DMR-949	2	6942754	6946037
DMR-950	2	6961080	6965815
DMR-951	2	6969126	6969961
DMR-952	2	6971106	6973066
DMR-953	2	6973906	6974221
DMR-954	2	6974945	6975215
DMR-955	2	6976261	6977253
DMR-956	2	7012361	7016029
DMR-957	2	7018169	7026864
DMR-958	2	7073716	7078043
DMR-959	2	7120145	7121430
DMR-960	2	7122775	7123116
DMR-961	2	7178018	7178714
DMR-962	2	7231001	7231331
DMR-963	2	7232302	7232947
DMR-964	2	7233467	7236245
DMR-965	2	7239770	7245205
DMR-966	2	7296509	7301759
DMR-967	2	7306715	7307045
DMR-968	2	7388394	7388762
DMR-969	2	7455569	7459679
DMR-970	2	7460204	7461136
DMR-971	2	7463815	7464135
DMR-972	2	7534626	7534956
DMR-973	2	7544676	7545673
DMR-974	2	7588396	7591055
DMR-975	2	7784246	7791011
DMR-976	2	7886836	7887560
DMR-977	2	7913071	7913566
DMR-978	2	8023509	8025602
DMR-979	2	8081908	8082197
DMR-980	2	8278256	8281520
DMR-981	2	8420801	8421331
DMR-982	2	8568345	8571152
DMR-983	2	8572927	8574117
DMR-984	2	8597720	8598489
----------	---	----------	----------
DMR-985	2	8824215	8827670
DMR-986	2	8881486	8882476
DMR-987	2	9129123	9130835
DMR-988	2	9194501	9198421
DMR-989	2	9200785	9202235
DMR-990	2	9335929	9336730
DMR-991	2	9659660	9659972
DMR-992	2	10012063	10013577
DMR-993	2	10016045	10016720
DMR-994	2	10092568	10093879
DMR-995	2	10095423	10097405
DMR-996	2	10100201	10100677
DMR-997	2	10239261	10240293
DMR-998	2	10415627	10417647
DMR-999	2	10540595	10541195
DMR-1000	2	10643868	10644152
DMR-1001	2	10646519	10646834
DMR-1002	2	10647639	10649269
DMR-1003	2	10655591	10656693
DMR-1004	2	10881649	10882279
DMR-1005	2	12456566	12461464
DMR-1006	2	12546664	12548799
DMR-1007	2	12664247	12665092
DMR-1008	2	12743505	12743777
DMR-1009	2	12893657	12894147
DMR-1010	2	13167389	13167885
DMR-1011	2	14414952	14415277
DMR-1012	2	14415602	14417057
DMR-1013	2	14419077	14419557
DMR-1014	2	14560785	14561251
DMR-1015	2	15418592	15418927
DMR-1016	2	16028930	16029320
DMR-1017	2	16098739	16099054
DMR-1018	2	16897371	16897656
DMR-1019	2	17099658	17102643
DMR-1020	2	19381131	19381454
DMR-1021	3	129256	129877
DMR-1022	3	557729	558034
DMR-1023	3	1075371	1075802
DMR-1024	3	1963715	1966177
DMR-1025	3	1968012	1969832
DMR-1026	3	2817878	2818698
DMR-1027	3	3686983	3687458
DMR-1028	3	3812048	3813004
DMR-1029	3	4759787	4760747
DMR-1030	3	4928060	4930563

DMR-1031	3	4931523	4932183
DMR-1032	3	5153492	5156612
DMR-1033	3	5278085	5278731
DMR-1034	3	5279181	5279726
DMR-1035	3	5281545	5284518
DMR-1036	3	5286109	5286663
DMR-1037	3	5651302	5652266
DMR-1038	3	5839552	5840347
DMR-1039	3	7061219	7061849
DMR-1040	3	7343551	7344491
DMR-1041	3	7738889	7739204
DMR-1042	3	7749121	7750426
DMR-1043	3	7813946	7814266
DMR-1044	3	7847738	7848087
DMR-1045	3	7849933	7850213
DMR-1046	3	7857798	7858190
DMR-1047	3	7859655	7860165
DMR-1048	3	8026464	8027289
DMR-1049	3	8371669	8371964
DMR-1050	3	8526380	8527535
DMR-1051	3	8537433	8543374
DMR-1052	3	8789616	8790056
DMR-1053	3	8796545	8796815
DMR-1054	3	8842880	8852635
DMR-1055	3	8853626	8858238
DMR-1056	3	8894885	8895195
DMR-1057	3	8937125	8938547
DMR-1058	3	8956209	8957544
DMR-1059	3	9013953	9017102
DMR-1060	3	9140014	9140899
DMR-1061	3	9228167	9232640
DMR-1062	3	9238084	9242146
DMR-1063	3	9328936	9329446
DMR-1064	3	9436406	9439321
DMR-1065	3	9445436	9447571
DMR-1066	3	9472325	9473025
DMR-1067	3	9577096	9577653
DMR-1068	3	9693424	9699210
DMR-1069	3	9709133	9710285
DMR-1070	3	10107469	10112729
DMR-1071	3	10340943	10341258
DMR-1072	3	10341743	10345018
DMR-1073	3	10462200	10462818
DMR-1074	3	10463668	10466159
DMR-1075	3	10526695	10527338
DMR-1076	3	10531968	10533278
DMR-1077	3	10560373	10561358

DMR-1078	3	10562023	10563840
DMR-1079	3	10606382	10606757
DMR-1080	3	10637256	10639722
DMR-1081	3	10767279	10767580
DMR-1082	3	10811305	10814329
DMR-1083	3	10818257	10820055
DMR-1084	3	10836274	10836707
DMR-1085	3	10886897	10890032
DMR-1086	3	10918937	10922352
DMR-1087	3	10939029	10939339
DMR-1088	3	11017268	11019418
DMR-1089	3	11020413	11022008
DMR-1090	3	11029136	11030146
DMR-1091	3	11066720	11068910
DMR-1092	3	11093130	11093796
DMR-1093	3	11113628	11114288
DMR-1094	3	11117372	11121888
DMR-1095	3	11172354	11176989
DMR-1096	3	11222176	11222476
DMR-1097	3	11224625	11225657
DMR-1098	3	11296782	11297891
DMR-1099	3	11344308	11345918
DMR-1100	3	11347879	11348536
DMR-1101	3	11349913	11355358
DMR-1102	3	11356848	11360254
DMR-1103	3	11362954	11363559
DMR-1104	3	11366256	11367206
DMR-1105	3	11391168	11391633
DMR-1106	3	11393148	11396743
DMR-1107	3	11406460	11407833
DMR-1108	3	11410958	11412437
DMR-1109	3	11415257	11415752
DMR-1110	3	11428955	11430881
DMR-1111	3	11434891	11437489
DMR-1112	3	11445111	11447263
DMR-1113	3	11453671	11454521
DMR-1114	3	11455024	11455831
DMR-1115	3	11464903	11465203
DMR-1116	3	11476443	11478290
DMR-1117	3	11478886	11480219
DMR-1118	3	11486668	11487976
DMR-1119	3	11488827	11489283
DMR-1120	3	11516694	11522953
DMR-1121	3	11523783	11524638
DMR-1122	3	11525478	11526303
DMR-1123	3	11547074	11548744
DMR-1124	3	11551816	11552972

DMR-1125	3	11558589	11562240
DMR-1126	3	11566840	11567185
DMR-1127	3	11571997	11572790
DMR-1128	3	11575310	11578712
DMR-1129	3	11579762	11588650
DMR-1130	3	11616558	11617008
DMR-1131	3	11620298	11623484
DMR-1132	3	11625744	11626094
DMR-1133	3	11629738	11631066
DMR-1134	3	11634376	11635026
DMR-1135	3	11652472	11652832
DMR-1136	3	11659589	11663036
DMR-1137	3	11666181	11672933
DMR-1138	3	11681402	11691289
DMR-1139	3	11694094	11696542
DMR-1140	3	11699832	11704447
DMR-1141	3	11735653	11736453
DMR-1142	3	11745751	11746215
DMR-1143	3	11755814	11756479
DMR-1144	3	11768329	11769485
DMR-1145	3	11774615	11779206
DMR-1146	3	11780227	11780517
DMR-1147	3	11783679	11785786
DMR-1148	3	11797070	11799048
DMR-1149	3	11820164	11821817
DMR-1150	3	11825881	11826261
DMR-1151	3	11831658	11832368
DMR-1152	3	11833311	11833966
DMR-1153	3	11835616	11836316
DMR-1154	3	11842264	11848157
DMR-1155	3	11851154	11851519
DMR-1156	3	11857577	11858567
DMR-1157	3	11869983	11870823
DMR-1158	3	11873443	11874619
DMR-1159	3	11877257	11878197
DMR-1160	3	11880032	11880339
DMR-1161	3	11880839	11884014
DMR-1162	3	11893099	11894374
DMR-1163	3	11929690	11930185
DMR-1164	3	11935156	11936166
DMR-1165	3	11942586	11943706
DMR-1166	3	11948002	11950826
DMR-1167	3	11957944	11958214
DMR-1168	3	11966792	11967348
DMR-1169	3	12012015	12014325
DMR-1170	3	12021293	12029659
DMR-1171	3	12047659	12048799

DMR-1172	3	12063861	12064368
DMR-1173	3	12096151	12098525
DMR-1174	3	12102648	12103936
DMR-1175	3	12153801	12154069
DMR-1176	3	12154895	12157705
DMR-1177	3	12162834	12165482
DMR-1178	3	12192374	12193874
DMR-1179	3	12212163	12212498
DMR-1180	3	12272931	12277004
DMR-1181	3	12284809	12287247
DMR-1182	3	12289392	12289707
DMR-1183	3	12294330	12294685
DMR-1184	3	12295346	12296152
DMR-1185	3	12306916	12309857
DMR-1186	3	12313474	12314669
DMR-1187	3	12328338	12329028
DMR-1188	3	12337774	12339254
DMR-1189	3	12347135	12349125
DMR-1190	3	12351416	12351741
DMR-1191	3	12380977	12381767
DMR-1192	3	12388866	12390186
DMR-1193	3	12397484	12399464
DMR-1194	3	12402598	12403238
DMR-1195	3	12420258	12423023
DMR-1196	3	12436762	12437762
DMR-1197	3	12447782	12448817
DMR-1198	3	12460968	12462013
DMR-1199	3	12464661	12464936
DMR-1200	3	12466746	12467272
DMR-1201	3	12505540	12513940
DMR-1202	3	12521215	12523015
DMR-1203	3	12528294	12528949
DMR-1204	3	12553548	12557556
DMR-1205	3	12562815	12564621
DMR-1206	3	12577849	12580766
DMR-1207	3	12581941	12582944
DMR-1208	3	12586049	12591679
DMR-1209	3	12592646	12593189
DMR-1210	3	12628125	12630764
DMR-1211	3	12632793	12633083
DMR-1212	3	12634221	12634772
DMR-1213	3	12637196	12638546
DMR-1214	3	12644153	12645163
DMR-1215	3	12647261	12651758
DMR-1216	3	12652230	12655856
DMR-1217	3	12678334	12683741
DMR-1218	3	12684226	12686532

DMR-1219	3	12688006	12695431
DMR-1220	3	12695949	12697920
DMR-1221	3	12701577	12702907
DMR-1222	3	12710487	12712922
DMR-1223	3	12722545	12724030
DMR-1224	3	12730800	12732557
DMR-1225	3	12733272	12736047
DMR-1226	3	12742016	12745982
DMR-1227	3	12752242	12752687
DMR-1228	3	12758673	12758989
DMR-1229	3	12760341	12761471
DMR-1230	3	12764453	12768208
DMR-1231	3	12772538	12782435
DMR-1232	3	12798944	12799384
DMR-1233	3	12812435	12813122
DMR-1234	3	12818738	12819043
DMR-1235	3	12831618	12835188
DMR-1236	3	12847074	12848885
DMR-1237	3	12853053	12855696
DMR-1238	3	12864886	12866106
DMR-1239	3	12875333	12875625
DMR-1240	3	12877974	12878304
DMR-1241	3	12879306	12879931
DMR-1242	3	12889487	12893308
DMR-1243	3	12893768	12894103
DMR-1244	3	12899268	12900408
DMR-1245	3	12904842	12906692
DMR-1246	3	12911770	12912740
DMR-1247	3	12923506	12927756
DMR-1248	3	12944150	12944810
DMR-1249	3	12945415	12947612
DMR-1250	3	12950360	12950910
DMR-1251	3	12951400	12952380
DMR-1252	3	12953050	12954340
DMR-1253	3	12955511	12956956
DMR-1254	3	12957323	12958478
DMR-1255	3	12973508	12983715
DMR-1256	3	12996786	12999587
DMR-1257	3	13000352	13001532
DMR-1258	3	13002725	13003023
DMR-1259	3	13004863	13005198
DMR-1260	3	13009641	13010476
DMR-1261	3	13014103	13014581
DMR-1262	3	13019530	13020860
DMR-1263	3	13023678	13024443
DMR-1264	3	13028624	13030750
DMR-1265	3	13033413	13036531

DMR-1266	3	13048266	13048556
DMR-1267	3	13057312	13062284
DMR-1268	3	13074938	13076480
DMR-1269	3	13078570	13079773
DMR-1270	3	13081898	13084214
DMR-1271	3	13092474	13093304
DMR-1272	3	13093967	13094572
DMR-1273	3	13108803	13117520
DMR-1274	3	13133190	13140287
DMR-1275	3	13140602	13141271
DMR-1276	3	13147583	13149053
DMR-1277	3	13149892	13152976
DMR-1278	3	13164875	13171153
DMR-1279	3	13174160	13175760
DMR-1280	3	13206614	13208295
DMR-1281	3	13212771	13213226
DMR-1282	3	13213922	13214362
DMR-1283	3	13216067	13216892
DMR-1284	3	13218692	13222827
DMR-1285	3	13226740	13227231
DMR-1286	3	13236826	13237491
DMR-1287	3	13239487	13239805
DMR-1288	3	13241943	13242303
DMR-1289	3	13243067	13243422
DMR-1290	3	13245752	13246087
DMR-1291	3	13246757	13247073
DMR-1292	3	13251167	13252822
DMR-1293	3	13253497	13254017
DMR-1294	3	13258145	13258580
DMR-1295	3	13276753	13279079
DMR-1296	3	13279725	13280586
DMR-1297	3	13286031	13290116
DMR-1298	3	13290796	13291621
DMR-1299	3	13302964	13303844
DMR-1300	3	13304119	13306101
DMR-1301	3	13308121	13310429
DMR-1302	3	13316050	13317670
DMR-1303	3	13322273	13328224
DMR-1304	3	13347892	13372461
DMR-1305	3	13389268	13390792
DMR-1306	3	13391433	13392599
DMR-1307	3	13398554	13399349
DMR-1308	3	13403675	13404312
DMR-1309	3	13417864	13419349
DMR-1310	3	13434172	13441751
DMR-1311	3	13456081	13456476
DMR-1312	3	13475436	13476916

DMR-1313	3	13504814	13505104
DMR-1314	3	13506800	13509261
DMR-1315	3	13512857	13513666
DMR-1316	3	13539122	13540072
DMR-1317	3	13545561	13546686
DMR-1318	3	13547849	13550794
DMR-1319	3	13556120	13557599
DMR-1320	3	13560753	13565495
DMR-1321	3	13567495	13569145
DMR-1322	3	13572433	13577690
DMR-1323	3	13581214	13583854
DMR-1324	3	13613685	13615865
DMR-1325	3	13667971	13671251
DMR-1326	3	13679032	13682822
DMR-1327	3	13744566	13747996
DMR-1328	3	13836582	13837077
DMR-1329	3	13885907	13887267
DMR-1330	3	13895479	13895984
DMR-1331	3	13896504	13897139
DMR-1332	3	13897484	13901747
DMR-1333	3	13908546	13909336
DMR-1334	3	13927500	13928870
DMR-1335	3	13930639	13933790
DMR-1336	3	13945200	13946965
DMR-1337	3	13954907	13955387
DMR-1338	3	13965958	13970883
DMR-1339	3	13971420	13974717
DMR-1340	3	13981162	13981667
DMR-1341	3	13985136	13986401
DMR-1342	3	13987426	13988386
DMR-1343	3	13990908	13991733
DMR-1344	3	13992548	13993538
DMR-1345	3	13993816	13994373
DMR-1346	3	14019275	14024065
DMR-1347	3	14031492	14032817
DMR-1348	3	14038586	14039076
DMR-1349	3	14039731	14045136
DMR-1350	3	14046501	14049949
DMR-1351	3	14054424	14055539
DMR-1352	3	14056710	14057870
DMR-1353	3	14063332	14064107
DMR-1354	3	14066637	14067743
DMR-1355	3	14070896	14073390
DMR-1356	3	14093703	14095645
DMR-1357	3	14112623	14115271
DMR-1358	3	14116594	14117747
DMR-1359	3	14121396	14124831

DMR-1360	3	14131118	14137431
DMR-1361	3	14170531	14171421
DMR-1362	3	14172063	14176145
DMR-1363	3	14178678	14179638
DMR-1364	3	14254714	14256500
DMR-1365	3	14257715	14258035
DMR-1366	3	14265589	14266072
DMR-1367	3	14272725	14276175
DMR-1368	3	14282255	14283290
DMR-1369	3	14284059	14285081
DMR-1370	3	14290169	14296151
DMR-1371	3	14299565	14300230
DMR-1372	3	14301251	14304902
DMR-1373	3	14313483	14313918
DMR-1374	3	14314632	14315072
DMR-1375	3	14325696	14326686
DMR-1376	3	14340532	14341142
DMR-1377	3	14343997	14344772
DMR-1378	3	14356030	14360455
DMR-1379	3	14364284	14365580
DMR-1380	3	14366730	14369690
DMR-1381	3	14371375	14372000
DMR-1382	3	14386390	14387730
DMR-1383	3	14388500	14389159
DMR-1384	3	14392316	14398727
DMR-1385	3	14399257	14399779
DMR-1386	3	14412448	14414103
DMR-1387	3	14440308	14442483
DMR-1388	3	14448905	14449230
DMR-1389	3	14465779	14466915
DMR-1390	3	14471382	14472677
DMR-1391	3	14479261	14479952
DMR-1392	3	14483060	14483395
DMR-1393	3	14486065	14487551
DMR-1394	3	14489682	14491827
DMR-1395	3	14492282	14493957
DMR-1396	3	14501577	14502347
DMR-1397	3	14505531	14507806
DMR-1398	3	14511119	14512109
DMR-1399	3	14514271	14514721
DMR-1400	3	14516601	14525662
DMR-1401	3	14526469	14531394
DMR-1402	3	14533544	14535865
DMR-1403	3	14536531	14541139
DMR-1404	3	14544929	14545745
DMR-1405	3	14548759	14551905
DMR-1406	3	14554846	14555706

DMR-1407	3	14571688	14572650
DMR-1408	3	14593634	14594150
DMR-1409	3	14597088	14597899
DMR-1410	3	14601738	14603024
DMR-1411	3	14608324	14610478
DMR-1412	3	14621999	14623294
DMR-1413	3	14627089	14630079
DMR-1414	3	14631276	14634186
DMR-1415	3	14658980	14659819
DMR-1416	3	14667560	14673640
DMR-1417	3	14676808	14680438
DMR-1418	3	14682423	14686383
DMR-1419	3	14689684	14691110
DMR-1420	3	14692490	14692923
DMR-1421	3	14694958	14695398
DMR-1422	3	14695947	14696922
DMR-1423	3	14701233	14712275
DMR-1424	3	14723675	14725968
DMR-1425	3	14729450	14730555
DMR-1426	3	14731415	14731861
DMR-1427	3	14740336	14746244
DMR-1428	3	14748912	14750513
DMR-1429	3	14751223	14752710
DMR-1430	3	14773836	14774941
DMR-1431	3	14777134	14777949
DMR-1432	3	14783735	14785160
DMR-1433	3	14787961	14791591
DMR-1434	3	14793452	14794078
DMR-1435	3	14795728	14796056
DMR-1436	3	14796551	14798535
DMR-1437	3	14810742	14811892
DMR-1438	3	14818004	14818664
DMR-1439	3	14846901	14847261
DMR-1440	3	14848874	14852534
DMR-1441	3	14855778	14860451
DMR-1442	3	14861386	14866182
DMR-1443	3	14866502	14870809
DMR-1444	3	14871953	14876794
DMR-1445	3	14878239	14881022
DMR-1446	3	14881724	14888146
DMR-1447	3	14896203	14897393
DMR-1448	3	14902309	14909464
DMR-1449	3	14911759	14913589
DMR-1450	3	14933495	14938441
DMR-1451	3	14942954	14950054
DMR-1452	3	14960285	14960555
DMR-1453	3	14973632	14984336

DMR-1454	3	14985177	14988138
DMR-1455	3	15004668	15008930
DMR-1456	3	15011270	15012065
DMR-1457	3	15017495	15018160
DMR-1458	3	15031379	15031721
DMR-1459	3	15035304	15036954
DMR-1460	3	15044103	15044388
DMR-1461	3	15046078	15048496
DMR-1462	3	15050536	15052176
DMR-1463	3	15056632	15058450
DMR-1464	3	15061717	15062566
DMR-1465	3	15073311	15079193
DMR-1466	3	15096195	15096731
DMR-1467	3	15115539	15118954
DMR-1468	3	15121305	15123572
DMR-1469	3	15143566	15145684
DMR-1470	3	15152840	15153615
DMR-1471	3	15155589	15156574
DMR-1472	3	15186655	15188455
DMR-1473	3	15240769	15243372
DMR-1474	3	15277212	15280347
DMR-1475	3	15290068	15293223
DMR-1476	3	15295233	15297204
DMR-1477	3	15302930	15304085
DMR-1478	3	15305616	15305932
DMR-1479	3	15307419	15307774
DMR-1480	3	15309095	15310251
DMR-1481	3	15318785	15325698
DMR-1482	3	15327024	15328679
DMR-1483	3	15330664	15334115
DMR-1484	3	15334825	15342538
DMR-1485	3	15347688	15348148
DMR-1486	3	15356271	15356561
DMR-1487	3	15370474	15372602
DMR-1488	3	15383988	15397165
DMR-1489	3	15398976	15404903
DMR-1490	3	15409187	15412489
DMR-1491	3	15424538	15426518
DMR-1492	3	15430514	15436462
DMR-1493	3	15437081	15438123
DMR-1494	3	15440878	15441378
DMR-1495	3	15451158	15455931
DMR-1496	3	15456900	15458380
DMR-1497	3	15469639	15471730
DMR-1498	3	15490212	15492567
DMR-1499	3	15493398	15493713
DMR-1500	3	15498185	15502945

DMR-1501	3	15506242	15509027
DMR-1502	3	15524751	15525181
DMR-1503	3	15536092	15537447
DMR-1504	3	15537727	15541865
DMR-1505	3	15546634	15549666
DMR-1506	3	15552591	15555731
DMR-1507	3	15558218	15559173
DMR-1508	3	15562535	15563030
DMR-1509	3	15564485	15565780
DMR-1510	3	15581951	15584422
DMR-1511	3	15586908	15587939
DMR-1512	3	15594323	15594818
DMR-1513	3	15596493	15596958
DMR-1514	3	15597453	15597842
DMR-1515	3	15602095	15607554
DMR-1516	3	15619620	15619935
DMR-1517	3	15632482	15638053
DMR-1518	3	15659990	15661143
DMR-1519	3	15698277	15702423
DMR-1520	3	15703910	15707550
DMR-1521	3	15708365	15708663
DMR-1522	3	15709220	15709880
DMR-1523	3	15721036	15721866
DMR-1524	3	15733942	15739352
DMR-1525	3	15740702	15741711
DMR-1526	3	15745979	15746624
DMR-1527	3	15748286	15749596
DMR-1528	3	15814138	15814597
DMR-1529	3	15819730	15821536
DMR-1530	3	15839404	15840499
DMR-1531	3	15858854	15865246
DMR-1532	3	15872239	15873997
DMR-1533	3	15904082	15904384
DMR-1534	3	15931106	15934929
DMR-1535	3	15959029	15959299
DMR-1536	3	15966424	15967234
DMR-1537	3	15970710	15972725
DMR-1538	3	15973325	15974977
DMR-1539	3	16008020	16009675
DMR-1540	3	16082613	16082888
DMR-1541	3	16083738	16084065
DMR-1542	3	16090022	16090333
DMR-1543	3	16165902	16168022
DMR-1544	3	16184523	16191125
DMR-1545	3	16212432	16213102
DMR-1546	3	16256031	16256361
DMR-1547	3	16257166	16260312

DMR-1548	3	16304478	16305033
DMR-1549	3	16332693	16333054
DMR-1550	3	16382872	16383187
DMR-1551	3	16467224	16467995
DMR-1552	3	16508925	16509440
DMR-1553	3	16521956	16523943
DMR-1554	3	16537151	16537961
DMR-1555	3	16538652	16539938
DMR-1556	3	16567011	16567378
DMR-1557	3	16602315	16604798
DMR-1558	3	16605830	16607125
DMR-1559	3	16613420	16615397
DMR-1560	3	16649710	16652158
DMR-1561	3	16653345	16653948
DMR-1562	3	16657628	16658465
DMR-1563	3	16682555	16683010
DMR-1564	3	16693080	16693890
DMR-1565	3	16702155	16709225
DMR-1566	3	16721122	16722919
DMR-1567	3	16730023	16731208
DMR-1568	3	16821132	16825096
DMR-1569	3	16839914	16840444
DMR-1570	3	16841244	16843054
DMR-1571	3	16858218	16860083
DMR-1572	3	16947346	16948145
DMR-1573	3	16950328	16950658
DMR-1574	3	16968323	16971958
DMR-1575	3	16973403	16973908
DMR-1576	3	17066626	17068591
DMR-1577	3	17070254	17070914
DMR-1578	3	17071279	17071619
DMR-1579	3	17122093	17122383
DMR-1580	3	17125577	17125903
DMR-1581	3	17158060	17158394
DMR-1582	3	17175403	17175728
DMR-1583	3	17367780	17368075
DMR-1584	3	17440504	17440845
DMR-1585	3	17443535	17445674
DMR-1586	3	17447489	17448620
DMR-1587	3	17989312	17996417
DMR-1588	3	18080249	18081216
DMR-1589	3	18098071	18098700
DMR-1590	3	18370976	18371431
DMR-1591	3	18802106	18802476
DMR-1592	3	18803786	18805767
DMR-1593	3	18806922	18807222
DMR-1594	3	20611370	20612135

DMR-1595	3	20675059	20675334
DMR-1596	3	20737079	20738412
DMR-1597	3	22081813	22082178
DMR-1598	3	22124026	22124532
DMR-1599	3	22124897	22126675
DMR-1600	3	22243503	22246468
DMR-1601	3	22249821	22250258
DMR-1602	3	22252078	22253265
DMR-1603	3	22393863	22402437
DMR-1604	3	22757461	22757983
DMR-1605	3	23121843	23123599
DMR-1606	3	23215509	23218355
DMR-1607	4	1346	2177
DMR-1608	4	49883	50223
DMR-1609	4	179049	179394
DMR-1610	4	248703	249488
DMR-1611	4	378906	379226
DMR-1612	4	415005	415524
DMR-1613	4	594231	594496
DMR-1614	4	633119	636937
DMR-1615	4	650283	650633
DMR-1616	4	788271	788751
DMR-1617	4	861167	863012
DMR-1618	4	864447	865638
DMR-1619	4	1017393	1018753
DMR-1620	4	1020858	1021533
DMR-1621	4	1027014	1027309
DMR-1622	4	1063645	1064292
DMR-1623	4	1312610	1315610
DMR-1624	4	1395963	1397223
DMR-1625	4	1438535	1439135
DMR-1626	4	1447714	1448102
DMR-1627	4	1449754	1455849
DMR-1628	4	1456849	1460754
DMR-1629	4	1461909	1463440
DMR-1630	4	1485369	1485866
DMR-1631	4	1568529	1568834
DMR-1632	4	1588355	1589015
DMR-1633	4	1592613	1594726
DMR-1634	4	1596067	1597228
DMR-1635	4	1629898	1632573
DMR-1636	4	1635544	1636175
DMR-1637	4	1639315	1641133
DMR-1638	4	1647079	1650360
DMR-1639	4	1666216	1667867
DMR-1640	4	1669202	1669682
DMR-1641	4	1671292	1671842

DMR-1642	4	1673102	1675784
DMR-1643	4	1677259	1677559
DMR-1644	4	1678109	1678774
DMR-1645	4	1744903	1746218
DMR-1646	4	1752482	1753632
DMR-1647	4	1761084	1762922
DMR-1648	4	1789984	1791244
DMR-1649	4	1792739	1794717
DMR-1650	4	1797403	1798008
DMR-1651	4	1799168	1799543
DMR-1652	4	1807419	1807912
DMR-1653	4	1820123	1823150
DMR-1654	4	1823758	1824406
DMR-1655	4	1827542	1830057
DMR-1656	4	1836482	1837117
DMR-1657	4	1846186	1847676
DMR-1658	4	1848556	1850185
DMR-1659	4	1856114	1856584
DMR-1660	4	1857244	1859444
DMR-1661	4	1865176	1866486
DMR-1662	4	1922637	1924607
DMR-1663	4	1961217	1961702
DMR-1664	4	1968459	1973961
DMR-1665	4	1976874	1979234
DMR-1666	4	1982859	1984160
DMR-1667	4	1987439	1993922
DMR-1668	4	1996722	1997328
DMR-1669	4	2003817	2004432
DMR-1670	4	2005917	2008256
DMR-1671	4	2013229	2013881
DMR-1672	4	2036475	2036788
DMR-1673	4	2041112	2044890
DMR-1674	4	2046033	2048209
DMR-1675	4	2056936	2060069
DMR-1676	4	2064710	2069637
DMR-1677	4	2079396	2080506
DMR-1678	4	2090087	2093053
DMR-1679	4	2099145	2105120
DMR-1680	4	2107230	2110519
DMR-1681	4	2136479	2143881
DMR-1682	4	2149316	2150151
DMR-1683	4	2154445	2157229
DMR-1684	4	2158544	2159687
DMR-1685	4	2163337	2164367
DMR-1686	4	2171105	2175733
DMR-1687	4	2176043	2177404
DMR-1688	4	2178034	2179053

DMR-1689	4	2183672	2184272
DMR-1690	4	2184992	2185267
DMR-1691	4	2188113	2203742
DMR-1692	4	2205950	2208691
DMR-1693	4	2210341	2211528
DMR-1694	4	2212028	2214798
DMR-1695	4	2222116	2222551
DMR-1696	4	2225902	2226182
DMR-1697	4	2235154	2237896
DMR-1698	4	2250134	2252125
DMR-1699	4	2254091	2256545
DMR-1700	4	2263009	2264516
DMR-1701	4	2270465	2273400
DMR-1702	4	2279834	2288764
DMR-1703	4	2297653	2298788
DMR-1704	4	2302576	2308022
DMR-1705	4	2309384	2310726
DMR-1706	4	2311384	2311714
DMR-1707	4	2355263	2355598
DMR-1708	4	2356046	2357721
DMR-1709	4	2419396	2419936
DMR-1710	4	2420411	2420945
DMR-1711	4	2425200	2426040
DMR-1712	4	2561855	2562292
DMR-1713	4	2584620	2585240
DMR-1714	4	2596832	2603097
DMR-1715	4	2606212	2607500
DMR-1716	4	2642156	2648752
DMR-1717	4	2695821	2701880
DMR-1718	4	2702710	2707050
DMR-1719	4	2708035	2708372
DMR-1720	4	2710188	2714125
DMR-1721	4	2730103	2731801
DMR-1722	4	2785747	2786907
DMR-1723	4	2787572	2788233
DMR-1724	4	2791473	2793018
DMR-1725	4	2809502	2811120
DMR-1726	4	2840988	2841366
DMR-1727	4	2842312	2842787
DMR-1728	4	2845313	2849759
DMR-1729	4	2850430	2850920
DMR-1730	4	2852195	2855200
DMR-1731	4	2896302	2897572
DMR-1732	4	2899556	2904543
DMR-1733	4	2917906	2918741
DMR-1734	4	2966066	2966551
DMR-1735	4	2982274	2983224

DMR-1736	4	2983754	2985514
DMR-1737	4	2997083	2997943
DMR-1738	4	3002066	3003551
DMR-1739	4	3050359	3052514
DMR-1740	4	3062090	3069212
DMR-1741	4	3069717	3071982
DMR-1742	4	3075992	3078282
DMR-1743	4	3101042	3102172
DMR-1744	4	3116202	3122651
DMR-1745	4	3129448	3130223
DMR-1746	4	3130713	3131238
DMR-1747	4	3134839	3137156
DMR-1748	4	3138800	3145420
DMR-1749	4	3285687	3287652
DMR-1750	4	3292909	3299374
DMR-1751	4	3301512	3308118
DMR-1752	4	3315016	3315346
DMR-1753	4	3317711	3318351
DMR-1754	4	3319036	3321981
DMR-1755	4	3322941	3326071
DMR-1756	4	3330408	3331687
DMR-1757	4	3360614	3361429
DMR-1758	4	3364190	3366030
DMR-1759	4	3367340	3369655
DMR-1760	4	3370683	3371328
DMR-1761	4	3384211	3386508
DMR-1762	4	3393236	3394769
DMR-1763	4	3405807	3408122
DMR-1764	4	3411232	3415179
DMR-1765	4	3417186	3418862
DMR-1766	4	3422432	3423107
DMR-1767	4	3423627	3427223
DMR-1768	4	3429578	3430545
DMR-1769	4	3433360	3436985
DMR-1770	4	3444605	3445257
DMR-1771	4	3448202	3451852
DMR-1772	4	3464211	3465996
DMR-1773	4	3466383	3467355
DMR-1774	4	3472798	3474618
DMR-1775	4	3476097	3480542
DMR-1776	4	3485679	3487789
DMR-1777	4	3501303	3503120
DMR-1778	4	3503945	3505655
DMR-1779	4	3518626	3519791
DMR-1780	4	3520997	3522318
DMR-1781	4	3522800	3524570
DMR-1782	4	3525396	3527433

DMR-1783	4	3533867	3536281
DMR-1784	4	3565525	3565860
DMR-1785	4	3573252	3573757
DMR-1786	4	3574457	3575117
DMR-1787	4	3577092	3582648
DMR-1788	4	3593758	3595857
DMR-1789	4	3597855	3603108
DMR-1790	4	3605808	3610379
DMR-1791	4	3628856	3629381
DMR-1792	4	3640781	3647018
DMR-1793	4	3647858	3649143
DMR-1794	4	3652663	3653605
DMR-1795	4	3655094	3659705
DMR-1796	4	3671974	3672459
DMR-1797	4	3680192	3682839
DMR-1798	4	3683359	3683960
DMR-1799	4	3685475	3689756
DMR-1800	4	3690397	3690782
DMR-1801	4	3707081	3715518
DMR-1802	4	3718168	3718628
DMR-1803	4	3719963	3722449
DMR-1804	4	3723288	3723917
DMR-1805	4	3726063	3726373
DMR-1806	4	3726918	3727888
DMR-1807	4	3734157	3735812
DMR-1808	4	3751328	3753103
DMR-1809	4	3754128	3756927
DMR-1810	4	3758210	3759727
DMR-1811	4	3795890	3797500
DMR-1812	4	3803124	3804119
DMR-1813	4	3824585	3828349
DMR-1814	4	3830505	3831365
DMR-1815	4	3837594	3838294
DMR-1816	4	3852423	3857391
DMR-1817	4	3880354	3883009
DMR-1818	4	3883829	3885754
DMR-1819	4	3888763	3890103
DMR-1820	4	3907067	3910232
DMR-1821	4	3913026	3913536
DMR-1822	4	3920752	3921447
DMR-1823	4	3921727	3922552
DMR-1824	4	3938607	3939053
DMR-1825	4	4077660	4079314
DMR-1826	4	4081670	4086562
DMR-1827	4	4089860	4092547
DMR-1828	4	4111142	4113621
DMR-1829	4	4117931	4118761

DMR-1830	4	4127859	4132778
DMR-1831	4	4136448	4136733
DMR-1832	4	4153901	4155260
DMR-1833	4	4162810	4163285
DMR-1834	4	4164333	4165643
DMR-1835	4	4166313	4167088
DMR-1836	4	4171701	4175036
DMR-1837	4	4250264	4252431
DMR-1838	4	4265805	4266931
DMR-1839	4	4267401	4268226
DMR-1840	4	4272356	4274698
DMR-1841	4	4283587	4286601
DMR-1842	4	4293140	4293805
DMR-1843	4	4319094	4320859
DMR-1844	4	4325662	4326002
DMR-1845	4	4335887	4336713
DMR-1846	4	4339870	4341172
DMR-1847	4	4345663	4346146
DMR-1848	4	4351892	4352732
DMR-1849	4	4353912	4354682
DMR-1850	4	4358332	4359964
DMR-1851	4	4376492	4381632
DMR-1852	4	4389186	4391842
DMR-1853	4	4394491	4400778
DMR-1854	4	4422497	4424477
DMR-1855	4	4445455	4447260
DMR-1856	4	4455850	4462922
DMR-1857	4	4485567	4487067
DMR-1858	4	4489827	4490996
DMR-1859	4	4503523	4503843
DMR-1860	4	4504343	4505843
DMR-1861	4	4506979	4510464
DMR-1862	4	4539542	4540007
DMR-1863	4	4550762	4551422
DMR-1864	4	4568083	4573032
DMR-1865	4	4588715	4589161
DMR-1866	4	4590672	4594634
DMR-1867	4	4604182	4605673
DMR-1868	4	4606661	4608185
DMR-1869	4	4611100	4612759
DMR-1870	4	4613461	4614391
DMR-1871	4	4615116	4615601
DMR-1872	4	4623691	4627766
DMR-1873	4	4628919	4633706
DMR-1874	4	4642441	4642941
DMR-1875	4	4653031	4654051
DMR-1876	4	4665274	4676656

DMR-1877	4	4696457	4703844
DMR-1878	4	4704695	4705510
DMR-1879	4	4711416	4716693
DMR-1880	4	4718724	4720694
DMR-1881	4	4730724	4732878
DMR-1882	4	4733238	4735513
DMR-1883	4	4739506	4740481
DMR-1884	4	4742818	4746454
DMR-1885	4	4749916	4757176
DMR-1886	4	4764441	4765696
DMR-1887	4	4782418	4788161
DMR-1888	4	4861117	4862429
DMR-1889	4	4864243	4866216
DMR-1890	4	4872490	4873115
DMR-1891	4	4878454	4879074
DMR-1892	4	4911914	4915029
DMR-1893	4	4928232	4930716
DMR-1894	4	4932052	4932737
DMR-1895	4	4951544	4954674
DMR-1896	4	4955290	4955670
DMR-1897	4	4973609	4978055
DMR-1898	4	4979870	4980890
DMR-1899	4	4997366	4998241
DMR-1900	4	4999681	5003185
DMR-1901	4	5004468	5007767
DMR-1902	4	5028895	5030065
DMR-1903	4	5039467	5043229
DMR-1904	4	5046218	5048224
DMR-1905	4	5077279	5078214
DMR-1906	4	5079424	5081900
DMR-1907	4	5102191	5104463
DMR-1908	4	5116321	5117666
DMR-1909	4	5124451	5125409
DMR-1910	4	5136640	5138938
DMR-1911	4	5139973	5141611
DMR-1912	4	5141956	5142391
DMR-1913	4	5175435	5176065
DMR-1914	4	5190299	5190738
DMR-1915	4	5207957	5210103
DMR-1916	4	5216666	5218321
DMR-1917	4	5303817	5308932
DMR-1918	4	5342743	5344531
DMR-1919	4	5350812	5351649
DMR-1920	4	5468765	5470776
DMR-1921	4	5477890	5478170
DMR-1922	4	5479496	5480971
DMR-1923	4	5481345	5483015

DMR-1924	4	5484117	5486134
DMR-1925	4	5489221	5490592
DMR-1926	4	5494070	5494833
DMR-1927	4	5505782	5506230
DMR-1928	4	5507085	5512217
DMR-1929	4	5514996	5515296
DMR-1930	4	5544009	5545514
DMR-1931	4	5555107	5556550
DMR-1932	4	5570952	5572062
DMR-1933	4	5574755	5575375
DMR-1934	4	5588246	5589431
DMR-1935	4	5590701	5596682
DMR-1936	4	5602584	5602968
DMR-1937	4	5623225	5625700
DMR-1938	4	5627718	5630511
DMR-1939	4	5646847	5647355
DMR-1940	4	5650154	5650639
DMR-1941	4	5651314	5651754
DMR-1942	4	5655058	5656729
DMR-1943	4	5658407	5658842
DMR-1944	4	5672761	5673058
DMR-1945	4	5673393	5673915
DMR-1946	4	5681660	5682654
DMR-1947	4	5683325	5692501
DMR-1948	4	5693821	5697949
DMR-1949	4	5751470	5752399
DMR-1950	4	5766434	5769097
DMR-1951	4	5822380	5827370
DMR-1952	4	5862018	5864623
DMR-1953	4	5870591	5871031
DMR-1954	4	5879330	5881930
DMR-1955	4	5887919	5888399
DMR-1956	4	5905577	5908182
DMR-1957	4	5913994	5916774
DMR-1958	4	5937095	5938217
DMR-1959	4	5939694	5943984
DMR-1960	4	5946134	5948296
DMR-1961	4	5951286	5952437
DMR-1962	4	5953710	5955181
DMR-1963	4	5956369	5959152
DMR-1964	4	5961152	5961513
DMR-1965	4	5965792	5971022
DMR-1966	4	5987192	5991817
DMR-1967	4	6010995	6011325
DMR-1968	4	6035420	6036060
DMR-1969	4	6059158	6061610
DMR-1970	4	6067388	6072673

DMR-1971	4	6098741	6099061
DMR-1972	4	6112787	6114123
DMR-1973	4	6114918	6115253
DMR-1974	4	6125997	6130122
DMR-1975	4	6156365	6157486
DMR-1976	4	6166918	6167403
DMR-1977	4	6194763	6195446
DMR-1978	4	6197575	6200071
DMR-1979	4	6205838	6206645
DMR-1980	4	6209501	6213591
DMR-1981	4	6214264	6214791
DMR-1982	4	6326440	6326926
DMR-1983	4	6388807	6389672
DMR-1984	4	6467386	6472846
DMR-1985	4	6482028	6482358
DMR-1986	4	6581901	6583501
DMR-1987	4	6597920	6598725
DMR-1988	4	6638965	6639297
DMR-1989	4	6723446	6729234
DMR-1990	4	6787835	6788105
DMR-1991	4	6791904	6792454
DMR-1992	4	6885947	6886327
DMR-1993	4	6916150	6919455
DMR-1994	4	6977248	6977863
DMR-1995	4	7358230	7358840
DMR-1996	4	7592313	7592818
DMR-1997	4	7711114	7711454
DMR-1998	4	7890527	7891464
DMR-1999	4	7908667	7909290
DMR-2000	4	7945137	7945455
DMR-2001	4	7989304	7989666
DMR-2002	4	8109456	8110246
DMR-2003	4	8148075	8150547
DMR-2004	4	8313708	8319324
DMR-2005	4	8327940	8329535
DMR-2006	4	8393120	8393425
DMR-2007	4	8620148	8623068
DMR-2008	4	8866009	8866504
DMR-2009	4	8906581	8907231
DMR-2010	4	8942864	8943189
DMR-2011	4	9005540	9006530
DMR-2012	4	9055207	9057077
DMR-2013	4	9068914	9078668
DMR-2014	4	9483934	9485359
DMR-2015	4	9486574	9490039
DMR-2016	4	9734038	9737673
DMR-2017	4	9800885	9801195

DMR-2018	4	9954454	9955339
DMR-2019	4	9955982	9957759
DMR-2020	4	9987956	9988281
DMR-2021	4	10313542	10314172
DMR-2022	4	10527354	10529034
DMR-2023	4	10755078	10756523
DMR-2024	4	10866094	10866444
DMR-2025	4	10915745	10916456
DMR-2026	4	10992797	10997912
DMR-2027	4	11039328	11040489
DMR-2028	4	11045990	11046270
DMR-2029	4	11113441	11114286
DMR-2030	4	11343755	11344145
DMR-2031	4	11363449	11369169
DMR-2032	4	11372791	11373489
DMR-2033	4	11677579	11679259
DMR-2034	4	11680579	11681364
DMR-2035	4	11820310	11824620
DMR-2036	4	11825565	11826547
DMR-2037	4	11834147	11837117
DMR-2038	4	12293680	12294976
DMR-2039	4	13624419	13631859
DMR-2040	4	14272233	14272539
DMR-2041	4	14279991	14280784
DMR-2042	4	14282897	14285059
DMR-2043	4	14287909	14288525
DMR-2044	4	14531237	14532254
DMR-2045	4	14987455	14988333
DMR-2046	4	17712926	17716726
DMR-2047	4	18247864	18248199
DMR-2048	5	28562	29917
DMR-2049	5	250204	250970
DMR-2050	5	1064628	1067755
DMR-2051	5	1229746	1230458
DMR-2052	5	1285043	1285373
DMR-2053	5	1488528	1488798
DMR-2054	5	1686487	1686997
DMR-2055	5	2262159	2262544
DMR-2056	5	2374188	2375393
DMR-2057	5	2688575	2688845
DMR-2058	5	3005869	3007624
DMR-2059	5	3249529	3249844
DMR-2060	5	3904284	3910896
DMR-2061	5	3944883	3945355
DMR-2062	5	3946029	3946484
DMR-2063	5	4320753	4323348
DMR-2064	5	5217184	5218628

DMR-2065	5	5219988	5221275
DMR-2066	5	5630514	5634765
DMR-2067	5	5635294	5635620
DMR-2068	5	5643880	5644829
DMR-2069	5	5739400	5739865
DMR-2070	5	5853103	5853918
DMR-2071	5	6407124	6407784
DMR-2072	5	6433688	6438813
DMR-2073	5	7027577	7028347
DMR-2074	5	7118301	7118816
DMR-2075	5	7823819	7824639
DMR-2076	5	7829151	7829759
DMR-2077	5	8204019	8204359
DMR-2078	5	8255943	8256273
DMR-2079	5	8400162	8401314
DMR-2080	5	8574747	8577717
DMR-2081	5	8622629	8624390
DMR-2082	5	8625600	8627255
DMR-2083	5	8628355	8629565
DMR-2084	5	8666296	8667301
DMR-2085	5	8702770	8703590
DMR-2086	5	8788121	8788791
DMR-2087	5	9020223	9022243
DMR-2088	5	9048612	9049429
DMR-2089	5	9056525	9056851
DMR-2090	5	9061522	9062462
DMR-2091	5	9091022	9092162
DMR-2092	5	9101959	9102392
DMR-2093	5	9203261	9203876
DMR-2094	5	9206569	9207339
DMR-2095	5	9211186	9212626
DMR-2096	5	9215111	9218606
DMR-2097	5	9220262	9220699
DMR-2098	5	9253069	9254079
DMR-2099	5	9272239	9274544
DMR-2100	5	9344652	9345272
DMR-2101	5	9346484	9347109
DMR-2102	5	9347624	9348964
DMR-2103	5	9412161	9414631
DMR-2104	5	9544984	9545468
DMR-2105	5	9561317	9563131
DMR-2106	5	9565936	9567031
DMR-2107	5	9570010	9570720
DMR-2108	5	9593987	9594317
DMR-2109	5	9604056	9604498
DMR-2110	5	9640953	9641611
DMR-2111	5	9642286	9644636

DMR-2112	5	9707999	9708274
DMR-2113	5	9712277	9712777
DMR-2114	5	9739628	9740968
DMR-2115	5	9741646	9741938
DMR-2116	5	9748248	9748548
DMR-2117	5	9750068	9750403
DMR-2118	5	9755471	9757500
DMR-2119	5	9757952	9759462
DMR-2120	5	9760638	9761248
DMR-2121	5	9840810	9843947
DMR-2122	5	9925635	9926240
DMR-2123	5	9929045	9929765
DMR-2124	5	9949501	9953791
DMR-2125	5	9980031	9982666
DMR-2126	5	9991274	9991637
DMR-2127	5	10049721	10056270
DMR-2128	5	10057747	10058758
DMR-2129	5	10059908	10060603
DMR-2130	5	10061223	10063868
DMR-2131	5	10075896	10076261
DMR-2132	5	10081338	10083483
DMR-2133	5	10085196	10085681
DMR-2134	5	10086486	10086846
DMR-2135	5	10100538	10102484
DMR-2136	5	10104439	10106449
DMR-2137	5	10116048	10116333
DMR-2138	5	10120296	10121485
DMR-2139	5	10123751	10124078
DMR-2140	5	10126607	10127712
DMR-2141	5	10147843	10148673
DMR-2142	5	10167992	10173112
DMR-2143	5	10182490	10183203
DMR-2144	5	10195548	10196403
DMR-2145	5	10204612	10204977
DMR-2146	5	10216019	10219279
DMR-2147	5	10223785	10224230
DMR-2148	5	10231347	10233020
DMR-2149	5	10235840	10236459
DMR-2150	5	10237108	10237811
DMR-2151	5	10240292	10241557
DMR-2152	5	10255299	10261710
DMR-2153	5	10265644	10266024
DMR-2154	5	10266689	10267509
DMR-2155	5	10267816	10268316
DMR-2156	5	10290446	10291922
DMR-2157	5	10309736	10313832
DMR-2158	5	10317659	10318290

DMR-2159	5	10330862	10331519
DMR-2160	5	10335115	10335498
DMR-2161	5	10337767	10338272
DMR-2162	5	10351503	10356268
DMR-2163	5	10359252	10361017
DMR-2164	5	10379549	10380204
DMR-2165	5	10381174	10383134
DMR-2166	5	10386095	10389078
DMR-2167	5	10398185	10400340
DMR-2168	5	10406614	10416616
DMR-2169	5	10417277	10419768
DMR-2170	5	10422579	10427035
DMR-2171	5	10431850	10434627
DMR-2172	5	10435472	10445005
DMR-2173	5	10446350	10448004
DMR-2174	5	10457579	10458069
DMR-2175	5	10462047	10464522
DMR-2176	5	10466462	10468945
DMR-2177	5	10470245	10473768
DMR-2178	5	10476219	10477066
DMR-2179	5	10492035	10492375
DMR-2180	5	10497167	10504586
DMR-2181	5	10507265	10508090
DMR-2182	5	10508540	10510202
DMR-2183	5	10510858	10514670
DMR-2184	5	10518265	10520930
DMR-2185	5	10522256	10523229
DMR-2186	5	10534317	10534618
DMR-2187	5	10535263	10535583
DMR-2188	5	10547800	10554452
DMR-2189	5	10557587	10560387
DMR-2190	5	10561025	10561697
DMR-2191	5	10566484	10567461
DMR-2192	5	10574704	10578175
DMR-2193	5	10597148	10598788
DMR-2194	5	10603932	10604942
DMR-2195	5	10607867	10609341
DMR-2196	5	10617971	10619123
DMR-2197	5	10621218	10631119
DMR-2198	5	10644650	10646802
DMR-2199	5	10662528	10662968
DMR-2200	5	10666264	10667270
DMR-2201	5	10669253	10670103
DMR-2202	5	10670917	10671873
DMR-2203	5	10693369	10695140
DMR-2204	5	10696623	10697616
DMR-2205	5	10698626	10699324

DMR-2206	5	10708704	10711524
DMR-2207	5	10733128	10733918
DMR-2208	5	10738430	10740520
DMR-2209	5	10747969	10748984
DMR-2210	5	10750745	10754892
DMR-2211	5	10758395	10759683
DMR-2212	5	10774381	10775334
DMR-2213	5	10789539	10790732
DMR-2214	5	10793374	10795838
DMR-2215	5	10802058	10802926
DMR-2216	5	10805387	10806029
DMR-2217	5	10808554	10813619
DMR-2218	5	10823180	10824037
DMR-2219	5	10829941	10833739
DMR-2220	5	10834761	10836376
DMR-2221	5	10838571	10839853
DMR-2222	5	10846487	10847432
DMR-2223	5	10848777	10851102
DMR-2224	5	10853597	10853922
DMR-2225	5	10869386	10873220
DMR-2226	5	10884071	10887425
DMR-2227	5	10888060	10888390
DMR-2228	5	10889685	10892155
DMR-2229	5	10894129	10895614
DMR-2230	5	10898476	10898756
DMR-2231	5	10901121	10906233
DMR-2232	5	10911801	10912175
DMR-2233	5	10960013	10961651
DMR-2234	5	10963289	10968272
DMR-2235	5	10972860	10985707
DMR-2236	5	10988072	10989024
DMR-2237	5	10990221	10991157
DMR-2238	5	10992007	10993342
DMR-2239	5	11028959	11029929
DMR-2240	5	11034107	11036535
DMR-2241	5	11038835	11040815
DMR-2242	5	11041700	11043330
DMR-2243	5	11043845	11045147
DMR-2244	5	11046447	11050769
DMR-2245	5	11052204	11053074
DMR-2246	5	11055838	11056338
DMR-2247	5	11056873	11063913
DMR-2248	5	11068088	11068878
DMR-2249	5	11069378	11070905
DMR-2250	5	11087382	11090202
DMR-2251	5	11096473	11096925
DMR-2252	5	11097620	11097945

DMR-2253	5	11112264	11116251
DMR-2254	5	11128156	11128591
DMR-2255	5	11129151	11130581
DMR-2256	5	11131066	11132386
DMR-2257	5	11133603	11134093
DMR-2258	5	11143339	11144314
DMR-2259	5	11148119	11148744
DMR-2260	5	11149444	11149894
DMR-2261	5	11150738	11152208
DMR-2262	5	11153718	11155685
DMR-2263	5	11167869	11169709
DMR-2264	5	11173369	11174464
DMR-2265	5	11192664	11194276
DMR-2266	5	11196449	11196934
DMR-2267	5	11198254	11202694
DMR-2268	5	11241164	11241654
DMR-2269	5	11290338	11291448
DMR-2270	5	11296625	11297065
DMR-2271	5	11297931	11299063
DMR-2272	5	11302176	11303538
DMR-2273	5	11304523	11305822
DMR-2274	5	11307617	11309930
DMR-2275	5	11316742	11317407
DMR-2276	5	11324012	11324482
DMR-2277	5	11357173	11363551
DMR-2278	5	11380927	11381712
DMR-2279	5	11387848	11388634
DMR-2280	5	11408293	11412746
DMR-2281	5	11425654	11428787
DMR-2282	5	11446424	11452189
DMR-2283	5	11452669	11453159
DMR-2284	5	11459273	11461448
DMR-2285	5	11462058	11463398
DMR-2286	5	11467885	11469206
DMR-2287	5	11470014	11470472
DMR-2288	5	11481530	11487140
DMR-2289	5	11490157	11495718
DMR-2290	5	11500833	11502316
DMR-2291	5	11512568	11512883
DMR-2292	5	11514222	11515247
DMR-2293	5	11516847	11518490
DMR-2294	5	11521513	11522958
DMR-2295	5	11523473	11525597
DMR-2296	5	11527937	11528397
DMR-2297	5	11532690	11538617
DMR-2298	5	11543238	11543743
DMR-2299	5	11548204	11550169

DMR-2300	5	11552317	11553362
DMR-2301	5	11553857	11554343
DMR-2302	5	11559122	11563081
DMR-2303	5	11567547	11571959
DMR-2304	5	11575804	11576917
DMR-2305	5	11582073	11583358
DMR-2306	5	11592613	11593588
DMR-2307	5	11609462	11612587
DMR-2308	5	11615235	11616065
DMR-2309	5	11623639	11625794
DMR-2310	5	11644098	11646223
DMR-2311	5	11647518	11652328
DMR-2312	5	11658748	11659068
DMR-2313	5	11661225	11663575
DMR-2314	5	11670167	11672138
DMR-2315	5	11673627	11676125
DMR-2316	5	11756469	11757919
DMR-2317	5	12014670	12015035
DMR-2318	5	12018334	12019656
DMR-2319	5	12083324	12085595
DMR-2320	5	12092250	12092565
DMR-2321	5	12114819	12115809
DMR-2322	5	12193349	12194677
DMR-2323	5	12200494	12204410
DMR-2324	5	12205600	12206406
DMR-2325	5	12207061	12208388
DMR-2326	5	12209678	12211177
DMR-2327	5	12213679	12214479
DMR-2328	5	12216624	12216939
DMR-2329	5	12226398	12227198
DMR-2330	5	12233281	12237606
DMR-2331	5	12239264	12240049
DMR-2332	5	12249274	12253409
DMR-2333	5	12264833	12265978
DMR-2334	5	12266293	12266813
DMR-2335	5	12267973	12268453
DMR-2336	5	12269238	12274396
DMR-2337	5	12280514	12282140
DMR-2338	5	12283795	12288581
DMR-2339	5	12290037	12291361
DMR-2340	5	12298113	12301306
DMR-2341	5	12322416	12322863
DMR-2342	5	12325509	12326996
DMR-2343	5	12342058	12342514
DMR-2344	5	12348792	12349097
DMR-2345	5	12349604	12355382
DMR-2346	5	12372248	12372748

DMR-2347	5	12374678	12378188
DMR-2348	5	12389393	12391030
DMR-2349	5	12404259	12404869
DMR-2350	5	12406244	12406904
DMR-2351	5	12409052	12410152
DMR-2352	5	12438366	12438696
DMR-2353	5	12442216	12443476
DMR-2354	5	12455244	12455524
DMR-2355	5	12458552	12459337
DMR-2356	5	12479323	12480328
DMR-2357	5	12482138	12484398
DMR-2358	5	12494821	12496276
DMR-2359	5	12510194	12510499
DMR-2360	5	12516753	12517068
DMR-2361	5	12527671	12529631
DMR-2362	5	12531155	12532310
DMR-2363	5	12558048	12558338
DMR-2364	5	12558703	12559483
DMR-2365	5	12563496	12563936
DMR-2366	5	12590387	12594512
DMR-2367	5	12597134	12598764
DMR-2368	5	12615247	12615747
DMR-2369	5	12624492	12625157
DMR-2370	5	12645119	12647972
DMR-2371	5	12672331	12675961
DMR-2372	5	12678996	12679276
DMR-2373	5	12681765	12685037
DMR-2374	5	12690037	12690322
DMR-2375	5	12691337	12692297
DMR-2376	5	12693478	12695123
DMR-2377	5	12705392	12706325
DMR-2378	5	12707345	12712264
DMR-2379	5	12714601	12715756
DMR-2380	5	12716603	12719203
DMR-2381	5	12722334	12722824
DMR-2382	5	12732064	12735236
DMR-2383	5	12738226	12745781
DMR-2384	5	12747461	12749075
DMR-2385	5	12749944	12752702
DMR-2386	5	12753573	12755493
DMR-2387	5	12759006	12759630
DMR-2388	5	12760006	12762950
DMR-2389	5	12765909	12769572
DMR-2390	5	12786181	12786896
DMR-2391	5	12795152	12797429
DMR-2392	5	12798576	12800044
DMR-2393	5	12801876	12806521

DMR-2394	5	12811110	12813960
DMR-2395	5	12908806	12909156
DMR-2396	5	12910773	12912765
DMR-2397	5	12921376	12922188
DMR-2398	5	12923347	12924468
DMR-2399	5	12931115	12931882
DMR-2400	5	12933409	12934684
DMR-2401	5	12937372	12940954
DMR-2402	5	12944434	12947730
DMR-2403	5	12949700	12951080
DMR-2404	5	12966411	12967206
DMR-2405	5	12974177	12975152
DMR-2406	5	12976465	12977270
DMR-2407	5	12983219	12984218
DMR-2408	5	12992784	12994094
DMR-2409	5	12996743	13006353
DMR-2410	5	13007943	13009787
DMR-2411	5	13021967	13025654
DMR-2412	5	13030599	13032913
DMR-2413	5	13034348	13034838
DMR-2414	5	13044624	13046884
DMR-2415	5	13053380	13056010
DMR-2416	5	13078281	13079386
DMR-2417	5	13082244	13082714
DMR-2418	5	13108608	13108923
DMR-2419	5	13131903	13134333
DMR-2420	5	13143292	13144582
DMR-2421	5	13154526	13155342
DMR-2422	5	13156164	13156644
DMR-2423	5	13158422	13158942
DMR-2424	5	13166523	13183361
DMR-2425	5	13184226	13186507
DMR-2426	5	13198523	13201525
DMR-2427	5	13203325	13204955
DMR-2428	5	13205490	13206140
DMR-2429	5	13206453	13212559
DMR-2430	5	13244056	13244771
DMR-2431	5	13245586	13245936
DMR-2432	5	13246861	13247366
DMR-2433	5	13261718	13264398
DMR-2434	5	13265862	13269640
DMR-2435	5	13271156	13277603
DMR-2436	5	13289978	13301498
DMR-2437	5	13322648	13323773
DMR-2438	5	13332039	13334190
DMR-2439	5	13354624	13354939
DMR-2440	5	13361929	13362914

DMR-2441	5	13364736	13369487
DMR-2442	5	13370620	13370955
DMR-2443	5	13382842	13383212
DMR-2444	5	13386488	13386838
DMR-2445	5	13401994	13403161
DMR-2446	5	13406313	13406955
DMR-2447	5	13407797	13409582
DMR-2448	5	13430385	13431005
DMR-2449	5	13508751	13510039
DMR-2450	5	13510531	13511584
DMR-2451	5	13512857	13515327
DMR-2452	5	13521924	13522791
DMR-2453	5	13524890	13525715
DMR-2454	5	13533199	13533964
DMR-2455	5	13545206	13548491
DMR-2456	5	13549016	13549637
DMR-2457	5	13580388	13582360
DMR-2458	5	13583684	13584970
DMR-2459	5	13592209	13593709
DMR-2460	5	13609582	13610201
DMR-2461	5	13634835	13635281
DMR-2462	5	13656931	13661362
DMR-2463	5	13663014	13664665
DMR-2464	5	13666130	13666998
DMR-2465	5	13706936	13707871
DMR-2466	5	13710204	13711231
DMR-2467	5	13749142	13749967
DMR-2468	5	13753476	13758196
DMR-2469	5	13785628	13785933
DMR-2470	5	13797308	13803111
DMR-2471	5	13805059	13806068
DMR-2472	5	13806603	13806933
DMR-2473	5	13812316	13812826
DMR-2474	5	13813636	13813991
DMR-2475	5	13814680	13817763
DMR-2476	5	13827874	13828498
DMR-2477	5	13837077	13837791
DMR-2478	5	13838944	13840924
DMR-2479	5	13852247	13856729
DMR-2480	5	13857529	13858534
DMR-2481	5	13859509	13868947
DMR-2482	5	13878051	13878481
DMR-2483	5	13901149	13908033
DMR-2484	5	13929365	13930310
DMR-2485	5	13946515	13949105
DMR-2486	5	13981010	13982291
DMR-2487	5	13985794	13986619

DMR-2488	5	13987074	13987941
DMR-2489	5	13997345	13998495
DMR-2490	5	14010533	14017419
DMR-2491	5	14043212	14044013
DMR-2492	5	14059877	14061302
DMR-2493	5	14062133	14062628
DMR-2494	5	14100634	14107050
DMR-2495	5	14115465	14116090
DMR-2496	5	14116945	14117440
DMR-2497	5	14130621	14135451
DMR-2498	5	14221362	14226519
DMR-2499	5	14246983	14247633
DMR-2500	5	14274655	14275347
DMR-2501	5	14297458	14297785
DMR-2502	5	14307003	14307706
DMR-2503	5	14312823	14313978
DMR-2504	5	14332786	14334571
DMR-2505	5	14337556	14337841
DMR-2506	5	14396612	14398232
DMR-2507	5	14427117	14427447
DMR-2508	5	14449927	14450537
DMR-2509	5	14453515	14455049
DMR-2510	5	14460121	14466753
DMR-2511	5	14509444	14509802
DMR-2512	5	14512805	14514284
DMR-2513	5	14519571	14534898
DMR-2514	5	14564932	14566037
DMR-2515	5	14574666	14575466
DMR-2516	5	14592988	14595078
DMR-2517	5	14671685	14671970
DMR-2518	5	14686010	14687327
DMR-2519	5	14719198	14721633
DMR-2520	5	14815041	14815516
DMR-2521	5	14816177	14818655
DMR-2522	5	14819986	14820466
DMR-2523	5	14843134	14843897
DMR-2524	5	14847042	14848575
DMR-2525	5	14850683	14851496
DMR-2526	5	14984349	14984809
DMR-2527	5	15092886	15099318
DMR-2528	5	15101170	15102675
DMR-2529	5	15144415	15144695
DMR-2530	5	15172145	15172802
DMR-2531	5	15250670	15251447
DMR-2532	5	15308244	15309044
DMR-2533	5	15367442	15373756
DMR-2534	5	15376021	15377701

DMR-2535	5	15378228	15379702
DMR-2536	5	15596152	15596502
DMR-2537	5	15610335	15610875
DMR-2538	5	15617462	15618571
DMR-2539	5	15663492	15668447
DMR-2540	5	15670446	15671106
DMR-2541	5	15675047	15675842
DMR-2542	5	15680005	15680800
DMR-2543	5	15682932	15683472
DMR-2544	5	15684303	15685093
DMR-2545	5	15687245	15693500
DMR-2546	5	15696490	15697125
DMR-2547	5	15698105	15698765
DMR-2548	5	15700805	15707179
DMR-2549	5	15709981	15710641
DMR-2550	5	15711466	15712131
DMR-2551	5	15736222	15737247
DMR-2552	5	15739215	15739555
DMR-2553	5	15819093	15819918
DMR-2554	5	15823391	15823866
DMR-2555	5	15937735	15939668
DMR-2556	5	15940993	15941493
DMR-2557	5	15978772	15979977
DMR-2558	5	16066387	16068885
DMR-2559	5	16195309	16195599
DMR-2560	5	16674280	16675285
DMR-2561	5	16699048	16699699
DMR-2562	5	16716647	16721438
DMR-2563	5	16925220	16927520
DMR-2564	5	16939281	16939583
DMR-2565	5	17105759	17113165
DMR-2566	5	17421371	17422066
DMR-2567	5	17459022	17459667
DMR-2568	5	17460152	17462942
DMR-2569	5	17613965	17620413
DMR-2570	5	17621236	17623160
DMR-2571	5	17867526	17869727
DMR-2572	5	17907475	17907800
DMR-2573	5	17910760	17911445
DMR-2574	5	17913619	17915420
DMR-2575	5	17918396	17918736
DMR-2576	5	17993117	17993642
DMR-2577	5	18078620	18078905
DMR-2578	5	18117359	18118329
DMR-2579	5	18121482	18122122
DMR-2580	5	18122622	18123624
DMR-2581	5	18161903	18163873

DMR-2582	5	18210722	18211277
DMR-2583	5	18329226	18329856
DMR-2584	5	18488790	18489135
DMR-2585	5	18507760	18512393
DMR-2586	5	18667661	18667936
DMR-2587	5	18949985	18956210
DMR-2588	5	19375838	19376828
DMR-2589	5	19378317	19379292
DMR-2590	5	19471877	19472486
DMR-2591	5	19510945	19511770
DMR-2592	5	19514719	19515047
DMR-2593	5	19813096	19813551
DMR-2594	5	19982222	19983047
DMR-2595	5	20544046	20544482
DMR-2596	5	20611856	20612171
DMR-2597	5	20645333	20645628
DMR-2598	5	20646829	20647114
DMR-2599	5	20677340	20677995
DMR-2600	5	21391149	21392149
DMR-2601	5	21848807	21854609
DMR-2602	5	21951441	21951806
DMR-2603	5	22020306	22022116
DMR-2604	5	22022901	22024096
DMR-2605	5	22630468	22635399
DMR-2606	5	23152000	23157256
DMR-2607	5	24035420	24035780
DMR-2608	5	24036886	24039514
DMR-2609	5	24363110	24363575
DMR-2610	5	24662933	24663275
DMR-2611	5	26991911	26992558

Table S3

marker_id	chromosome	start_bp	stop_bp
MM1	1	4330606	4332076
MM2	1	6010663	6013983
MM3	1	6302732	6303012
MM4	1	7430002	7432267
MM5	1	8490901	8491751
MM6	1	8779330	8780036
MM7	1	8801988	8802650
MM8	1	8816171	8816837
MM9	1	8830699	8831320
MM10	1	8931514	8932319
MM11	1	9574179	9575333
MM12	1	9928550	9929215
MM13	1	10357405	10358870
MM14	1	10545345	10545839
MM15	1	11044649	11045616
MM16	1	11047114	11051415
MM17	1	11096911	11100708
MM18	1	11102419	11102716
MM19	1	11309661	11310311
MM20	1	11322798	11324178
MM21	1	11502846	11503351
MM22	1	11511756	11512571
MM23	1	11517887	11518652
MM24	1	11519343	11519828
MM25	1	12273252	12276332
MM26	1	12315004	12316774
MM27	1	12403422	12409842
MM28	1	12665781	12666246
MM29	1	12741147	12741472
MM30	1	12856990	12862085
MM31	1	12886199	12886839
MM32	1	12997426	13001226
MM33	1	13003181	13008641
MM34	1	13018502	13019187
MM35	1	13021477	13023341
MM36	1	13098250	13102655
MM37	1	13239811	13242134
MM38	1	13264736	13265031
MM39	1	13329072	13340087
MM40	1	13340457	13340972
MM41	1	13391912	13397522
MM42	1	13410597	13416544
MM43	1	13419144	13422650
MM44	1	13427752	13429697
------	---	----------	----------
MM45	1	13433353	13434184
MM46	1	13491291	13491906
MM47	1	13499704	13500341
MM48	1	13502344	13502970
MM49	1	13561188	13566504
MM50	1	13609050	13611740
MM51	1	13614690	13616505
MM52	1	13618483	13621742
MM53	1	13680349	13682839
MM54	1	13690605	13696354
MM55	1	13723276	13726066
MM56	1	13780371	13780806
MM57	1	13826895	13828486
MM58	1	13833771	13837234
MM59	1	13874905	13878010
MM60	1	13949477	13950282
MM61	1	13956862	13960687
MM62	1	13969593	13972424
MM63	1	13983607	13984268
MM64	1	13984918	13985273
MM65	1	14021704	14022069
MM66	1	14037747	14039365
MM67	1	14041565	14044311
MM68	1	14052579	14054259
MM69	1	14055047	14061305
MM70	1	14083297	14084617
MM71	1	14131943	14137208
MM72	1	14146506	14147761
MM73	1	14302730	14306046
MM74	1	14335079	14335886
MM75	1	14541178	14545088
MM76	1	15284161	15284806
MM77	1	15308042	15308542
MM78	1	15309072	15309419
MM79	1	15388250	15388769
MM80	1	15406219	15406584
MM81	1	15528192	15531620
MM82	1	15550286	15550766
MM83	1	15551291	15552086
MM84	1	15582994	15587070
MM85	1	15620432	15625706
MM86	1	15628145	15632000
MM87	1	15689530	15690065
MM88	1	15748293	15748923
MM89	1	15815259	15817608
MM90	1	15881127	15881601

MM91	1	15911298	15911993
MM92	1	15952423	15953198
MM93	1	16042016	16046253
MM94	1	16073021	16075146
MM95	1	16077497	16079431
MM96	1	16109836	16111806
MM97	1	16174849	16176279
MM98	1	16179459	16183728
MM99	1	16241631	16242456
MM100	1	16321198	16321833
MM101	1	16372020	16377961
MM102	1	16378251	16379910
MM103	1	16393296	16393971
MM104	1	16492119	16494454
MM105	1	16503303	16510446
MM106	1	16532567	16536974
MM107	1	16554298	16559608
MM108	1	16567689	16568185
MM109	1	16571345	16577420
MM110	1	16583872	16585347
MM111	1	16662920	16665717
MM112	1	16680244	16684809
MM113	1	16695209	16700209
MM114	1	16718975	16720795
MM115	1	16733536	16733986
MM116	1	16734832	16739267
MM117	1	16848979	16849677
MM118	1	16855805	16857585
MM119	1	16858275	16860405
MM120	1	17025691	17031861
MM121	1	17242364	17243167
MM122	1	17257708	17258178
MM123	1	17258838	17264340
MM124	1	17265653	17266923
MM125	1	17284412	17285075
MM126	1	17363118	17368434
MM127	1	17491702	17492657
MM128	1	17523013	17526003
MM129	1	17536099	17536719
MM130	1	17624374	17624644
MM131	1	17627467	17629817
MM132	1	17671709	17675959
MM133	1	17678326	17685879
MM134	1	18093468	18093752
MM135	1	18217549	18218148
MM136	1	18966470	18967584
MM137	1	18968104	18968769

MM138	1	18969287	18970411
MM139	1	18971211	18972691
MM140	1	19599419	19600065
MM141	1	19602225	19603333
MM142	1	19709973	19710245
MM143	1	20088798	20093878
MM144	1	20319443	20320248
MM145	1	20337631	20338751
MM146	1	21022509	21022839
MM147	1	21457161	21459296
MM148	1	21459776	21460452
MM149	1	21695576	21696186
MM150	1	21750810	21758234
MM151	1	21759069	21761386
MM152	1	21779239	21780706
MM153	1	21801669	21802299
MM154	1	21815497	21816819
MM155	1	21837927	21838792
MM156	1	21851635	21853262
MM157	1	22234806	22236246
MM158	1	23570478	23572928
MM159	1	24432541	24433101
MM160	1	24459659	24460449
MM161	1	24670998	24671353
MM162	1	26200063	26200847
MM163	1	27070457	27071391
MM164	1	28707900	28708696
MM165	1	28998776	28999419
MM166	2	245700	249332
MM167	2	373127	378679
MM168	2	930664	930979
MM169	2	1198126	1198622
MM170	2	1227799	1231951
MM171	2	1251574	1252848
MM172	2	1326824	1327598
MM173	2	1401845	1402997
MM174	2	1469377	1469822
MM175	2	1485511	1488641
MM176	2	1490016	1490456
MM177	2	1665553	1668318
MM178	2	1781534	1782394
MM179	2	1783524	1787124
MM180	2	1828697	1836838
MM181	2	1885678	1886283
MM182	2	1906578	1912199
MM183	2	1944372	1946238
MM184	2	1949643	1953330

MM185	2	1956620	1958940
MM186	2	1970651	1974556
MM187	2	2031037	2031871
MM188	2	2036129	2041384
MM189	2	2075543	2080503
MM190	2	2089615	2092240
MM191	2	2093085	2094872
MM192	2	2098311	2101640
MM193	2	2102270	2102605
MM194	2	2107257	2109372
MM195	2	2168983	2170432
MM196	2	2205113	2206099
MM197	2	2263184	2264626
MM198	2	2293691	2295652
MM199	2	2365305	2370917
MM200	2	2373250	2373893
MM201	2	2390901	2395673
MM202	2	2414809	2417754
MM203	2	2475369	2483949
MM204	2	2526197	2529458
MM205	2	2534900	2535230
MM206	2	2594011	2597826
MM207	2	2625665	2627800
MM208	2	2631790	2634105
MM209	2	2649242	2651942
MM210	2	2660192	2662657
MM211	2	2694995	2695794
MM212	2	2704358	2706366
MM213	2	2709500	2711941
MM214	2	2724540	2727810
MM215	2	2739723	2742328
MM216	2	2747969	2754895
MM217	2	2781904	2785919
MM218	2	2834244	2836894
MM219	2	2844963	2849723
MM220	2	2883554	2887211
MM221	2	2908131	2911267
MM222	2	2916439	2917749
MM223	2	2943664	2943969
MM224	2	2969042	2973142
MM225	2	2995907	2997947
MM226	2	3025667	3028583
MM227	2	3044295	3045090
MM228	2	3107993	3109458
MM229	2	3160083	3166217
MM230	2	3171525	3173945
MM231	2	3175617	3179447

MM232	2	3204341	3206116
MM233	2	3231426	3237483
MM234	2	3258618	3259576
MM235	2	3517313	3522464
MM236	2	3575941	3577261
MM237	2	3593550	3594530
MM238	2	3694187	3699137
MM239	2	3708543	3709532
MM240	2	3730709	3734122
MM241	2	3760229	3761179
MM242	2	3796541	3797346
MM243	2	3806565	3806943
MM244	2	3809379	3810738
MM245	2	3930500	3932810
MM246	2	3946163	3949501
MM247	2	3950471	3951286
MM248	2	3966794	3968787
MM249	2	3985597	3986917
MM250	2	4019793	4023584
MM251	2	4024079	4025709
MM252	2	4068137	4072757
MM253	2	4073370	4074222
MM254	2	4096636	4098118
MM255	2	4099158	4103448
MM256	2	4117083	4127012
MM257	2	4233904	4243647
MM258	2	4251452	4252084
MM259	2	4253414	4253709
MM260	2	4255076	4256068
MM261	2	4258216	4260323
MM262	2	4265789	4268889
MM263	2	4283957	4289392
MM264	2	4300231	4301118
MM265	2	4330654	4332079
MM266	2	4395965	4397775
MM267	2	4467379	4468559
MM268	2	4475957	4477492
MM269	2	4493012	4494987
MM270	2	4508511	4509821
MM271	2	4573697	4574192
MM272	2	4590359	4592466
MM273	2	4651574	4656324
MM274	2	4667899	4669564
MM275	2	4671171	4675645
MM276	2	4699863	4700193
MM277	2	4707170	4710941
MM278	2	4715743	4716393

MM279	2	4746911	4747216
MM280	2	4798413	4799877
MM281	2	4816409	4824622
MM282	2	4825317	4828747
MM283	2	4829117	4833409
MM284	2	4837036	4838525
MM285	2	4842797	4844132
MM286	2	4868225	4868702
MM287	2	4901685	4905985
MM288	2	4926280	4927745
MM289	2	4974484	4977779
MM290	2	4978274	4979538
MM291	2	5001007	5001352
MM292	2	5022134	5023985
MM293	2	5031903	5034043
MM294	2	5041137	5044059
MM295	2	5069490	5074931
MM296	2	5081047	5081402
MM297	2	5081732	5082012
MM298	2	5082392	5082827
MM299	2	5083677	5086973
MM300	2	5178526	5179696
MM301	2	5180836	5185459
MM302	2	5224127	5225413
MM303	2	5246735	5252667
MM304	2	5287758	5288603
MM305	2	5294867	5295382
MM306	2	5296067	5298812
MM307	2	5303949	5304949
MM308	2	5305476	5306594
MM309	2	5307779	5312901
MM310	2	5313356	5313891
MM311	2	5331180	5333627
MM312	2	5388300	5392536
MM313	2	5393698	5395343
MM314	2	5411065	5413051
MM315	2	5418788	5423063
MM316	2	5469133	5470783
MM317	2	5477871	5478696
MM318	2	5479201	5479856
MM319	2	5482668	5485614
MM320	2	5503799	5505724
MM321	2	5524264	5526363
MM322	2	5609728	5612998
MM323	2	5620955	5638234
MM324	2	5672931	5675838
MM325	2	5717424	5723216

MM326	2	5725548	5726670
MM327	2	5737238	5738103
MM328	2	5799639	5804892
MM329	2	5836440	5837900
MM330	2	5859874	5864604
MM331	2	5907512	5908713
MM332	2	5952108	5953203
MM333	2	6016231	6020356
MM334	2	6112653	6114906
MM335	2	6116421	6119529
MM336	2	6141480	6146148
MM337	2	6204002	6206334
MM338	2	6263910	6268205
MM339	2	6358149	6360646
MM340	2	6427640	6434345
MM341	2	6440446	6447922
MM342	2	6497412	6497752
MM343	2	6557162	6558127
MM344	2	6560592	6561729
MM345	2	6562407	6565398
MM346	2	6587142	6589792
MM347	2	6595097	6598396
MM348	2	6631522	6633512
MM349	2	6707645	6713853
MM350	2	6726895	6727440
MM351	2	6743447	6743923
MM352	2	6774793	6779739
MM353	2	6790136	6793881
MM354	2	6849039	6849668
MM355	2	6918509	6921589
MM356	2	6942754	6946037
MM357	2	6961080	6965815
MM358	2	6969126	6969961
MM359	2	6971106	6973066
MM360	2	6973906	6974221
MM361	2	6976261	6977253
MM362	2	7012361	7016029
MM363	2	7120145	7121430
MM364	2	7122775	7123116
MM365	2	7231001	7231331
MM366	2	7232302	7232947
MM367	2	7233467	7236245
MM368	2	7239770	7245205
MM369	2	7455569	7459679
MM370	2	7460204	7461136
MM371	2	7544676	7545673
MM372	2	7784246	7791011

MM373	2	8278256	8281520
MM374	2	8568345	8571152
MM375	2	8572927	8574117
MM376	2	8824215	8827670
MM377	2	8881486	8882476
MM378	2	9129123	9130835
MM379	2	9194501	9198421
MM380	2	9659660	9659972
MM381	2	10415627	10417647
MM382	2	10540595	10541195
MM383	2	12456566	12461464
MM384	2	12664247	12665092
MM385	2	12743505	12743777
MM386	2	13167389	13167885
MM387	2	14560785	14561251
MM388	2	15418592	15418927
MM389	2	16028930	16029320
MM390	2	17099658	17102643
MM391	2	19381131	19381454
MM392	3	129256	129877
MM393	3	2817878	2818698
MM394	3	3812048	3813004
MM395	3	5839552	5840347
MM396	3	7061219	7061849
MM397	3	7343551	7344491
MM398	3	7738889	7739204
MM399	3	8937125	8938547
MM400	3	9228167	9232640
MM401	3	9238084	9242146
MM402	3	9436406	9439321
MM403	3	9445436	9447571
MM404	3	9472325	9473025
MM405	3	9693424	9699210
MM406	3	10560373	10561358
MM407	3	10562023	10563840
MM408	3	10886897	10890032
MM409	3	10918937	10922352
MM410	3	11020413	11022008
MM411	3	11029136	11030146
MM412	3	11066720	11068910
MM413	3	11113628	11114288
MM414	3	11117372	11121888
MM415	3	11172354	11176989
MM416	3	11366256	11367206
MM417	3	11391168	11391633
MM418	3	11393148	11396743
MM419	3	11455024	11455831

MM420	3	11525478	11526303
MM421	3	11558589	11562240
MM422	3	11575310	11578712
MM423	3	11579762	11588650
MM424	3	11666181	11672933
MM425	3	11699832	11704447
MM426	3	11745751	11746215
MM427	3	11797070	11799048
MM428	3	11880839	11884014
MM429	3	11935156	11936166
MM430	3	12021293	12029659
MM431	3	12047659	12048799
MM432	3	12096151	12098525
MM433	3	12162834	12165482
MM434	3	12272931	12277004
MM435	3	12294330	12294685
MM436	3	12295346	12296152
MM437	3	12380977	12381767
MM438	3	12388866	12390186
MM439	3	12447782	12448817
MM440	3	12460968	12462013
MM441	3	12577849	12580766
MM442	3	12581941	12582944
MM443	3	12586049	12591679
MM444	3	12647261	12651758
MM445	3	12652230	12655856
MM446	3	12678334	12683741
MM447	3	12688006	12695431
MM448	3	12695949	12697920
MM449	3	12764453	12768208
MM450	3	12847074	12848885
MM451	3	12853053	12855696
MM452	3	12923506	12927756
MM453	3	12944150	12944810
MM454	3	12945415	12947612
MM455	3	12957323	12958478
MM456	3	13057312	13062284
MM457	3	13081898	13084214
MM458	3	13093967	13094572
MM459	3	13108803	13117520
MM460	3	13213922	13214362
MM461	3	13286031	13290116
MM462	3	13290796	13291621
MM463	3	13322273	13328224
MM464	3	13475436	13476916
MM465	3	13506800	13509261
MM466	3	13667971	13671251

MM467	3	13895479	13895984
MM468	3	13896504	13897139
MM469	3	13897484	13901747
MM470	3	13971420	13974717
MM471	3	14070896	14073390
MM472	3	14121396	14124831
MM473	3	14131118	14137431
MM474	3	14284059	14285081
MM475	3	14301251	14304902
MM476	3	14313483	14313918
MM477	3	14343997	14344772
MM478	3	14399257	14399779
MM479	3	14548759	14551905
MM480	3	14667560	14673640
MM481	3	14676808	14680438
MM482	3	14740336	14746244
MM483	3	14777134	14777949
MM484	3	14787961	14791591
MM485	3	14796551	14798535
MM486	3	14818004	14818664
MM487	3	14848874	14852534
MM488	3	14878239	14881022
MM489	3	14881724	14888146
MM490	3	14942954	14950054
MM491	3	15004668	15008930
MM492	3	15035304	15036954
MM493	3	15056632	15058450
MM494	3	15073311	15079193
MM495	3	15186655	15188455
MM496	3	15240769	15243372
MM497	3	15277212	15280347
MM498	3	15295233	15297204
MM499	3	15318785	15325698
MM500	3	15327024	15328679
MM501	3	15356271	15356561
MM502	3	15370474	15372602
MM503	3	15409187	15412489
MM504	3	15456900	15458380
MM505	3	15498185	15502945
MM506	3	15506242	15509027
MM507	3	15536092	15537447
MM508	3	15537727	15541865
MM509	3	15581951	15584422
MM510	3	15586908	15587939
MM511	3	15594323	15594818
MM512	3	15596493	15596958
MM513	3	15597453	15597842

MM514	3	15602095	15607554
MM515	3	15632482	15638053
MM516	3	15698277	15702423
MM517	3	15733942	15739352
MM518	3	15819730	15821536
MM519	3	15839404	15840499
MM520	3	15858854	15865246
MM521	3	15872239	15873997
MM522	3	15931106	15934929
MM523	3	15970710	15972725
MM524	3	15973325	15974977
MM525	3	16008020	16009675
MM526	3	16083738	16084065
MM527	3	16184523	16191125
MM528	3	16256031	16256361
MM529	3	16257166	16260312
MM530	3	16304478	16305033
MM531	3	16508925	16509440
MM532	3	16538652	16539938
MM533	3	16602315	16604798
MM534	3	16605830	16607125
MM535	3	16613420	16615397
MM536	3	16702155	16709225
MM537	3	16821132	16825096
MM538	3	16858218	16860083
MM539	3	16968323	16971958
MM540	3	16973403	16973908
MM541	3	17158060	17158394
MM542	3	17989312	17996417
MM543	3	18080249	18081216
MM544	3	18370976	18371431
MM545	3	22124026	22124532
MM546	3	22243503	22246468
MM547	3	23215509	23218355
MM548	4	248703	249488
MM549	4	633119	636937
MM550	4	788271	788751
MM551	4	1312610	1315610
MM552	4	1447714	1448102
MM553	4	1592613	1594726
MM554	4	1647079	1650360
MM555	4	1789984	1791244
MM556	4	1792739	1794717
MM557	4	1820123	1823150
MM558	4	1836482	1837117
MM559	4	1846186	1847676
MM560	4	1848556	1850185

MM561	4	1856114	1856584
MM562	4	1857244	1859444
MM563	4	1922637	1924607
MM564	4	1961217	1961702
MM565	4	1968459	1973961
MM566	4	1976874	1979234
MM567	4	1987439	1993922
MM568	4	1996722	1997328
MM569	4	2046033	2048209
MM570	4	2064710	2069637
MM571	4	2107230	2110519
MM572	4	2136479	2143881
MM573	4	2171105	2175733
MM574	4	2176043	2177404
MM575	4	2178034	2179053
MM576	4	2188113	2203742
MM577	4	2205950	2208691
MM578	4	2212028	2214798
MM579	4	2250134	2252125
MM580	4	2254091	2256545
MM581	4	2263009	2264516
MM582	4	2279834	2288764
MM583	4	2302576	2308022
MM584	4	2309384	2310726
MM585	4	2355263	2355598
MM586	4	2356046	2357721
MM587	4	2596832	2603097
MM588	4	2899556	2904543
MM589	4	2982274	2983224
MM590	4	2983754	2985514
MM591	4	3129448	3130223
MM592	4	3138800	3145420
MM593	4	3292909	3299374
MM594	4	3301512	3308118
MM595	4	3330408	3331687
MM596	4	3360614	3361429
MM597	4	3364190	3366030
MM598	4	3367340	3369655
MM599	4	3370683	3371328
MM600	4	3405807	3408122
MM601	4	3417186	3418862
MM602	4	3422432	3423107
MM603	4	3423627	3427223
MM604	4	3448202	3451852
MM605	4	3476097	3480542
MM606	4	3503945	3505655
MM607	4	3522800	3524570

MM608	4	3525396	3527433
MM609	4	3533867	3536281
MM610	4	3640781	3647018
MM611	4	3647858	3649143
MM612	4	3652663	3653605
MM613	4	3683359	3683960
MM614	4	3685475	3689756
MM615	4	3707081	3715518
MM616	4	3719963	3722449
MM617	4	3726918	3727888
MM618	4	3754128	3756927
MM619	4	3795890	3797500
MM620	4	3880354	3883009
MM621	4	3883829	3885754
MM622	4	3913026	3913536
MM623	4	3920752	3921447
MM624	4	3921727	3922552
MM625	4	4250264	4252431
MM626	4	4267401	4268226
MM627	4	4319094	4320859
MM628	4	4345663	4346146
MM629	4	4358332	4359964
MM630	4	4394491	4400778
MM631	4	4539542	4540007
MM632	4	4590672	4594634
MM633	4	4606661	4608185
MM634	4	4611100	4612759
MM635	4	4613461	4614391
MM636	4	4623691	4627766
MM637	4	4628919	4633706
MM638	4	4704695	4705510
MM639	4	4711416	4716693
MM640	4	4718724	4720694
MM641	4	4730724	4732878
MM642	4	4733238	4735513
MM643	4	4742818	4746454
MM644	4	4782418	4788161
MM645	4	4861117	4862429
MM646	4	4864243	4866216
MM647	4	4951544	4954674
MM648	4	5004468	5007767
MM649	4	50//2/9	50/8214
MM650	4	5124451	5125409
MM651	4	5141956	5142391
IVIIV1652	4	520/957	5210103
MIM653	4	5303817	5308932
MM654	4	5468765	5470776

MM655	4	5479496	5480971
MM656	4	5481345	5483015
MM657	4	5484117	5486134
MM658	4	5494070	5494833
MM659	4	5507085	5512217
MM660	4	5555107	5556550
MM661	4	5588246	5589431
MM662	4	5590701	5596682
MM663	4	5623225	5625700
MM664	4	5627718	5630511
MM665	4	5751470	5752399
MM666	4	5766434	5769097
MM667	4	5862018	5864623
MM668	4	5879330	5881930
MM669	4	5905577	5908182
MM670	4	5913994	5916774
MM671	4	5937095	5938217
MM672	4	5939694	5943984
MM673	4	5965792	5971022
MM674	4	6035420	6036060
MM675	4	6059158	6061610
MM676	4	6112787	6114123
MM677	4	6125997	6130122
MM678	4	6467386	6472846
MM679	4	6723446	6729234
MM680	4	6916150	6919455
MM681	4	6977248	6977863
MM682	4	7358230	7358840
MM683	4	7890527	7891464
MM684	4	8109456	8110246
MM685	4	8148075	8150547
MM686	4	8313708	8319324
MM687	4	8327940	8329535
MM688	4	8620148	8623068
MM689	4	8906581	8907231
MM690	4	9068914	9078668
MM691	4	9483934	9485359
MM692	4	9486574	9490039
MM693	4	9734038	9737673
MM694	4	10527354	10529034
MM695	4	10992797	10997912
MM696	4	11039328	11040489
MM697	4	11045990	11046270
MM698	4	11363449	11369169
MM699	4	11820310	11824620
MM700	4	11825565	11826547
MM701	4	13624419	13631859

MM702	4	14531237	14532254
MM703	4	14987455	14988333
MM704	4	17712926	17716726
MM705	5	250204	250970
MM706	5	1686487	1686997
MM707	5	2262159	2262544
MM708	5	2374188	2375393
MM709	5	3005869	3007624
MM710	5	3249529	3249844
MM711	5	3944883	3945355
MM712	5	4320753	4323348
MM713	5	5635294	5635620
MM714	5	6407124	6407784
MM715	5	6433688	6438813
MM716	5	7027577	7028347
MM717	5	7118301	7118816
MM718	5	7823819	7824639
MM719	5	8574747	8577717
MM720	5	8622629	8624390
MM721	5	8666296	8667301
MM722	5	8788121	8788791
MM723	5	9203261	9203876
MM724	5	9206569	9207339
MM725	5	9412161	9414631
MM726	5	9561317	9563131
MM727	5	9707999	9708274
MM728	5	9712277	9712777
MM729	5	9840810	9843947
MM730	5	9925635	9926240
MM731	5	9929045	9929765
MM732	5	9949501	9953791
MM733	5	9980031	9982666
MM734	5	10049721	10056270
MM735	5	10059908	10060603
MM736	5	10061223	10063868
MM737	5	10100538	10102484
MM738	5	10104439	10106449
MM739	5	10116048	10116333
MM740	5	10167992	10173112
MM741	5	10182490	10183203
MM742	5	10216019	10219279
MM743	5	10235840	10236459
MM744	5	10351503	10356268
MM745	5	10359252	10361017
MM746	5	10379549	10380204
MM747	5	10381174	10383134
MM748	5	10398185	10400340

MM749	5	10406614	10416616
MM750	5	10446350	10448004
MM751	5	10470245	10473768
MM752	5	10476219	10477066
MM753	5	10497167	10504586
MM754	5	10510858	10514670
MM755	5	10547800	10554452
MM756	5	10574704	10578175
MM757	5	10774381	10775334
MM758	5	10793374	10795838
MM759	5	10802058	10802926
MM760	5	10805387	10806029
MM761	5	10808554	10813619
MM762	5	10838571	10839853
MM763	5	10848777	10851102
MM764	5	10884071	10887425
MM765	5	10888060	10888390
MM766	5	10889685	10892155
MM767	5	10894129	10895614
MM768	5	11038835	11040815
MM769	5	11043845	11045147
MM770	5	11046447	11050769
MM771	5	11055838	11056338
MM772	5	11068088	11068878
MM773	5	11069378	11070905
MM774	5	11198254	11202694
MM775	5	11408293	11412746
MM776	5	11425654	11428787
MM777	5	11452669	11453159
MM778	5	11467885	11469206
MM779	5	11521513	11522958
MM780	5	11523473	11525597
MM781	5	11527937	11528397
MM782	5	11582073	11583358
MM783	5	11592613	11593588
MM784	5	11609462	11612587
MM785	5	11623639	11625794
MM786	5	11647518	11652328
MM787	5	11670167	11672138
MM788	5	11673627	11676125
MM789	5	12114819	12115809
MM790	5	12205600	12206406
MM791	5	12207061	12208388
MM792	5	12209678	12211177
MM793	5	12213679	12214479
MM794	5	12239264	12240049
MM795	5	12267973	12268453

MM796	5	12372248	12372748
MM797	5	12374678	12378188
MM798	5	12455244	12455524
MM799	5	12458552	12459337
MM800	5	12527671	12529631
MM801	5	12531155	12532310
MM802	5	12624492	12625157
MM803	5	12672331	12675961
MM804	5	12693478	12695123
MM805	5	12738226	12745781
MM806	5	12747461	12749075
MM807	5	12753573	12755493
MM808	5	12801876	12806521
MM809	5	12983219	12984218
MM810	5	12996743	13006353
MM811	5	13078281	13079386
MM812	5	13082244	13082714
MM813	5	13131903	13134333
MM814	5	13271156	13277603
MM815	5	13354624	13354939
MM816	5	13364736	13369487
MM817	5	13382842	13383212
MM818	5	13510531	13511584
MM819	5	13545206	13548491
MM820	5	13549016	13549637
MM821	5	13592209	13593709
MM822	5	13609582	13610201
MM823	5	13656931	13661362
MM824	5	13666130	13666998
MM825	5	13753476	13758196
MM826	5	13797308	13803111
MM827	5	13805059	13806068
MM828	5	13806603	13806933
MM829	5	13814680	13817763
MM830	5	13838944	13840924
MM831	5	13878051	13878481
MM832	5	13901149	13908033
MM833	5	13929365	13930310
MM834	5	13946515	13949105
MM835	5	13985794	13986619
MM836	5	14100634	14107050
MM837	5	14130621	14135451
MM838	5	14297458	14297785
MM839	5	14564932	14566037
MM840	5	14574666	14575466
MM841	5	14592988	14595078
MM842	5	15092886	15099318

MM843	5	15101170	15102675
MM844	5	15376021	15377701
MM845	5	15663492	15668447
MM846	5	15670446	15671106
MM847	5	15687245	15693500
MM848	5	15700805	15707179
MM849	5	15736222	15737247
MM850	5	15739215	15739555
MM851	5	15819093	15819918
MM852	5	15823391	15823866
MM853	5	15937735	15939668
MM854	5	16674280	16675285
MM855	5	16925220	16927520
MM856	5	17105759	17113165
MM857	5	17459022	17459667
MM858	5	17460152	17462942
MM859	5	17613965	17620413
MM860	5	17621236	17623160
MM861	5	18161903	18163873
MM862	5	18488790	18489135
MM863	5	18667661	18667936
MM864	5	19375838	19376828
MM865	5	19378317	19379292
MM866	5	19982222	19983047
MM867	5	21391149	21392149

marker	chr	start bp	stop bp	сM
MM1	1	4330606	4332076	0
MM2	1	6010663	6013983	1,729195471
MM4	1	7430002	7432267	11,73119575
MM5	1	8490901	8491751	13,46041678
MM7	1	8801988	8802650	16,44647406
MM10	1	8931514	8932319	18,17569552
MM11	1	9574179	9575333	23,22803886
MM12	1	9928550	9929215	23,78509645
MM17	1	11096911	11100708	26,13156496
MM20	1	11322798	11324178	26,68862279
MM25	1	12273252	12276332	29,03509124
MM27	1	12403422	12409842	30,16821303
MM33	1	13003181	13008641	30,72527098
MM39	1	13329072	13340087	33,07173949
MM52	1	13618483	13621742	33,62837936
MM58	1	13833771	13837234	34,76092688
MM87	1	15689530	15690065	36,49000221
MM91	1	15911298	15911993	37,04689724
MM101	1	16372020	16377961	40,03276696
MM114	1	16718975	16720795	40,58982491
MM123	1	17258838	17264340	41,14688279
MM126	1	17363118	17368434	44,7961642
MM128	1	17523013	17526003	45,92928462
MM147	1	21457161	21459296	61,19827022
MM150	1	21750810	21758234	62,33139088
MM157	1	22234806	22236246	63,46451242
MM158	1	23570478	23572928	67,8020507
MM159	1	24432541	24433101	68,35910841
MM160	1	24459659	24460449	70,08832178
MM163	1	27070457	27071391	106,3130768
MM166	2	245700	249332	0
MM167	2	373127	378679	0,557051032
MM168	2	930664	930979	4,206332442
MM171	2	1251574	1252848	5,339454041
MM240	2	3730709	3734122	6,472575946
MM330	2	5859874	5864604	7,029634072
MM335	2	6116421	6119529	7,586692197
MM357	2	6961080	6965815	8,719814102
MM371	2	7544676	7545673	9,852936007
MM372	2	7784246	7791011	10,40999413
MM373	2	8278256	8281520	10,9670522
MM374	2	8568345	8571152	12,69627436
MM378	2	9129123	9130835	13,25333242

MM379	2	9194501	9198421	13,81039055
MM380	2	9659660	9659972	14,94351194
MM382	2	10540595	10541195	21,51183147
MM383	2	12456566	12461464	35,62247261
MM385	2	12743505	12743777	39,27171782
MM388	2	15418592	15418927	61,37189962
MM392	3	129256	129877	0
MM396	3	7061219	7061849	25,45450367
MM398	3	7738889	7739204	26,58762309
MM399	3	8937125	8938547	34,7998638
MM400	3	9228167	9232640	35,93298506
MM402	3	9436406	9439321	36,49004313
MM405	3	9693424	9699210	37,62316466
MM414	3	11117372	11121888	42,67550807
MM415	3	11172354	11176989	43,23256577
MM418	3	11393148	11396743	44,36568761
MM427	3	11797070	11799048	46,09490971
MM432	3	12096151	12098525	46,65196778
MM466	3	13667971	13671251	47,20902596
MM495	3	15186655	15188455	47,76608414
MM499	3	15318785	15325698	48,32314227
MM515	3	15632482	15638053	49,45626417
MM527	3	16184523	16191125	50,58938608
MM529	3	16257166	16260312	51,1464442
MM531	3	16508925	16509440	51,70350239
MM537	3	16821132	16825096	52,26055959
MM544	3	18370976	18371431	64,21989515
MM546	3	22243503	22246468	95,64195903
MM547	3	23215509	23218355	101,4372846
MM550	4	788271	788751	0
MM551	4	1312610	1315610	1,729214934
MM552	4	1447714	1448102	2,286273001
MM553	4	1592613	1594726	2,843331184
MM586	4	2356046	2357721	3,40038931
MM587	4	2596832	2603097	4,533510704
MM654	4	5468765	5470776	11,10178238
MM661	4	5588246	5589431	12,23486366
MM665	4	5751470	5752399	16,57240194
MM666	4	5766434	5769097	17,1294594
MM678	4	6467386	6472846	21,46699775
MM679	4	6723446	6729234	22,02400587
MM686	4	8313708	8319324	32,98211535
MM689	4	8906581	8907231	38,77739831
MM691	4	9483934	9485359	42,42664598
MM693	4	9734038	9737673	42,98370303
MM694	4	10527354	10529034	52,98573323
MM695	4	10992797	10997912	53,54279052

MM698	4	11363449	11369169	54,67591218
MM699	4	11820310	11824620	58,32518253
MM701	4	13624419	13631859	68,32719735
MM703	4	14987455	14988333	72,66473374
MM704	4	17712926	17716726	82,66675312
MM706	5	1686487	1686997	0
MM707	5	2262159	2262544	3,649261727
MM712	5	4320753	4323348	12,73687297
MM713	5	5635294	5635620	22,73888351
MM715	5	6433688	6438813	23,29594081
MM716	5	7027577	7028347	24,4290622
MM718	5	7823819	7824639	30,99738813
MM719	5	8574747	8577717	32,7266097
MM721	5	8666296	8667301	33,28366771
MM722	5	8788121	8788791	34,41678967
MM724	5	9206569	9207339	34,97384774
MM725	5	9412161	9414631	36,1069697
MM726	5	9561317	9563131	36,66402777
MM728	5	9712277	9712777	37,79714973
MM731	5	9929045	9929765	38,3542078
MM734	5	10049721	10056270	39,48732977
MM744	5	10351503	10356268	40,04438789
MM823	5	13656931	13661362	41,17750986
MM825	5	13753476	13758196	41,73456799
MM827	5	13805059	13806068	42,29162611
MM832	5	13901149	13908033	43,42474808
MM837	5	14130621	14135451	43,98180614
MM845	5	15663492	15668447	45,11492811
MM849	5	15736222	15737247	45,67198623
MM853	5	15937735	15939668	46,22904436
MM854	5	16674280	16675285	47,36216554
MM859	5	17613965	17620413	56,44976439
MM862	5	18488790	18489135	57,58285581
MM863	5	18667661	18667936	59,92932394
MM865	5	19378317	19379292	63,57860502
MM867	5	21391149	21392149	65,92506578

10
ID
8
11
14
18
20
24
36
46
52
53
54
55
60
62
64
69
70
71
73
92
93
94
95
98
99

NUMBER	ID
26	101
27	108
28	112
29	114
30	118
31	122
32	137
33	144
34	147
35	148
36	150
37	159
38	164
39	166
40	169
41	170
42	172
43	183
44	193
45	195
46	202
47	208
48	215
49	216
50	218

NUMBER	ID
51	222
52	225
53	229
54	232
55	238
56	244
57	252
58	257
59	258
60	260
61	262
62	275
63	276
64	277
65	297
66	305
67	315
68	323
69	326
70	333
71	340
72	344
73	350
74	356
75	361

NUMBER	ID
76	362
77	363
78	366
79	368
80	371
81	375
82	391
83	393
84	394
85	400
86	408
87	410
88	425
89	432
90	434
91	437
92	438
93	439
94	454
95	458
96	466
97	467
98	471
99	473
100	477

NUMBER	ID
101	480
102	488
103	492
104	493
105	494
106	495
107	497
108	500
109	503
110	506
111	508
112	523
113	538
114	539
115	556
116	558
117	559
118	561
119	567
120	570
121	572
122	573
123	579

marker_id	TE_id	TE_family	TE_clade	TE_order	TE_class	autonomy	mobilization	mobilization_comment	evidence
									sequencing
MM1	AT1TE14085	ATMU4	undefined	MuDr	DNA	auto	defective	TIR, no continuous ORF	
MM2	AT1TE19430	ATCOPIA64	undefined	copia	LTR	auto	defective	no RT	
MM5	AT1TE27405	ATLINEIII	L1	LINE	Non-LTR	auto	defective	short	
MM11	AT1TE30845	HELITRON1	undefined	undefined	Helitron	auto	defective	short, no ORFs	
MM12	AT1TE32015	ATCOPIA64	undefined	copia	LTR	auto	defective	no RT	
MM17	AT1TE35855	ATLINE2	L1	LINE	Non-LTR	auto	defective	short	
MM17	AT1TE35860	ATLINEIII	L1	LINE	Non-LTR	auto	defective	short	
MM25	AT1TE39880	ATCOPIA35	undefined	copia	LTR	auto	defective	short, defective LTRs, no RT	
MM27	AT1TE40340	ATLANTYS1	Tat-like	gypsy	LTR	auto	defective	short	
MM27	AT1TE40345	TAT1_ATH	Tat-like	gypsy	LTR	auto	defective	short	
MM27	AT1TE40355	ATCOPIA60	undefined	copia	LTR	auto	defective	no RT	
MM33	AT1TE42395	ATGP3	Chromovirus	gypsy	LTR	auto	potentially mobile	LTRs, pol protein seems complete	NO
MM33	AT1TE42400	ATGP3	Chromovirus	gypsy	LTR	auto	defective	short	
MM39	AT1TE43585	ATCOPIA84	undefined	copia	LTR	auto	defective	no RT	
MM39	AT1TE43605	ATGP3	Chromovirus	gypsy	LTR	auto	defective	defective LTRs	
MM52	AT1TE44600	TA11	L1	LINE	Non-LTR	auto	defective	short	
MM52	AT1TE44605	TA11	L1	LINE	Non-LTR	auto	defective	no RT	
MM58	AT1TE45360	ATCOPIA94	undefined	copia	LTR	auto	defective	short	
MM58	AT1TE45365	ATCOPIA75	undefined	copia	LTR	auto	defective	short	
MM87	AT1TE51665	ATENSPM3	undefined	En-Spm	DNA	auto	defective	short, no TIR	
MM87	AT1TE51670	ATENSPM7	undefined	En-Spm	DNA	auto	defective	short, TIR	
MM91	AT1TE52380	VANDAL12	undefined	MuDr	DNA	auto	defective	short, no TIR	
MM91	AT1TE52385	VANDAL9	undefined	MuDr	DNA	auto	defective	no TIR	
MM101	AT1TE53960	ATLANTYS2	Tat-like	gypsy	LTR	auto	defective	short	
MM101	AT1TE53970	ATCOPIA69	undefined	copia	LTR	auto	defective	no RT	
MM101	AT1TE53975	ATLANTYS2	Tat-like	gypsy	LTR	auto	defective	defective LTRs	
MM123	AT1TE57215	ATLANTYS1	Tat-like	gypsy	LTR	auto	defective	short	
MM123	AT1TE57220	ATLANTYS1	Tat-like	gypsy	LTR	auto	defective	defective LTRs	
MM123	AT1TE57225	ATLANTYS1	Tat-like	gypsy	LTR	auto	defective	short	
MM126	AT1TE57530	ATCOPIA49	undefined	copia	LTR	auto	defective	no RT	
MM128	AT1TE58075	ATCOPIA38A	undefined	copia	LTR	auto	potentially mobile	RT. LTRs. ORF>340aa	NO

MM147	AT1TE70805	ATLINE1_1	L1	LINE	Non-LTR	auto	defective	RT, TSD, frameshifts	
MM150	AT1TE71770	ATHATN3	undefined	HAT	DNA	auto	defective	short, TIR	
MM150	AT1TE71775	ATCOPIA8B	undefined	copia	LTR	auto	defective	no RT	
MM150	AT1TE71780	ATCOPIA67	undefined	copia	LTR	auto	defective	short	
MM150	AT1TE71790	VANDAL1N1	undefined	MuDr	DNA	non-auto	defective	no TIR	
MM157	AT1TE73425	ATLINEIII	L1	LINE	Non-LTR	auto	defective	short	
MM159	AT1TE80250	ATCOPIA49	undefined	copia	LTR	auto	defective	short	
MM166	AT2TE01000	ATLINEIII	L1	LINE	Non-LTR	auto	defective	no RT	
MM167	AT2TE01550	ATLINE1_5	L1	LINE	Non-LTR	auto	defective	short	
MM167	AT2TE01555	ATLINE1_4	L1	LINE	Non-LTR	auto	defective	short	
MM167	AT2TE01560	TA11	L1	LINE	Non-LTR	auto	defective	short	
MM240	AT2TE16160	ATLINE2	L1	LINE	Non-LTR	auto	defective	no RT	
MM240	AT2TE16165	ATENSPM10	undefined	En-Spm	DNA	auto	defective	short, no TIR	
MM330	AT2TE23855	ATCOPIA13	undefined	copia	LTR	auto	defective	RT, defective LTRs, but intact ORF	
MM335	AT2TE24860	ATHILA8A	Errantivirus	gypsy	LTR	auto	defective	defective LTRs	
MM357	AT2TE28325	ATCOPIA38B	undefined	copia	LTR	auto	potentially mobile	RT, LTRs, ORF>340aa	NO
MM371	AT2TE30990	RathE3_cons	undefined	SINE	Non-LTR	non-auto	not defined		
MM372	AT2TE32120	TA11	L1	LINE	Non-LTR	auto	defective	RT, ORF1 too short or fragmented, no TSD	
MM373	AT2TE34410	ATLINEIII	L1	LINE	Non-LTR	auto	defective	no RT	
MM374	AT2TE35840	ATCOPIA69	undefined	copia	LTR	auto	potentially mobile	RT, LTRs, ORF>340aa	NO
MM378	AT2TE38575	ATCOPIA74	undefined	copia	LTR	auto	defective	no RT	
MM379	AT2TE38900	ATCOPIA76	undefined	copia	LTR	auto	defective	RT, defective LTRs	
MM382	AT2TE45205	BRODYAGA1	undefined	MuDr	DNA	non-auto	not defined	TIR	
MM383	AT2TE54360	ATLINEIII	L1	LINE	Non-LTR	auto	potentially mobile	RT, 2 ORFs, no frameshifts, no TSD	NO
MM383	AT2TE54365	ATLINE2	L1	LINE	Non-LTR	auto	defective	short	
MM400	AT3TE38565	ATCOPIA65	undefined	copia	LTR	auto	potentially mobile	RT, LTRs, ORF>340aa	NO
MM400	AT3TE38575	ATCOPIA45	undefined	copia	LTR	auto	defective	short	
MM402	AT3TE39395	ATLINE2	L1	LINE	Non-LTR	auto	defective	no RT	
MM405	AT3TE40420	ATCOPIA82	undefined	copia	LTR	auto	potentially mobile	RT, LTRs, ORF>340aa	NO
MM405	AT3TE40425	ATLINE1_3A	L1	LINE	Non-LTR	auto	defective	short	
MM414	AT3TE46245	ATCOPIA19	undefined	copia	LTR	auto	potentially mobile	RT, LTRs, ORF>340aa	NO
MM415	AT3TE46480	TA11	L1	LINE	Non-LTR	auto	defective	short	
MM415	AT3TE46490	ATLINE1_5	L1	LINE	Non-LTR	auto	defective	short	
MM415	AT3TE46495	ATLINE1_5	L1	LINE	Non-LTR	auto	defective	short	
MM418	AT3TE47500	ATGP3	Chromovirus	gypsy	LTR	auto	defective	defective LTRs	
MM418	AT3TE47505	ATCOPIA37	undefined	copia	LTR	auto	defective	short	

MM418	AT3TE47515	ATCOPIA37	undefined	copia	LTR	auto	defective	short	
MM427	AT3TE49090	ATMU5	undefined	MuDr	DNA	auto	defective	TIR, no continuous ORF	
MM432	AT3TE50320	ATHATN3	undefined	HAT	DNA	auto	defective	short, no TIR	
MM466	AT3TE55430	ATCOPIA65	undefined	copia	LTR	auto	defective	no RT	
MM495	AT3TE61685	ATLINE1_2	L1	LINE	Non-LTR	auto	defective	RT, no ORF1	
MM499	AT3TE62220	ATLINEIII	L1	LINE	Non-LTR	auto	defective	no RT	
MM499	AT3TE62225	ATHILA5	Errantivirus	gypsy	LTR	auto	defective	short	
MM499	AT3TE62230	ATCOPIA95	undefined	copia	LTR	auto	defective	short	
MM515	AT3TE63165	ATCOPIA16	undefined	copia	LTR	auto	defective	no RT	
MM527	AT3TE65525	ATLINEIII	L1	LINE	Non-LTR	auto	defective	no RT	
MM529	AT3TE65835	TA11	L1	LINE	Non-LTR	auto	defective	RT, ORF1 too short or fragmented, no TSD	
MM529	AT3TE65840	ATLINE1_4	L1	LINE	Non-LTR	auto	defective	short	
MM537	AT3TE68090	ATCOPIA81	undefined	copia	LTR	auto	potentially mobile	RT, LTRs, ORF>340aa	NO
MM546	AT3TE90530	ATCOPIA23	undefined	copia	LTR	auto	potentially mobile	RT, LTRs, ORF>340aa	NO
MM547	AT3TE94580	ATLINEIII	L1	LINE	Non-LTR	auto	potentially mobile	RT, 2 ORFs, no frameshifts, no TSD	NO
MM551	AT4TE06710	ATCOPIA2	undefined	copia	LTR	auto	potentially mobile	RT, LTRs, ORF>340aa	NO
MM553	AT4TE08110	AT9TSD1	undefined	MuDr	DNA	non-auto	not defined	TIR	
MM586	AT4TE10975	TA11	L1	LINE	Non-LTR	auto	defective	short	
MM586	AT4TE10980	TA11	L1	LINE	Non-LTR	auto	defective	no RT	
MM587	AT4TE12170	ATLINE1_3A	L1	LINE	Non-LTR	auto	defective	short	
MM587	AT4TE12175	ATCOPIA69	undefined	copia	LTR	auto	defective	no RT	
MM678	AT4TE27640	ATCOPIA50	undefined	copia	LTR	auto	defective	no RT	
MM679	AT4TE28870	ATCOPIA17	undefined	copia	LTR	auto	potentially mobile	RT, LTRs, ORF>340aa	NO
MM686	AT4TE36845	ATCOPIA17	undefined	copia	LTR	auto	defective	no RT	
MM686	AT4TE36850	ATCOPIA17	undefined	copia	LTR	auto	defective	short	
MM689	AT4TE39815	ATLINE1_2	L1	LINE	Non-LTR	auto	potentially mobile	RT, 2 ORFs, no frameshifts, no TSD	NO
MM691	AT4TE42860	ATCOPIA4	undefined	copia	LTR	auto	potentially mobile	RT, LTRs, ORF>340aa	NO
MM693	AT4TE44080	ATCOPIA1	undefined	copia	LTR	auto	potentially mobile	RT, LTRs, ORF>340aa	NO
MM695	AT4TE50435	ATCOPIA47	undefined	copia	LTR	auto	potentially mobile	RT, LTRs, ORF>340aa	NO
MM698	AT4TE52315	ATCOPIA10	undefined	copia	LTR	auto	potentially mobile	RT, LTRs, ORF>340aa	NO
MM698	AT4TE52320	ATLINE2	L1	LINE	Non-LTR	auto	defective	short	
MM699	AT4TE54700	ATGP3	Chromovirus	gypsy	LTR	auto	defective	LTRs, pol protein incomplete	
MM701	AT4TE64170	ATCOPIA8A	undefined	copia	LTR	auto	defective	short	
MM701	AT4TE64175	ATCOPIA8A	undefined	copia	LTR	auto	defective	short	
MM701	AT4TE64180	ATCOPIA8B	undefined	copia	LTR	auto	potentially mobile	RT, LTRs, ORF>340aa	NO
MM703	AT4TE71195	VANDAL6	undefined	MuDr	DNA	auto	defective	TIR, ORF too short	

MM704	AT4TE85580	ATCOPIA45	undefined	copia	LTR	auto	potentially mobile	RT, LTRs, ORF>340aa	NO
MM706	AT5TE06100	ATREP4	undefined	undefined	Helitron	non-auto	not defined	short, no ORFs	
MM715	AT5TE23285	ATCOPIA90	undefined	copia	LTR	auto	defective	no RT	
MM716	AT5TE25460	VANDAL20	undefined	MuDr	DNA	auto	defective	TIR, no continuous ORF	
MM719	AT5TE31020	ATLINE1_6	L1	LINE	Non-LTR	auto	potentially mobile	RT, 2 ORFs, no frameshifts, no TSD	NO
MM725	AT5TE34170	ATLINE1_6	L1	LINE	Non-LTR	auto	defective	short	
MM725	AT5TE34175	ATLINE1_6	L1	LINE	Non-LTR	auto	defective	short	
MM726	AT5TE34730	VANDAL8	undefined	MuDr	DNA	auto	defective	TIR, no continuous ORF	
MM728	AT5TE35265	ATMU5	undefined	MuDr	DNA	auto	defective	no TIR, no continuous ORF	
MM731	AT5TE36160	ATLINE2	L1	LINE	Non-LTR	auto	defective	short	
MM734	AT5TE36610	ATREP3	undefined	undefined	Helitron	non-auto	not defined	short, no ORFs	
MM734	AT5TE36615	ATLINE1_6	L1	LINE	Non-LTR	auto	defective	short	
MM734	AT5TE36620	ATLINE1_6	L1	LINE	Non-LTR	auto	defective	no RT	
MM744	AT5TE37800	TA11	L1	LINE	Non-LTR	auto	defective	RT, TSD, frameshifts	
MM823	AT5TE48535	TA11	L1	LINE	Non-LTR	auto	defective	short	
MM823	AT5TE48540	ATLINE1_5	L1	LINE	Non-LTR	auto	defective	short	
MM825	AT5TE48930	ATCOPIA24	undefined	copia	LTR	auto	potentially mobile	RT, LTRs, ORF>340aa	NO
MM832	AT5TE49480	ATLINEIII	L1	LINE	Non-LTR	auto	defective	short	
MM832	AT5TE49485	ATLINEIII	L1	LINE	Non-LTR	auto	defective	short	
MM832	AT5TE49490	ATLINEIII	L1	LINE	Non-LTR	auto	defective	short	
MM832	AT5TE49495	ATLINEIII	L1	LINE	Non-LTR	auto	defective	RT, ORF1 too short or fragmented, no TSD	
MM837	AT5TE50380	ATCOPIA91	undefined	copia	LTR	auto	potentially mobile	RT, LTRs, ORF>340aa	NO
MM845	AT5TE56585	ATCOPIA25	undefined	copia	LTR	auto	potentially mobile	RT, LTRs, ORF>340aa	NO
MM849	AT5TE56780	ATLINEIII	L1	LINE	Non-LTR	auto	defective	RT, ORF1 too short or fragmented, no TSD	
MM859	AT5TE63610	ENDOVIR1	Errantivirus	gypsy	LTR	auto	potentially mobile	LTRs, pol protein seems complete	NO
MM865	AT5TE69650	ATLINE2	L1	LINE	Non-LTR	auto	defective	short	

Abbreviations:

TIRTerminal Inverted RepeatORFOpen Reading FrameRTReverse Transcriptase

LTR Long Terminal Repeats

TSD Target Site Duplications

Marker_id_epiRIL	chromosome	epiRIL_start_bp	epiRIL_stop_bp	Marker_id_P2	Marker_id_P3
MM1	1	4330606	4332076	1-4359800	1-4359800
MM2	1	6010663	6013983	1-6149751	1-6001538
MM4	1	7430002	7432267	1-7644962	1-7047756
MM5	1	8490901	8491751	1-8439006	1-8439006
MM7	1	8801988	8802650	1-8993233	1-8993233
MM17	1	11096911	11100708	1-11139723	1-11139723
MM25	1	12273252	12276332	1-12179065	1-12179065
MM33	1	13003181	13008641	1-13038240	1-13005911
MM39	1	13329072	13340087	1-13334580	1-13207971
MM52	1	13618483	13621742	1-13859051	1-13859051
MM87	1	15689530	15690065	1-15630635	1-15630635
MM101	1	16372020	16377961	1-16279095	1-16279095
MM114	1	16718975	16720795	1-16645134	1-16645134
MM123	1	17258838	17264340	1-17102334	1-17102334
MM147	1	21457161	21459296	1-21559246	1-21167712
MM157	1	22234806	22236246	1-22743028	1-22200580
MM158	1	23570478	23572928	1-23381914	1-23906908
MM159	1	24432541	24433101	1-24114746	1-24810967
MM163	1	27070457	27071391	1-27230162	1-27230162
MM166	2	245700	249332	2-498807	2-498807
MM171	2	1251574	1252848	2-1447413	2-1172482
MM240	2	3730709	3734122	2-3520754	2-4344527
MM330	2	5859874	5864604	2-5682223	2-5682223
MM335	2	6116421	6119529	2-6117975	2-6044749
MM357	2	6961080	6965815	2-6970449	2-6970449
MM371	2	7544676	7545673	2-7400522	2-7633698
MM373	2	8278256	8281520	2-8225326	2-8279888
MM374	2	8568345	8571152	2-8796903	2-8561080
MM378	2	9129123	9130835	2-9057864	2-9461465
MM380	2	9659660	9659972	2-9461465	2-9792570
MM382	2	10540595	10541195	2-10556376	2-10556376
MM383	2	12456566	12461464	2-12520610	2-12520610
MM385	2	12743505	12743777	2-12717797	2-12717797
MM388	2	15418592	15418927	2-15445245	2-15445245
MM392	3	129256	129877	3-290174	3-290174
MM396	3	7061219	7061849	3-7123630	3-7359421
MM398	3	7738889	7739204	3-7359421	3-7702216
MM399	3	8937125	8938547	3-8633204	3-8633204
MM400	3	9228167	9232640	3-9136628	3-9230404
MM405	3	9693424	9699210	3-9924267	3-9924267
MM414	3	11117372	11121888	3-10847881	3-10847881
MM427	3	11797070	11799048	3-11748521	3-11748521
MM432	3	12096151	12098525	3-12276692	3-12276692

MM466	3	13667971	13671251 3-13495418	3-13495379
MM515	3	15632482	15638053 3-15712057	3-15712057
MM527	3	16184523	16191125 3-15913994	3-15913994
MM531	3	16508925	16509440 3-16509183	3-16629399
MM537	3	16821132	16825096 3-16848354	3-16848354
MM544	3	18370976	18371431 3-18258898	3-18258898
MM546	3	22243503	22246468 3-22221736	3-22221736
MM547	3	23215509	23218355 3-23088778	3-23211977
MM550	4	788271	788751 4-945976	4-945976
MM551	4	1312610	1315610 4-1512987	4-1512987
MM586	4	2356046	2357721 4-2103325	4-2383725
MM654	4	5468765	5470776 4-5643991	4-5643991
MM678	4	6467386	6472846 4-6293204	4-5931550
MM686	4	8313708	8319324 4-8034821	4-8034821
MM689	4	8906581	8907231 4-9167906	4-9167906
MM691	4	9483934	9485359 4-9575956	4-9575956
MM693	4	9734038	9737673 4-10089916	4-10346818
MM694	4	10527354	10529034 4-10346818	4-10607774
MM695	4	10992797	10997912 4-11017270	4-10995355
MM698	4	11363449	11369169 4-11366309	4-11320394
MM701	4	13624419	13631859 4-13788227	4-13788227
MM703	4	14987455	14988333 4-14957828	4-14957828
MM704	4	17712926	17716726 4-17538469	4-17538469
MM706	5	1686487	1686997 5-1603469	5-1603469
MM707	5	2262159	2262544 5-2229415	5-2287470
MM712	5	4320753	4323348 5-4233682	5-4233682
MM713	5	5635294	5635620 5-5535964	5-5535964
MM715	5	6433688	6438813 5-6519202	5-6519202
MM716	5	7027577	7028347 5-7047330	5-7047330
MM718	5	7823819	7824639 5-7813295	5-7824229
MM719	5	8574747	8577717 5-8427379	5-8427379
MM724	5	9206569	9207339 5-9358168	5-9358168
MM744	5	10351503	10356268 5-10782718	5-10488859
MM823	5	13656931	13661362 5-13784419	5-13784419
MM845	5	15663492	15668447 5-15466566	5-15466566
MM854	5	16674280	16675285 5-16583743	5-16816665
MM859	5	17613965	17620413 5-17591339	5-17591339
MM862	5	18488790	18489135 5-18638175	5-18707445
MM865	5	19378317	19379292 5-19320777	5-19697188
MM867	5	21391149	21392149 5-21294493	5-21294493

Marker_id_P6	Marker_id_P7	Marker_id_P8	Marker_id_P9	Marker_id_P10	Marker_id_P12
1-4200550	1-4359800	1-4359800	1-4359800	1-4200550	1-4359800
1-6001538	1-6001538	1-6001538	1-6001538	1-6001538	1-6001538
1-7047756	1-7644962	1-7644962	1-7644962	1-7644962	1-7644962
1-8439006	1-8439006	1-8439006	1-8350582	1-8439006	1-8439006
1-9205325	1-8993233	1-9001217	1-8993233	1-8993233	1-8802319
1-10653718	1-10903254	1-10903254	1-10653718	1-11026901	1-10903254
1-12179065	1-12179065	1-12179065	1-12179065	1-12179065	1-12686038
1-12686038	1-13038240	1-12686038	1-13005911	1-13038240	1-13005911
1-13207971	1-13334580	1-13207971	1-13207971	1-13207971	1-13207971
1-14158183	1-13859051	1-13859051	1-14001934	1-14158183	1-13859051
1-15630635	1-15897174	1-15630635	1-15630635	1-15630635	1-15630635
1-16374991	1-15985718	1-16279095	1-16279095	1-16279095	1-16279095
1-16913975	1-16645134	1-17102334	1-16645134	1-16645134	1-16913975
1-17102334	1-17102334	1-17605952	1-17605952	1-17102334	1-17102334
1-21559246	1-21559246	1-21559246	1-21167712	1-21559246	1-21559246
1-22743028	1-22200580	1-22200580	1-22200580	1-22743028	1-22200580
1-23906908	1-23381914	1-23381914	1-23381914	1-23381914	1-23381914
1-24114746	1-24114746	1-24810967	1-24114746	1-24114746	1-24114746
1-27230162	1-27634939	1-27230162	1-27230162	1-27634939	1-27230162
2-498807	2-176156	2-498807	2-176156	2-247516	2-498807
2-1986922	2-1172482	2-1986922	2-1172482	2-1788467	2-1172482
2-3520754	2-3520754	2-3520754	2-3520754	2-3520754	2-3042043
2-5682223	2-5469974	2-5682223	2-5627965	2-5682223	2-5682223
2-6044749	2-6809099	2-6117975	2-6044749	2-6044749	2-6809099
2-6970449	2-6970449	2-6970449	2-6970449	2-6970449	2-6970449
2-7633698	2-7400522	2-7633698	2-7633698	2-7633698	2-7633698
2-8279888	2-8225326	2-8225326	2-8225326	2-8279888	2-8225326
2-8561080	2-8561080	2-8561080	2-8561080	2-8561080	2-8561080
2-9057864	2-9461465	2-9129979	2-9057864	2-8796903	2-9057864
2-9461465	2-9792570	2-9792570	2-9461465	2-9792570	2-9659816
2-10365194	2-10556376	2-10556376	2-10556376	2-10365194	2-10556376
2-12520610	2-12520610	2-12520610	2-12520610	2-12520610	2-12520610
2-13007536	2-12717797	2-13007536	2-13007536	2-12717797	2-12717797
2-15445245	2-15445245	2-15445245	2-15445245	2-15445245	2-15782230
3-400931	3-400931	3-290174	3-290174	3-290174	3-290174
3-6528008	3-7123630	3-7359421	3-7123630	3-7123630	3-7359421
3-7359421	3-7359421	3-7702216	3-7702216	3-7702216	3-7702216
3-8633204	3-8456601	3-8633204	3-8633204	3-8633204	3-8633204
3-9136628	3-9136628	3-9136628	3-9230404	3-9136628	3-9136628
3-9924267	3-10070201	3-9924267	3-9924267	3-9924267	3-10070201
3-11107344	3-10847881	3-11107344	3-10358588	3-11107344	3-10358588
3-11798059	3-11748521	3-11798059	3-11798059	3-11748521	3-11748521
3-13495379	3-12276692	3-12276692	3-13495418	3-12276692	3-12785230

3-13495418	3-13669611	3-13495418	3-14104253	3-13495418	3-13495418
3-15522173	3-15712057	3-15712057	3-15712057	3-15522173	3-15712057
3-15913994	3-15913994	3-15913994	3-16187824	3-15913994	3-16187824
3-16629399	3-16509183	3-16629399	3-16509183	3-16629399	3-16509183
3-16848354	3-16848354	3-16848354	3-16848354	3-17878794	3-16848354
3-18258898	3-18258898	3-18258898	3-18258898	3-18258898	3-18258898
3-22446488	3-22221736	3-22221736	3-22221736	3-22446488	3-22221736
3-23088778	3-23211977	3-23211977	3-23088778	3-23088778	3-23211977
4-945976	4-434712	4-945976	4-434712	4-945976	4-945976
4-1512987	4-945976	4-1512987	4-1512987	4-1512987	4-1512987
4-2775749	4-2383725	4-2383725	4-2383725	4-2103325	4-2383725
4-5931550	4-5196578	4-5643991	4-5643991	4-5196578	4-5386239
4-6293204	4-6470116	4-6293204	4-6293204	4-6470116	4-6293204
4-8034821	4-8034821	4-8585617	4-7934924	4-8585617	4-8034821
4-9167906	4-8906906	4-8906906	4-8585617	4-9167906	4-8906906
4-9575956	4-9167906	4-9167906	4-9575956	4-9575956	4-9167906
4-10089916	4-10089916	4-10346818	4-10089916	4-10089916	4-10346818
4-10607774	4-10346818	4-10607774	4-10607774	4-10607774	4-10607774
4-10995355	4-11017270	4-10995355	4-11017270	4-10995355	4-11017270
4-11320394	4-11559979	4-11320394	4-11559979	4-11320394	4-11320394
4-13467985	4-13788227	4-13788227	4-13788227	4-13788227	4-13467985
4-14957828	4-15325586	4-14957828	4-14957828	4-15863233	4-14736664
4-18060948	4-17538469	4-18060948	4-18060948	4-17538469	4-17538469
5-1603469	5-1384732	5-1917139	5-1603469	5-1166716	5-1603469
5-2287470	5-2229415	5-2229415	5-2287470	5-2287470	5-2287470
5-4233682	5-4448082	5-4233682	5-4448082	5-4233682	5-4233682
5-5535964	5-5799941	5-5535964	5-5535964	5-5535964	5-5535964
5-6519202	5-6436251	5-6519202	5-6519202	5-5799941	5-6055546
5-7340989	5-6801277	5-7047330	5-7047330	5-6801277	5-7047330
5-7813295	5-7813295	5-7813295	5-7340989	5-7813295	5-7813295
5-8024482	5-8427379	5-8427379	5-8576232	5-8427379	5-8427379
5-9206954	5-9358168	5-9547224	5-9358168	5-9881268	5-9881268
5-10488859	5-10782718	5-10488859	5-10488859	5-10488859	5-10488859
5-13784419	5-13445912	5-13784419	5-13784419	5-13784419	5-13784419
5-15466566	5-15878281	5-15466566	5-15466566	5-15466566	5-15466566
5-16583743	5-16816665	5-16583743	5-16583743	5-17115580	5-16583743
5-17591339	5-17959456	5-17115580	5-17591339	5-17591339	5-17591339
5-18638175	5-18707445	5-18638175	5-18638175	5-18638175	5-18638175
5-19697188	5-19320777	5-19320777	5-19320777	5-19320777	5-19697188
5-21757545	5-21294493	5-21294493	5-21757545	5-21294493	5-21757545

Marker_id_P15	Marker_id_P17	Marker_id_P19	Marker_id_P20	Marker_id_P35	Marker_id_P66
1-4359800	1-4359800	1-4359800	1-4359800	1-4359800	1-4200550
1-6001538	1-6001538	1-6149751	1-6149751	1-6001538	1-6149751
1-7644962	1-7644962	1-7047756	1-7644962	1-7644962	1-7047756
1-8350582	1-8439006	1-8439006	1-8350582	1-8439006	1-8439006
1-8993233	1-8993233	1-8993233	1-8993233	1-8802319	1-8993233
1-10903254	1-11026901	1-11139723	1-10903254	1-11026901	1-10903254
1-12686038	1-12686038	1-12179065	1-12686038	1-12686038	1-12179065
1-13005911	1-13038240	1-13038240	1-13038240	1-13038240	1-13038240
1-13207971	1-13207971	1-13334580	1-13207971	1-13207971	1-13334580
1-13859051	1-14001934	1-13859051	1-13859051	1-14001934	1-13859051
1-15605577	1-15897174	1-15897174	1-15630635	1-15630635	1-15630635
1-16279095	1-16279095	1-15985718	1-15985718	1-16279095	1-15985718
1-16645134	1-16645134	1-16913975	1-16645134	1-16913975	1-16913975
1-17102334	1-17102334	1-17102334	1-17605952	1-17102334	1-17605952
1-21559246	1-21559246	1-21559246	1-21167712	1-21167712	1-21559246
1-22200580	1-22200580	1-22200580	1-22743028	1-22975205	1-23381914
1-23130317	1-23381914	1-23381914	1-23381914	1-23906908	1-23906908
1-24114746	1-24114746	1-24810967	1-24810967	1-24810967	1-24114746
1-27230162	1-27230162	1-26404106	1-27230162	1-27230162	1-27230162
2-176156	2-757335	2-176156	2-247516	2-176156	2-247516
2-1172482	2-1172482	2-1172482	2-1172482	2-1788467	2-1172482
2-4344527	2-3520754	2-3520754	2-4344527	2-4344527	2-4778556
2-5682223	2-5627965	2-5682223	2-5682223	2-5682223	2-5469974
2-6044749	2-6044749	2-6044749	2-6044749	2-6044749	2-6044749
2-6970449	2-7048904	2-7048904	2-6809112	2-6970449	2-6809112
2-7633698	2-7633698	2-7633698	2-7633698	2-7400522	2-7400522
2-8225326	2-8225326	2-8225326	2-8225326	2-8225326	2-8225326
2-8561080	2-8561080	2-8561080	2-8796903	2-8796903	2-8561080
2-9129979	2-9057864	2-9461465	2-9057864	2-9057864	2-9057864
2-9792570	2-9461465	2-9792570	2-9792570	2-9792570	2-9792570
2-10811132	2-10556376	2-10556376	2-10365194	2-10365194	2-10365194
2-12335750	2-12520610	2-12019213	2-12459015	2-12019213	2-12019213
2-13007536	2-12717797	2-12717797	2-12717797	2-12717797	2-12717797
2-15445245	2-15445245	2-15097876	2-15782230	2-15445245	2-15445245
3-290174	3-400931	3-400931	3-290174	3-290174	3-290174
3-7123630	3-7123630	3-7359421	3-7123630	3-7123630	3-7123630
3-7359421	3-7702216	3-7702216	3-7702216	3-7359421	3-7359421
3-8633204	3-8633204	3-8633204	3-8633204	3-8633204	3-8633204
3-9136628	3-9136628	3-9136628	3-9230404	3-9136628	3-9136628
3-10358588	3-9924267	3-9924267	3-9924267	3-9924267	3-10358588
3-10847881	3-10847881	3-10847881	3-11107344	3-11107344	3-11107344
3-11748521	3-11748521	3-11748521	3-11748521	3-11798059	3-11748521
3-12276692	3-12276692	3-12785230	3-12276692	3-12276692	3-12276692

3-13107123	3-13495418	3-13495418	3-13495418	3-13495379	3-13495418
3-15712057	3-15712057	3-15712057	3-15712057	3-15522173	3-15712057
3-16187824	3-15913994	3-16187824	3-16187824	3-16187824	3-15913994
3-16509183	3-16629399	3-16629399	3-16629399	3-16629399	3-16629399
3-16848354	3-16848354	3-16848354	3-17878794	3-16848354	3-17211862
3-18258898	3-18532958	3-18258898	3-18532958	3-18532958	3-18258898
3-22221736	3-22221736	3-22446488	3-22221736	3-22221736	3-22221736
3-23216932	3-23088778	3-23211977	3-23211977	3-23211977	3-23211977
4-945976	4-434712	4-945976	4-208650	4-434712	4-434712
4-1512987	4-1782389	4-1314110	4-1512987	4-945976	4-2103325
4-2383725	4-2383725	4-1512987	4-2383725	4-2383725	4-3002169
4-5196578	4-5643991	4-5196578	4-5196578	4-5643991	4-5643991
4-6293204	4-6293204	4-6293204	4-6293204	4-6293204	4-6293204
4-8585617	4-7934924	4-8034821	4-7934924	4-7724867	4-8034821
4-8906906	4-8585617	4-8585617	4-8906906	4-8585617	4-8585617
4-9167906	4-9575956	4-9575956	4-9575956	4-9575956	4-9484647
4-10089916	4-10346818	4-9735856	4-10346818	4-9735856	4-9735856
4-10607774	4-10607774	4-10528194	4-10607774	4-10346818	4-10346818
4-11017270	4-11017270	4-11017270	4-11017270	4-11017270	4-11017270
4-11320394	4-11320394	4-11320394	4-11320394	4-11559979	4-11559979
4-13788227	4-13960078	4-13788227	4-13788227	4-13788227	4-13788227
4-14957828	4-14736664	4-14736664	4-14957828	4-14957828	4-14736664
4-18060948	4-17538469	4-17538469	4-17538469	4-18262372	4-17538469
5-1603469	5-1384732	5-1603469	5-1603469	5-1603469	5-1917139
5-2229415	5-2287470	5-2287470	5-2287470	5-1917139	5-2287470
5-4448082	5-4233682	5-4233682	5-4233682	5-4233682	5-4233682
5-5799941	5-5535964	5-5799941	5-5535964	5-5535964	5-5799941
5-6519202	5-6519202	5-6519202	5-6519202	5-6519202	5-6519202
5-6801277	5-7047330	5-6801277	5-6801277	5-7047330	5-7047330
5-7813295	5-7340989	5-7813295	5-7340989	5-7813295	5-7340989
5-8427379	5-8427379	5-8576232	5-8427379	5-8427379	5-8427379
5-9358168	5-9358168	5-9358168	5-9358168	5-9358168	5-9358168
5-10488859	5-10782718	5-10782718	5-10488859	5-10488859	5-10782718
5-13848611	5-13784419	5-13784419	5-13784419	5-13784419	5-13848611
5-15466566	5-15466566	5-15878281	5-15466566	5-15466566	5-15878281
5-16583743	5-17115580	5-16816665	5-16583743	5-16583743	5-16583743
5-17591339	5-17591339	5-17591339	5-17591339	5-17591339	5-17591339
5-18638175	5-18638175	5-18638175	5-18638175	5-18638175	5-18638175
5-19320777	5-19320777	5-19697188	5-19320777	5-19320777	5-19320777
5-21294493	5-21294493	5-21294493	5-21294493	5-21294493	5-21294493

Marker_id_P129	Marker_id_P145	Marker_id_P169
1-4200550	1-4359800	1-4359800
1-6001538	1-6001538	1-6001538
1-7644962	1-7644962	1-7644962
1-8439006	1-8350582	1-8439006
1-8993233	1-8993233	1-8802319
1-11026901	1-10903254	1-10653718
1-12179065	1-12179065	1-12179065
1-13038240	1-13038240	1-13038240
1-13207971	1-13334580	1-13334580
1-14001934	1-13859051	1-13859051
1-15630635	1-15630635	1-15897174
1-16279095	1-16374991	1-16279095
1-16645134	1-16645134	1-16913975
1-17605952	1-17102334	1-17102334
1-21559246	1-21559246	1-21167712
1-22200580	1-22200580	1-22200580
1-23381914	1-23632223	1-23632223
1-24114746	1-24114746	1-24114746
1-27230162	1-27230162	1-27634939
2-176156	2-498807	2-176156
2-1447413	2-1172482	2-1172482
2-4344527	2-4344527	2-3520754
2-5682223	2-5682223	2-5682223
2-6044749	2-6044749	2-6809099
2-7048904	2-6970449	2-7048904
2-7633698	2-7400522	2-7400522
2-8225326	2-8279888	2-8279888
2-8561080	2-8561080	2-8796903
2-9057864	2-8796903	2-9057864
2-9461465	2-9461465	2-9792570
2-10365194	2-10556376	2-10556376
2-12520610	2-12520610	2-12520610
2-12717797	2-12717797	2-12717797
2-15445245	2-15445245	2-15097876
3-290174	3-290174	3-290174
3-7123630	3-7123630	3-7123630
3-7702216	3-7359421	3-7359421
3-8633204	3-8633204	3-8633204
3-9136628	3-9136628	3-9136628
3-9924267	3-9924267	3-9924267
3-10847881	3-11107344	3-10358588
3-11798059	3-11798059	3-11748521
3-12785230	3-12276692	3-12276692

3-13495379	3-13495418	3-13495418
3-15712057	3-15522173	3-15712057
3-16187824	3-15913994	3-15913994
3-16629399	3-16509183	3-16629399
3-16848354	3-16848354	3-17878794
3-18532958	3-18258898	3-18258898
3-22221736	3-22221736	3-22221736
3-23211977	3-23211977	3-23211977
4-208650	4-208650	4-434712
4-945976	4-945976	4-1512987
4-2383725	4-2383725	4-2775749
4-5643991	4-5386239	4-5386239
4-6293204	4-6293204	4-5931550
4-8585617	4-8034821	4-8034821
4-8906906	4-8906906	4-9167906
4-9167906	4-9167906	4-9575956
4-10346818	4-10346818	4-9735856
4-10607774	4-10607774	4-10089916
4-11017270	4-11017270	4-10995355
4-11366309	4-11320394	4-11559979
4-13788227	4-13788227	4-13788227
4-14957828	4-14957828	4-14957828
4-17538469	4-18060948	4-18060948
5-1603469	5-1603469	5-1603469
5-2229415	5-2287470	5-2287470
5-4233682	5-4233682	5-4233682
5-5535964	5-5535964	5-5535964
5-5799941	5-6801277	5-6519202
5-6801277	5-7047330	5-7047330
5-7813295	5-7340989	5-7813295
5-8427379	5-8576232	5-8427379
5-9206954	5-9358168	5-9358168
5-9881268	5-9881268	5-10488859
5-13848611	5-13784419	5-13784419
5-15466566	5-15878281	5-15466566
5-16583743	5-16583743	5-16583743
5-17959456	5-17959456	5-17959456
5-18707445	5-18707445	5-18707445
5-19320777	5-19320777	5-19320777
5-21294493	5-21757545	5-21757545

A- Fold-increase relative to chromosome average

	1	2	3	4	5	
Peri	0.40	0.15	0.40	1.03	0.50	epiRILs
	0.79 (0.46 - 1.03)	0.66 (0.27 - 1.06)	0.66 (0.40 - 1.11)	0.72 (0.07 - 1.07)	0.83 (0.50 - 1.15)	F ₂ s
AT zone	0.55	0.76	1.04	1.19	0.87	epiRILs
	1.27 (0.89 - 1.55)	1.67 (0.84 - 1.92)	1.37 (0.93 - 1.85)	1.60 (1.23 - 2.01)	1.54 (1.22 - 1.73)	F ₂ s
Arms	1.23	1.60	1.18	1.05	1.30	epiRILs
	1.04 (0.94 - 1.16)	1.08 (0.85 - 1.54)	1.04 (0.78 - 1.21)	1.11 (1.02 - 1.28)	1.01 (0.76 - 1.12)	F ₂ s

B- Fold-decrease relative to chromosome average

	1	2	3	4	5	
Peri	2.50	6.88	2.53	0.97	2.01	epiRILs
	1.27 (0.97 - 2.15)	1.51 (0.95 - 3.68)	1.52 (0.90 - 2.48)	1.39 (0.93 - 14.01)	1.20 (0.87 - 1.98)	F ₂ s
AT zone	1.80	1.31	0.96	0.84	1.15	epiRILs
	0.79 (0.64 - 1.13)	0.60 (0.52 - 1.19)	0.73 (0.54 - 1.08)	0.62 (0.50 - 0.81)	0.65 (0.58 - 0.82)	F ₂ s
Arms	0.81	0.62	0.85	0.95	0.77	epiRILs
	0.96 (0.86 - 1.06)	0.93 (0.65 - 1.18)	0.96 (0.83 - 1.28)	0.90 (0.78 - 0.98)	0.99 (0.89 – 1.32)	F ₂ s

Interval Name	Chromosome	Start	Stop	Length	#Recombina	Breakpoints
					nt epikils	Proportions
MM24	Chr1	11519877	11754109	234232	3	0,09375
MM26	Chr1	12315004	12403422	88419	2	0,0625
MM29	Chr1	12741147	12856990	115844	1	0,03125
MM36	Chr1	13098250	13239811	141562	1	0,03125
MM38	Chr1	13264736	13329072	64337	3	0,09375
MM45	Chr1	13433353	13491291	57939	1	0,03125
MM53	Chr1	13680349	13690605	10257	2	0,0625
MM62	Chr1	13969593	14052579	82987	3	0,09375
MM90	Chr1	15881127	15911298	30172	1	0,03125
MM95	Chr1	16077497	16109836	32340	5	0,15625
MM107	Chr1	16554298	16567689	13392	1	0,03125
MM119	Chr1	16858275	17025691	167417	1	0,03125
MM125	Chr1	17284412	17363118	78707	6	0,1875
MM126	Chr1	17363118	17491702	128585	2	0,0625
MM168	Chr2	930664	1198126	267463	3	0,2
MM176	Chr2	1490016	1665553	175538	2	0,13333333
MM198	Chr2	2293691	2365305	71615	1	0,06666667
MM230	Chr2	3171525	3175617	4093	1	0,06666667
MM326	Chr2	5725548	5737238	11691	2	0,13333333
MM333	Chr2	6016231	6112653	96423	1	0,06666667
MM353	Chr2	6790136	6849039	58904	2	0,13333333
MM365	Chr2	7231001	7544676	313676	3	0,2
MM414	Chr3	11117372	11172354	54983	1	0,05882353
MM415	Chr3	11172354	11366256	193903	2	0,11764706
MM426	Chr3	11745751	11797070	51320	3	0,17647059
MM428	Chr3	11880839	11935156	54318	1	0,05882353
MM464	Chr3	13475436	13506800	31365	1	0,05882353
MM490	Chr3	14942954	15004668	61715	1	0,05882353
MM495	Chr3	15186655	15240769	54115	1	0,05882353
MM509	Chr3	15581951	15586908	4958	2	0,11764706
MM524	Chr3	15973325	16008020	34696	2	0,11764706
MM527	Chr3	16184523	16256031	71509	1	0,05882353
MM529	Chr3	16257166	16304478	47313	1	0,05882353
MM536	Chr3	16702155	16821132	118978	1	0,05882353
MM552	Chr4	1447714	1592613	144900	1	0,05263158
MM557	Chr4	1820123	1996722	176600	1	0,05263158
MM586	Chr4	2356046	2596832	240787	2	0,10526316
MM615	Chr4	3707081	3719963	12883	1	0,05263158
MM629	Chr4	4358332	4539542	181211	1	0,05263158
MM644	Chr4	4782418	4861117	78700	1	0,05263158
MM651	Chr4	5141956	5468765	326810	2	0,10526316
MM660	Chr4	5555107	5588246	33140	2	0,10526316
MM664	Chr4	5627718	5751470	123753	7	0,36842105
-------	------	----------	----------	--------	---	------------
MM665	Chr4	5751470	5766434	14965	1	0,05263158
MM722	Chr5	8788121	9203261	415141	1	0,02857143
MM724	Chr5	9206569	9412161	205593	2	0,05714286
MM725	Chr5	9412161	9561317	149157	1	0,02857143
MM726	Chr5	9561317	9707999	146683	2	0,05714286
MM728	Chr5	9712277	9840810	128534	1	0,02857143
MM733	Chr5	9980031	10049721	69691	2	0,05714286
MM739	Chr5	10116048	10351503	235456	2	0,05714286
MM748	Chr5	10398185	10497167	98983	1	0,02857143
MM771	Chr5	11055838	11068088	12251	1	0,02857143
MM774	Chr5	11198254	11408293	210040	1	0,02857143
MM804	Chr5	12693478	12738226	44749	1	0,02857143
MM810	Chr5	12996743	13078281	81539	1	0,02857143
MM820	Chr5	13549016	13592209	43194	5	0,14285714
MM822	Chr5	13609582	13656931	47350	3	0,08571429
MM824	Chr5	13666130	13753476	87347	1	0,02857143
MM826	Chr5	13797308	13805059	7752	1	0,02857143
MM831	Chr5	13878051	13901149	23099	4	0,11428571
MM834	Chr5	13946515	13985794	39280	1	0,02857143
MM843	Chr5	15101170	15376021	274852	2	0,05714286
MM848	Chr5	15700805	15736222	35418	1	0,02857143
MM852	Chr5	15823391	15937735	114345	1	0,02857143

Table S10

Nin	idow* ctart	marker interval	marker inter	val combinations	ecombinant epiPle	with shared	swith shared	ed point interval	ed interval
Chr 1 B	11,100,758	13,618,482	13	12	3	25.0	11,518,537	12,273,391	754,855
					3	25.0	13,101,452	13,241,436	139,985
Chr 1 A	15,690,116	17,258,837	6	6	0	0.0	-	-	-
Chr 2 B	249,383	1,251,573	9	9	4	44.4	378,733	536,423	157,691
Chr 2 A	5,864,654	8,568,344	10	10	3	33.3	8,281,415	8,568,344	286,930
Chr 3 B	8,938,604	12,096,150	20	19	5	26.3	9,710,200	10,112,728	402,529
					3	15.8	11,704,365	11,797,504	93,140
Chr 3 A	15,638,113	18,370,975	21	21	3	14.3	16,973,828	17,989,636	1,015,809
					4	19.0	17,995,327	18,370,975	375,649
Chr 4 B	788,808	2,356,045	6	6	0	0.0	-	-	-
Chr 4 A	5,470,842	8,313,707	31	26	3	11.5	5,683,645	5,751,920	68,276
					3	11.5	6,919,334	6,977,247	57,914
					4	15.4	6,977,575	8,313,907	1,336,333
Chr 5 B	7,824,697	10,351,502	16	16	3	18.8	8,667,186	9,206,733	539,548
Chr 5 A	13,661,415	16,674279	11	11	0	0.0	-	-	-

* B = window **<u>B</u>**efore centromere

A = window <u>A</u>fter centromere

Table S11-A

	chr 1				chr 2				chr 3				cl	าr 4		chr 5				
cross	сM	low	up	cross	сМ	low	up	cross	сM	low	up	cross	сM	low	up	cross	сМ	low	up	
P129	67.5	57.9	79.1	P3	42.2	34.5	51.4	P35	68.9	57.8	80.3	P35	57.1	47.5	67.0	P8	46.7	37.8	56.2	
P9	70.2	59.1	81.9	P66	44.3	35.8	53.3	P9	71.0	59.9	83.3	P12	58.8	49.6	69.8	P129	57.3	47.6	67.1	
P35	73.5	63.3	85.8	P10	47.8	39.8	57.9	P129	73.6	63.1	85.7	Р9	60.3	50.7	71.0	P169	58.9	49.1	68.8	
P12	73.8	63.8	85.5	P169	48.8	40.7	58.8	P169	73.8	62.4	85.5	P19	61.0	51.6	73.1	P9	60.7	51.5	71.7	
P169	76.7	64.7	89.0	P129	49.5	40.6	59.0	P10	75.6	64.5	87.8	P10	61.5	51.5	75.2	P35	62.3	52.8	71.7	
P3	77.8	65.8	89.8	Р9	50.4	41.7	60.7	P15	75.9	64.3	88.0	Р3	62.9	52.9	74.9	P7	63.2	53.6	74.0	
P8	78.0	66.5	90.3	P8	50.4	42.1	60.7	P2	77.9	67.3	90.8	P8	63.1	52.9	73.5	P145	63.8	54.6	75.5	
P15	81.8	69.6	95.1	P15	51.6	42.9	60.9	P66	78.2	66.3	91.9	P129	63.4	53.8	75.2	P12	64.5	54.7	75.8	
P145	84.4	72.4	97.2	P35	52.0	43.3	62.5	P8	82.0	69.7	95.9	P7	64.0	54.0	76.2	P19	64.9	55.4	76.5	
P66	86.4	74.9	100.5	P20	52.5	43.0	62.4	P145	84.1	72.9	97.0	P66	64.8	54.1	75.6	P2	66.7	56.7	77.3	
P6	86.7	74.7	99.8	P6	53.5	44.4	64.7	P12	84.3	71.8	98.7	P15	65.0	54.5	77.9	EPI	67.3	52.7	83.6	
P19	86.9	74.9	100.9	P145	54.8	45.0	65.4	P3	84.7	73.3	98.4	P2	67.4	57.5	80.3	P17	67.5	57.5	79.6	
P10	87.1	75.1	100.2	P7	55.6	46.4	66.3	P7	85.4	72.5	100.1	P17	69.3	58.8	81.1	P6	68.9	58.5	80.4	
P7	89.3	76.9	103.7	P2	57.8	48.7	68.7	P17	85.9	74.6	100.5	P6	69.7	58.7	82.4	P15	69.2	58.9	80.8	
P17	96.0	82.9	110.1	P12	58.8	48.2	70.5	P19	93.0	79.9	108.6	P169	70.5	59.9	82.5	P10	70.8	60.0	82.2	
P20	99.0	86.5	113.5	P19	59.6	49.3	70.9	P6	95.0	80.5	111.4	P145	72.3	61.6	84.9	P66	73.9	63.0	86.8	
P2	109.2	95.9	126.0	EPI	61.7	46.9	78.7	P20	99.5	85.8	114.6	P20	75.5	64.9	87.3	P3	77.4	67.3	89.2	
EPI	110.7	89.8	138.5	P17	61.9	52.0	73.2	EPI	101.7	80.5	125.9	EPI	84.6	68.3	105.2	P20	80.5	68.8	93.5	

Table S11-B

chr 1				chr 2					chr 3				c	hr 4		chr 5				
cross	FC	low	up	cross	FC	low	ир	cross	FC	low	up	cross	FC	low	up	cross	FC	low	up	
EPI	0.40	0.19	0.64	EPI	0.15	0.03	0.31	EPI	0.40	0.18	0.63	P7	0.07	0.00	0.17	EPI	0.50	0.27	0.77	
P6	0.46	0.29	0.67	Р3	0.27	0.13	0.44	P7	0.40	0.25	0.59	P10	0.24	0.1	0.41	P20	0.50	0.34	0.67	
P35	0.52	0.29	0.77	P7	0.43	0.28	0.61	P6	0.42	0.26	0.59	P20	0.40	0.22	0.61	P8	0.59	0.35	0.83	
P7	0.59	0.38	0.81	P129	0.46	0.29	0.65	P145	0.54	0.35	0.75	P2	0.48	0.28	0.70	P3	0.68	0.49	0.88	
P169	0.65	0.43	0.91	P20	0.49	0.31	0.69	P8	0.58	0.39	0.78	P15	0.53	0.31	0.79	P2	0.75	0.52	0.97	
P15	0.67	0.45	0.93	P2	0.55	0.37	0.75	P19	0.59	0.40	0.77	Р3	0.61	0.36	0.88	P9	0.77	0.56	1.00	
P12	0.70	0.45	0.99	P8	0.55	0.35	0.77	P20	0.59	0.42	0.78	P8	0.68	0.44	0.96	P15	0.77	0.57	1.00	
P145	0.72	0.49	0.96	P6	0.60	0.38	0.82	P2	0.63	0.44	0.86	P129	0.68	0.42	0.95	P169	0.78	0.53	1.03	
P3	0.73	0.49	1.02	P145	0.66	0.46	0.86	P15	0.65	0.46	0.88	P169	0.72	0.45	1.01	P145	0.83	0.61	1.07	
P20	0.79	0.57	1.02	P15	0.66	0.45	0.87	P129	0.66	0.46	0.88	P19	0.76	0.53	1.03	P12	0.83	0.60	1.09	
P8	0.81	0.58	1.06	P19	0.67	0.49	0.87	Р3	0.69	0.50	0.90	P145	0.77	0.53	1.04	P66	0.86	0.66	1.07	
P17	0.84	0.60	1.12	P10	0.69	0.46	0.92	P66	0.69	0.49	0.93	P35	0.81	0.52	1.12	P7	0.91	0.66	1.15	
P2	0.86	0.62	1.09	P169	0.73	0.51	0.95	P169	0.80	0.59	1.00	P6	0.85	0.58	1.15	P129	0.92	0.67	1.19	
P129	0.98	0.71	1.28	P35	0.74	0.52	0.98	P35	0.80	0.55	1.07	Р9	0.89	0.61	1.20	P17	0.95	0.71	1.17	
P19	0.98	0.76	1.25	Р9	0.84	0.62	1.07	Р9	0.83	0.61	1.09	P12	0.89	0.60	1.20	P35	0.99	0.75	1.26	
P9	0.98	0.70	1.27	P66	0.87	0.65	1.11	P12	0.86	0.64	1.09	EPI	1.03	0.66	1.42	P19	1.04	0.80	1.29	
P66	1.02	0.79	1.28	P17	1.00	0.80	1.21	P17	0.99	0.77	1.23	P66	1.03	0.72	1.39	P6	1.15	0.91	1.39	
P10	1.03	0.77	1.29	P12	1.06	0.83	1.29	P10	1.11	0.90	1.34	P17	1.07	0.78	1.38	P10	1.15	0.91	1.43	

Table S11-C

chr 1				chr 2				chr 3					С	hr 4		chr 5				
cross	FC	low	up	cross	FC	low	ир	cross	FC	low	up	cross	FC	low	up	cross	FC	low	up	
EPI	0.55	0.29	0.86	EPI	0.76	0.39	1.16	P6	0.93	0.74	1.13	EPI	1.19	0.83	1.57	EPI	0.87	0.56	1.23	
P6	0.89	0.64	1.16	Р3	0.84	0.51	1.19	EPI	1.04	0.71	1.39	P6	1.23	0.93	1.53	P17	1.22	0.97	1.44	
P35	1.01	0.71	1.35	P10	1.04	0.75	1.33	P20	1.21	0.99	1.46	P17	1.29	0.99	1.62	P15	1.27	1.01	1.55	
P20	1.10	0.85	1.35	P66	1.04	0.71	1.35	P7	1.26	0.99	1.51	P66	1.30	1.01	1.59	P66	1.35	1.10	1.59	
P169	1.15	0.85	1.50	P17	1.34	1.01	1.71	P9	1.26	1.04	1.52	Р3	1.37	1.04	1.72	P7	1.37	1.09	1.65	
P8	1.19	0.90	1.50	P20	1.36	1.03	1.69	P19	1.29	1.07	1.55	P169	1.43	1.17	1.72	P2	1.38	1.12	1.63	
P3	1.21	0.86	1.55	P129	1.41	1.08	1.76	P169	1.29	1.02	1.57	P12	1.47	1.13	1.83	P20	1.38	1.16	1.64	
P129	1.25	0.96	1.58	P15	1.44	1.11	1.82	P129	1.30	1.07	1.55	P8	1.48	1.18	1.80	P129	1.50	1.18	1.83	
P15	1.27	0.96	1.61	P8	1.47	1.17	1.78	P3	1.32	1.06	1.56	P20	1.52	1.26	1.80	P169	1.54	1.22	1.82	
P7	1.27	0.94	1.62	P2	1.67	1.37	2.00	P17	1.37	1.12	1.61	P129	1.60	1.31	1.88	P6	1.54	1.26	1.83	
P145	1.31	1.00	1.64	P6	1.67	1.36	2.00	P15	1.38	1.11	1.65	P35	1.64	1.26	2.03	P8	1.56	1.23	1.90	
P2	1.34	1.02	1.67	P12	1.67	1.32	2.04	P12	1.38	1.14	1.63	P145	1.69	1.41	1.98	P145	1.60	1.30	1.93	
P17	1.38	1.06	1.71	P145	1.70	1.34	2.07	P2	1.48	1.18	1.77	P19	1.71	1.32	2.13	P35	1.60	1.31	1.91	
P12	1.41	1.07	1.76	P35	1.71	1.40	1.99	P8	1.51	1.22	1.80	P2	1.73	1.35	2.10	Р9	1.64	1.37	1.92	
P9	1.44	1.14	1.77	P19	1.78	1.43	2.10	P66	1.55	1.27	1.83	Р9	1.79	1.42	2.17	P3	1.67	1.42	1.93	
P66	1.46	1.17	1.77	P7	1.83	1.51	2.15	P145	1.76	1.50	2.03	P15	1.80	1.49	2.11	P10	1.69	1.41	1.97	
P10	1.47	1.15	1.81	P169	1.85	1.51	2.20	P35	1.78	1.51	2.06	P7	1.92	1.63	2.22	P19	1.72	1.46	1.97	
P19	1.55	1.23	1.93	P9	1.92	1.58	2.26	P10	1.85	1.58	2.12	P10	2.01	1.65	2.33	P12	1.73	1.42	2.02	

Table S11-D

chr 1				chr 2				chr 3					С	hr 4		chr 5				
cross	FC	low	up																	
P15	0.94	0.81	1.09	P35	0.85	0.68	1.02	P10	0.78	0.66	0.90	P17	1.02	0.92	1.11	P19	0.76	0.62	0.90	
P2	0.97	0.85	1.10	P9	0.86	0.66	1.04	P35	0.89	0.77	1.01	EPI	1.05	0.91	1.18	P10	0.76	0.63	0.90	
P17	0.98	0.85	1.11	P12	0.90	0.74	1.07	P145	0.95	0.84	1.06	P8	1.06	0.95	1.15	P9	0.80	0.67	0.94	
P19	0.99	0.85	1.12	P19	0.91	0.73	1.09	P17	0.96	0.84	1.07	P145	1.06	0.96	1.15	P145	0.81	0.68	0.95	
P9	0.99	0.84	1.14	P169	0.95	0.77	1.13	P129	0.99	0.87	1.11	P66	1.06	0.97	1.14	P35	0.93	0.78	1.07	
P12	1.01	0.86	1.15	P17	0.99	0.84	1.14	P2	1.00	0.89	1.12	P2	1.07	0.97	1.17	P12	0.95	0.81	1.09	
P129	1.02	0.86	1.15	P7	1.00	0.83	1.17	P8	1.00	0.89	1.12	Р9	1.08	0.97	1.16	P169	0.97	0.83	1.11	
P145	1.02	0.89	1.16	P6	1.04	0.87	1.22	P9	1.02	0.89	1.13	P12	1.08	0.98	1.18	P6	1.00	0.86	1.13	
P10	1.04	0.91	1.17	P15	1.08	0.91	1.27	P66	1.04	0.94	1.14	P35	1.11	1.00	1.21	P7	1.01	0.86	1.16	
P8	1.06	0.92	1.20	P2	1.09	0.91	1.24	P3	1.06	0.95	1.17	P15	1.11	1.02	1.20	P66	1.02	0.88	1.15	
P66	1.06	0.93	1.19	P8	1.10	0.94	1.26	P12	1.06	0.95	1.16	P169	1.11	1.03	1.19	P129	1.02	0.87	1.17	
P7	1.07	0.94	1.22	P145	1.13	0.98	1.30	P15	1.08	0.98	1.18	P19	1.11	1.00	1.21	P8	1.04	0.88	1.20	
P169	1.09	0.94	1.22	P66	1.14	0.97	1.31	P169	1.10	0.98	1.21	P6	1.13	1.04	1.20	P2	1.05	0.93	1.18	
P3	1.13	0.99	1.26	P129	1.15	0.97	1.33	P19	1.12	1.01	1.21	Р3	1.13	1.04	1.21	P15	1.10	0.97	1.22	
P35	1.15	1.01	1.28	P10	1.33	1.16	1.49	P20	1.14	1.03	1.24	P129	1.17	1.08	1.27	P20	1.11	0.99	1.23	
P20	1.15	1.04	1.27	P20	1.34	1.17	1.49	EPI	1.18	1.04	1.31	P20	1.20	1.13	1.27	P17	1.12	0.99	1.25	
P6	1.16	1.02	1.29	Р3	1.54	1.38	1.69	P6	1.20	1.10	1.29	P10	1.25	1.17	1.32	P3	1.12	0.99	1.24	
EPI	1.23	1.05	1.41	EPI	1.60	1.42	1.77	P7	1.21	1.11	1.30	P7	1.28	1.19	1.36	EPI	1.30	1.14	1.45	