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Abstract
Deciphering the multitude of epigenomic and genomic factors that influence the mutation

rate is an area of great interest in modern biology. Recently, chromatin has been shown to

play a part in this process. To elucidate this relationship further, we integrated our own ultra-

deep sequenced human nucleosomal DNA data set with a host of published human geno-

mic and cancer genomic data sets. Our results revealed, that differences in nucleosome

occupancy are associated with changes in base-specific mutation rates. Increasing nucleo-

some occupancy is associated with an increasing transition to transversion ratio and an

increased germline mutation rate within the human genome. Additionally, cancer single

nucleotide variants and microindels are enriched within nucleosomes and both the coding

and non-coding cancer mutation rate increases with increasing nucleosome occupancy.

There is an enrichment of cancer indels at the theoretical start (74 bp) and end (115 bp) of

linker DNA between two nucleosomes. We then hypothesized that increasing nucleosome

occupancy decreases access to DNA by DNA repair machinery and could account for the

increasing mutation rate. Such a relationship should not exist in DNA repair knockouts, and

we thus repeated our analysis in DNA repair machinery knockouts to test our hypothesis.

Indeed, our results revealed no correlation between increasing nucleosome occupancy and

increasing mutation rate in DNA repair knockouts. Our findings emphasize the linkage of

the genome and epigenome through the nucleosome whose properties can affect genome

evolution and genetic aberrations such as cancer.
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Introduction
With the advent of massively parallel DNA sequencing technologies it has become much easier
to study and characterize somatic mutations and mutation rates across species[1]. Additionally,
there are currently large projects underway attempting to catalog mutations responsible for the
initiation and propagation of cancer[2–9]. These massive data sets represent some of the first
and best sets for determining the various genomic and epigenomic factors that can affect muta-
tion rates. Preliminary work has shown that various factors can affect regional mutation rates
resulting in mutational heterogeneity. Of particular interest, recent work has shown that the
mutation rate is strongly correlated with replication timing, transcriptional activity, and chro-
matin organization[10–12]. In eukaryotes, DNA is packaged into chromatin whose fundamen-
tal repeating unit is the nucleosome. Taken together, it is not surprising that previous work has
demonstrated that nucleosome structure has played a role in human evolution[13]. Addition-
ally, recent work in yeast has shown that nucleosome organization can affect base specific
mutation rates[14]. In the context of the above, this study was carried out to further analyze
the relationship between nucleosomes and mutation rates.

The nucleosome is comprised of two copies of each of the core histones (H2A, H2B, H3,
and H4) wrapped around 147 base pairs (bp) of DNA, with the symmetrical center being called
the dyad[15]. Besides being involved in packaging DNA, nucleosome positioning (the genomic
location of nucleosomes), nucleosome occupancy (how enriched a genomic location is for
nucleosomes), and epigenetic modifications (post-translational modifications of histones and
DNAmethylation) are thought to play a role in development, transcriptional regulation, cellu-
lar identity, evolution, and human disease[13, 16–24]. In order to determine its role in affecting
mutation rates, we utilized paired-end sequenced Micrococcal Nuclease (MNase) digested
DNA from H1 human embryonic stem cells (hESC), yielding ~180x depth of coverage of the
human genome. A nucleosome occupancy score (NOS) map, at single bp resolution, was then
calculated (Methods)[25]. Finally, this nucleosome data was analyzed against a diverse set of
genomic features and data sets[1–9, 22, 26–31].

Results

Nucleosomes and human genetic variation, and mutations
We sought to integrate our data with human genetic variation[29, 31]. Flagged single nucleo-
tide polymorphisms (SNP) (SNPs deemed as potentially clinically significant with an allele fre-
quency less than 1%) had an increased NOS in comparison to common SNPs (Fig 1A). By
integrating genetic variation data from 1,092 individuals, we calculated average SNP densities,
nucleotide diversity (π scores), and the transition to transversion (Ts:Tv) ratio in 1,000 bp bins
for 10 equally sized groups of increasing nucleosome occupancy (Fig 1B, S1A and S1B Fig).
Intrigued by the increase in the Ts:Tv ratio, the fact that nucleosomes in yeast can affect base-
specific mutations, and the observation that on evolutionary time-scales SNPs are more likely
to occur within nucleosomes while inversions and duplications are more likely to occur in
nucleosome depleted regions (NDR), we sought to address the relationship between increasing
nucleosome occupancy and the base-specific mutation rate (MR) in the human genome by
strictly following previously used methodology[13, 14]. Our H1 single base pair resolution
NOS map was used in all subsequent analyses. The ancestral genome was used to define muta-
tions, with analyses kept to non-conserved, non-coding sites with high confidence ancestral
allele information[1, 9]. Taking into account strand symmetry, we calculated the mutation rate
for all 6 types of mutations (A!C, A!G, A!T, C!A, C!G, C!T) for 10 equally sized
groups (bins) corresponding to increasing nucleosome occupancy. Nucleosomes suppress
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three types of mutations but are associated with increased mutations in the three others and an
overall increased Ts:Tv ratio (Z-test with Bonferroni correction all p-values< 0.01, Fig 1C and
1D and S2A Fig). These findings are highly consistent with previous work in yeast[14]. Overall,
the data demonstrates an increase in the mutation rate for nucleosome favoring DNA

Fig 1. Nucleosomes and human genetic variation, andmutations. A, Nucleosome occupancy scores (NOS) around flagged SNPs and common SNPs.
B, The average transition to transversion ratio in 1,000 bp bins as a function of NOS, calculated from 1,092 individuals. C, The ancestral transition to
transversion ratio calculated for 10 groups corresponding to increasing nucleosome occupancy. D, Normalized base-specific mutation rates (MR) of 10
groups corresponding to increasing nucleosome occupancy. E, Ancestral AA!AGMR in relation to nearest dyad. F, Fast Fourier transform (FFT) of the
AA!AGMR.G, Effect of increasing nucleosome occupancy on germline mutations, asterisk denotes statistical significance (p-value < 0.01 by Z-test with
Bonferroni correction) between first and last group.

doi:10.1371/journal.pone.0136574.g001
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nucleotides as previous work by others has shown that the nucleosome core particle is enriched
for Gs and Cs and relatively depleted of As and Ts[32]. This is consistent with recent work in
yeast that observed selection against nucleosome favoring sequences in NDR and nucleosome
disfavoring sequences in nucleosomal DNA[33]. The greatest overall increase was observed in
the rate of change from A!G. Intrigued by the possibility that the structure of the nucleosome
could be involved in this process, we analyzed the mutation rate at previously well described
and evolutionary conserved DNAmotifs within the nucleosome core particle. AA dinucleo-
tides are an example of one such motif as they have been shown to be preferentially spaced
approximately every 10bp at sites where the minor groove of DNA bends interiorly. As such,
we calculated the AA!AGmutation rate and then plotted this rate for the highest NOS group
against the closest dyad, revealing that it increases closer to the dyad (Fig 1E). Interestingly, the
mutation rate displays a 10 bp periodic decrease away from the dyad, as calculated by fast Fou-
rier transform (FFT) (Fig 1F). A Fourier transform is a mathematical method, with many dif-
ferent applications, that converts a signal in space into a combination of pure frequencies. As
such, FFTs were performed for the AG dinucleotide to more precisely determine if a periodicity
(1/frequency) existed, and if so what it is within the nucleosome core particle. This periodicity
corresponds to the preferred 10 bp spacing of AA sites, as per theoretical rotational constraints
[15]. We then became interested in the overall effect of nucleosome occupancy on mutation
rates since this has not been previously done in humans. Calculating mutation rate as a func-
tion of nucleosome occupancy revealed a positive correlation of rate with NOS (Pearson’s cor-
relation coefficient (PCC) = 0.817, S2B Fig). We repeated this analysis in yeast and found a
similar result (data not shown). To further corroborate these findings we repeated our analysis,
using the same methodology, on a germline mutation data set generated from an Icelandic
population[30]. This same trend was found with germline mutations (Fig 1G).

Nucleosome occupancy and cancer mutations
We then hypothesized that nucleosome occupancy contributes to the heterogeneous nature
of cancer mutations. As previously stated, currently there are major efforts underway to use
sequencing technology to extensively catalog mutations involved in cancer[2–9]. Further-
more, one resulting conclusion from analyses of these studies is that the cancer mutation rate
in the genome is heterogeneous[10]. The large size of these data sets allowed us to calculate
these relationships at the level of a single base pair. Hence, in addition to repeating the bin-
ning analyses conducted previously, we directly analyzed mutation rates against NOS with-
out binning. We find that the same mutation rate associations are observed within non-
coding regions of cancers (PCC = 0.833, Fig 2A). Further characterization demonstrated can-
cer single nucleotide variants and microindels are enriched within nucleosomes, with a sub-
set of indels being found at the theoretical start (74 bp) and end (115 bp) of linker DNA
between two nucleosomes (Fig 2B and 2C). The total cancer mutation rate (non-coding and
coding) is also highly correlated with increasing nucleosome occupancy (PCC = 0.989, Fig
2D). Finally, since huge genetic and epigenetic changes can occur in cancer which, in theory,
could affect nucleosome occupancy, we sought to validate these findings by calling mutations
in H1 cells directly. To this end, we conducted whole genome sequencing and called muta-
tions in the same H1 cells we had used to generate our NOS map. We restricted our analysis
to non-coding regions and found the same positive correlation between mutation rate and
nucleosome occupancy (S3 Fig). Most interestingly, the PCC of this data set was highly simi-
lar to the somatic mutation dataset (0.854 for non-coding regions of H1 cells and 0.833 for
the non-coding regions of cancers).
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Nucleosome occupancy and DNA repair
These results are consistent with one of three possibilities: a confounding factor correlated with
mutation rate which is also incidentally correlated with nucleosome occupancy; a biochemical
mechanism mediated through nucleosomes which increases the number of mutations; and
high nucleosome occupancy decreases access of the DNA mismatch repair machinery to DNA
to fix replication errors and chemically modified nucleotides[34]. While it has been shown that
nucleosomes do not entirely block access to the DNA repair machinery, this does not rule out
that increased nucleosome occupancy can decrease efficiency of access, leading to an increased
mutation rate as a result of less efficient repair[35]. Furthermore, our findings are highly con-
sistent with this possibility since it would also explain our finding that the overall mutation
trend is toward more nucleosome favoring bases. In order to test our hypothesis, we used a
large data set of yeast DNA repair machinery knockouts consisting of 16 different mutant yeast
strains to calculate mutation rates and analyzed it against yeast NOS[36–38]. This data demon-
strated no correlation between mutation rate and nucleosome occupancy (Fig 3). Overall, these
results are consistent with a model in which increasing nucleosome occupancy decreases access
of DNA repair machinery to DNA, resulting in an increased mutation rate.

Discussion
We sought to understand the role nucleosomes play in affecting mutation rates, especially as it
relates to human cancer and genome evolution. Previous work looking at potential epigenomic

Fig 2. Nucleosome occupancy and cancer mutations. A, Cancer non-coding mutation rate (MR) in relation to nucleosome occupancy scores (NOS) with
a Pearson’s correlation coefficient (PCC) of 0.833. Bottom x-axis corresponds to the bar graph depicting the NOS for 10 equally sized groups of increasing
nucleosome occupancy. Top x-axis corresponds to the scatter plot depiction of the same data for each individual NOS.B, Raw counts of Cancer SNVs in
relation to dyads.C, Cancer indel and microindel counts in relation to absolute distance to nearest dyad. Two small enrichments of indels are at 74 and 115
bp which correspond to the theoretical start and end locations of linker DNA between two nucleosomes. D, The total cancer (coding and non-coding)
mutation rate as a function of NOS, Pearson’s correlation coefficient (PCC) of 0.989. Bottom x-axis corresponds to the bar graph depicting the NOS for 10
equally sized groups of increasing nucleosome occupancy. Top x-axis corresponds to the scatter plot depiction of the same data for each individual NOS.

doi:10.1371/journal.pone.0136574.g002
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or chromatin effects has been done on kilo- or megabase scales. By utilizing our ~180x depth
of coverage nucleosome map, our analyses allowed us to analyze this relationship at single base
pair resolution. We first integrated our data with genetic variation data. Most interestingly, we
found an increasing transition to transversion ratio with increasing nucleosome occupancy.
This was revealed by analyzing 1000 Genomes data and the ancestral genome in conjunction
with our NOS map. This implies that these associations are related to DNA / histone interac-
tions and not just a result of sequencing biases or biases in the 1000 Genomes data set. We kept
our analyses to non-coding and non-conserved sites by excluding all areas under mammalian
conservation[1]. By calculating base-specific mutation rates from the ancestral genome, we
found that increasing nucleosome occupancy is associated with rate changes that are consistent
with changes that would select for nucleotides which are favored within nucleosomes.

Under normal physiological conditions, DNA can locally denature to become single
stranded. This concept is termed “DNA breathing”[39, 40]. This phenomenon is important as
“open” or “breathing” regions of DNA are more chemically reactive in comparison to those
that are in a double helix. Importantly, the likelihood of a region of DNA to be breathing is
inversely proportional to the nucleosome occupancy of that region (the higher the nucleosome
occupancy, the lower the likelihood for a region to be breathing). As the different DNA bases
have unique chemical reactivities, the nucleotide frequencies within the nucleosome core parti-
cle will also influence the mutation rate as a function of nucleosome occupancy. Conversely,
there is a selective pressure against bases that are less favored within nucleosomes. The
AA!AGmutation rate also corroborates this finding by demonstrating a periodicity within
the nucleosome and decreasing at sites corresponding to preferred AA sites within the nucleo-
some core particle. Previous work demonstrates that nucleosomal DNA has an enriched G/C
content[32, 41, 42]. In the context of these attributes, one would expect the absolute mutation
rate of the different mutation types to reflect this. This can appreciated with our data.

We have recently demonstrated that DNA methylation is associated with increasing nucleo-
some occupancy in the human genome, and in the context that methylcytosines are more likely
to undergo spontaneous deamination in comparison to cytosines, we believe that the latter
increase in the C to T rate at higher nucleosome occupancies is due to methylated cytosines[41,
43]. The two types of mutations with the highest absolute baseline mutation rate (rate within
bin “1”) are C!T and A!G. These two transition mutations are the most commonly observed
mutations in genomes and can be caused by oxidative deamination of Cs and oxidative deami-
nation and tautomerization of As[44]. Given the mechanism of these changes, one would

Fig 3. Effect of nucleosome occupancy onmutation rate in DNA repair deficient yeast. The non-coding
mutation rate in yeast that lack DNA repair machinery in relation to nucleosome occupancy scores (NOS)
with a Pearson’s correlation coefficient (PCC) of 0.048. Bottom x-axis corresponds to the bar graph depicting
the NOS for 10 equally sized groups of increasing nucleosome occupancy. Top x-axis corresponds to the
scatter plot depiction of the same data for each individual NOS.

doi:10.1371/journal.pone.0136574.g003
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expect a decreasing mutation rate as the NOS increases as this would permit for less DNA
breathing and thus less reactivity. The opposite of this was observed for A!Gmutations and
thus led to our hypothesized mechanism.

Suppression of the mutation rate was observed for C!T mutations. However the decrease
is perhaps not as much as one would predict given the previously observed decrease in S. cerevi-
siae[14]. This can perhaps be explained in part by the increased spontaneous deamination of
5-methylcytosine in comparison to unmethylated cytosines, and that S. cerevisiae has relatively
few 5-methylcytosines[43, 45]. In addition, increasing 5-methylcytosine content within the
nucleosome core particle was correlated with increasing nucleosome occupancy[41]. The
decreased mutation rate for C!T mutations in humans as a function of nucleosome occu-
pancy is thus perhaps attenuated by the increased content of 5-methylcytosines in regions with
a high nucleosome occupancy.

C!Amutations were the third most common type of mutation at the lowest nucleosome
occupancy level. Interestingly, this type of mutation had the greatest fold reduction with
increasing nucleosome occupancy. This type of transversion mutation can arise when guanine
residues undergo oxidation to become 8-oxoguanine that can then form a Hoogsteen base pair-
ing with adenine[46]. This mismatching can result in G!T substitutions by DNA repair
machinery and thus C!A mutations[47]. 2-hydroxyadenine arises when adenine residues
undergo oxidation[48]. Previously studies have demonstrated that DNA polymerases can
incorporate dAMP opposite 2-hydroxyadenine and thus introduce A!T mutations[49]. With
increasing nucleosome occupancy, one would expect less DNA breathing and thus a decreased
susceptibility of guanines and adenines to these oxidation reactions and thus C!A and A!T
mutations, respectively.

Previous work has indicated a selective pressure for an increase in nucleosome favoring
DNA sequences[50, 51]. In particular, G/C rich regions are more likely to be associated with
increased nucleosome occupancy. Additionally, CC/CG/GC/GG dinucleotides are favored in
locations where the minor groove faces away from the histone surface and AA/AT/TA/TT
dinucleotides are favored where the minor groove is directed towards the surface of the his-
tones. These selective forces may contribute to the increasing A!Cmutation rate as a function
of increasing nucleosome occupancy.

The absolute mutation rate of C!G varies the least for all of the different types of muta-
tions. Of note, the lowest mutation rate for this type of mutation was observed for regions with
the lowest nucleosome occupancy and was then increased but relatively invariably and margin-
ally. Since nucleosomes favor both Gs and Cs within their core, the C!Gmutation rate should
be less affected by changes in nucleosome occupancy and the slight increased mutation rate
with increasing nucleosome occupancy is probably largely a function of an increased G/C con-
tent within the nucleosome core particle

Overall, these findings strongly imply that the DNA sequence preferences within the core
particle have had an impact on the evolution of the human genome. This is demonstrated by
DNA sequences drifting over time to nucleotide compositions that are more favored by nucleo-
somes, especially in areas characterized by high nucleosome occupancy sans natural selection
pressure. These findings are consistent with initial evolutionary analyses and especially with
work done in yeast[50].

We then became interested in deducing the overall effect of nucleosome occupancy on
mutation rate. When all base specific rates were analyzed together, we found that increasing
nucleosome occupancy was associated with an increasing mutation rate. We corroborated this
conclusion by performing the same analysis using germline mutation data from an Icelandic
population.
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To test this correlation on the somatic cell mutation rate, we turned our attention to the can-
cer mutation rate as the abundance of sequencing data sets can be used to test these associa-
tions. We sought to address mutational heterogeneity as a function of nucleosome occupancy
as this heterogeneity represents a substantial problem in cancer genomics. In cancer, the coding
and non-coding mutation rate increased with increasing nucleosome occupancy. Interestingly,
the PCC of the cancer non-coding mutation rate was highly similar to the PCC of the ancestral
mutation rate (0.833 and 0.817, respectively), implying that these associations are related to
DNA / histone interactions and not artifacts of the mutation data sets used. Additionally, we
repeated this analysis by calling mutations in H1 cells directly and found the same positive cor-
relation between mutation rate and nucleosome occupancy. This falls in line with our current
unpublished work and previous work that has demonstrated that on a global level nucleosome
occupancies are correlated between different cell types[52].

While it is interesting to note that the data appears to show that the germline mutation rate
is lower in the first binned group than the mutation rate observed for the lowest somatic muta-
tion groups, it must be stated that the germline mutation rate analysis was generated by bin-
ning NOS into 10 equal size bins and is not a direct comparison of mutation rate to NOS. This
was done because the germline mutations were very few in number, 4,934 to be exact[30].
Hence, there were not enough data points to accurately quantify the mutation rate for every
corresponding NOS score. Additionally, due to the limited nature of the germline data set,
making direct comparisons to the somatic data set is difficult due to the fact that the cancer
mutation data is comprised of hundreds of data sets. For us, the bigger point, which the data
does show, is that the same overall trend is observed in the germline data set. In the future, it
would be of interest to find out if there is a difference between germline and somatic mutation
rates as it relates to low nucleosome occupancy and what could be potentially driving that vari-
ability. Overall, we can surmise that variations in nucleosome occupancy can account for a
large proportion of the mutation rate variation in the genome.

While microindels behaved like cancer single nucleotide mutations in relation to nucleo-
some occupancy, indels were increased at 74 and 115 bp from the dyad, which correspond to
the theoretical entry sites of DNA in the linker region between two nucleosomes. These find-
ings suggest that nucleosome architecture can have a substantial impact on cancer mutations
by increasing mutation rate within the core particle and influencing the sites of insertions, dele-
tions, and duplications. This is in line with recent data from the Roadmap Epigenomics Project,
which demonstrated cell-type specific cancer mutations are influenced by cell-type specific
chromatin architecture[53]. Future studies integrating nucleosome occupancy data into mathe-
matical models of cancer genomics may better determine which aberrations are cancer driver
mutations.

Finally, we sought to explore a potential mechanism that could explain these findings.
Three of the potential mechanisms that could explain our findings are: nucleosome occupancy
is associated with another parameter responsible for mutations; nucleosomes biochemically
increase mutations; and/or increasing nucleosome occupancy decreases access of DNA repair
machinery to DNA, thereby increasing the rate of mutation by decreasing the efficiency of
repair. The third possibility seemed most likely based on the totality of our data. The most con-
vincing evidence of this is our findings that, over time, the human genome seems to drift
towards nucleosome favoring sequences and the near linear relationship between nucleosome
occupancy and mutation rate. In order to test for this possibility, we repeated our analyses
using 16 different large data sets from yeast DNA repair knockout strains. In order to eliminate
as much bias as possible, we conducted the analysis in the non-coding regions only. Yeast cod-
ing mutations were excluded from the final analysis for the following two reasons. First, coding
mutations can alter phenotype and therefore be associated with a corresponding change in
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fitness. As such, variations in selective pressure can alter or bias any analysis of mutation rates.
We calculated the non-coding mutation rate for all data sets, because, in theory, these muta-
tions are not under selective pressure that can alter or bias their calculations. Second, it is well
known that coding regions have higher nucleosome occupancy than non-coding regions[54,
55]. This could significantly bias any analysis on nucleosome occupancy and mutation rates.
The main point of our yeast analysis was to demonstrate the loss of this correlation with DNA
repair knockouts. In fact, in these strains there was no correlation between nucleosome occu-
pancy and mutation rate. Future biochemical studies are needed to shed light on the exact
nature of the interaction between nucleosomes and DNA repair proteins.

In summary, our analyses have revealed that mutation rates are affected by nucleosome
occupancy so long as DNA repair machinery remains intact. This association has significantly
impacted genome evolution and cancer mutagenesis. Finally, this relationship can partially
explain the heterogeneous nature of cancer mutations. Going forward, it will be interesting to
integrate this relationship into mathematical models of cancer, with the aim of developing bet-
ter tools for determining which mutations are driving cancer pathophysiology.

Materials and Methods

Cell culture
The UC Irvine Human Stem Cell Research Oversight Committee (UCI hSCRO) approved the
use of human embryonic stem cells in this study. The H1 human embryonic stem cell line was
purchased fromWiCell Research Institute, Inc. This one of the first ever human embryonic
stem cell lines derived and are approved by the NIH Human Embryonic Stem Cell Registry
(http://grants.nih.gov/stem_cells/registry/current.htm) [56]. The NIH Registration Number
for H1human embryonic stem cells is 0043. Feeder free cultures of H1 human embryonic stem
cells were grown and passaged in mTeSR 1 (STEMCELL Technologies Inc) as previously
described and in accordance with ENCODE protocols[26]. In total, approximately 100 million
H1 cells corresponding to passages 33–35 were used in experiments.

Generation of mono-nucleosomal DNA sequenced reads
H1 cells were subjected to MNase digestion by use of the EZ Nucleosomal DNA Kit (Zymo
Research) in accordance with the manufacturer’s protocol. The ideal digestion should yield
approximately 80% mono-nucleosomal DNA[17–20]. In order to extract both easily digested
nucleosomes and less digestible ones, we titrated the time of digestion in multiple replicates to
yield 70% to 90% mono-nucleosomal DNA, with the average being 80% from all replicates
combined. We then prepared paired-end libraries from this total mono-nucleosomal DNA
with use of the Illumina Paired-End DNA Sample Prep Kit according to the manufacturer’s
instructions with the following exception. In order to reduce potential PCR amplification bias,
we performed two separate PCR reaction steps and combined the product of the two reactions
[57, 58]. The libraries were then sequenced using PE54 chemistry on the Illumina HiSeq2000
in replicate on two flow cells (R51 and R54). Two biological replicates for H1 were performed,
each consisting of six technical replicates.

Alignment and processing of nucleosome maps
Paired-end nucleosomal sequencing data for R54 was aligned to the hg19 reference genome
using Bowtie 2 on default settings[59]. Data from R51 was processed similarly with the excep-
tion that 25 bases from the 3' end of read 2 were removed as these final cycles produced low Q-
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scores which caused excess reads to not align properly. All aligned data was processed using
SAMtools to yield merged BAM files[60].

Nucleosome occupancy score map generation and calling nucleosomes
BAM files were run through the DANPOS algorithm in which reads were clonally cut to
remove potential PCR amplification bias, smoothed, and adjusted for nucleosome size to
enhance signal to noise ratio, resulting in a nucleosome occupancy score (NOS) for each base
in the human genome[25]. DANPOS settings were as follows:-d 150,-a 1,-k 1,-e 1,--paired 1.-d
150 denoted setting the minimal distance between nucleosome dyads to 150 bp. The distance
between dyads was set to 150 bp as the average fragment size from our H1 paired-end sequenc-
ing dataset was 151 bp (corresponding to 75 bp on either side of a dyad). -a 1 set the resolution
of the NOS maps at a single bp and thus obviated any further downstream signal smoothing.
The setting -e 1 allows for an edge-finding step to be taken, which estimates the edges of the
predicted nucleosomes. -k 1 led to all data from intermediate steps being saved.--paired 1 indi-
cated that the input BAM files were from paired-end sequencing data. We also generated NOS
and called nucleosomes for the H1 dataset corrected for MNase digestion bias with use of a
genomic control and found no significant differences in sequence preference analyses (data not
shown)[32, 36, 41, 61]. For all subsequent analyses we used our original NOS map.

General software used for analysis
Operations on genomic intervals were performed using BEDTools[62]. Fast Fourier transforms
were done using MATLAB. Statistics were done in R. Additionally, we made use of in-house
Python 2.7, C++, and shell scripts that are available upon request.

Genetic variation
Flagged and common SNP data were downloaded from the UCSC genome browser table[31,
63]. 1000 Genomes data was downloaded and processed using the VCFtools software package
to calculate SNP densities, pi scores, and the transition to transversion ratio in 1,000 bp bins
[64]. For the same bins, we also calculated average H1 NOS. We then partitioned our data into
ten equal sized groups corresponding to increasing average NOS and all parameters were aver-
aged within these groups.

Base-specific and total ancestral mutation rate
To ease downstream analysis we took our single bp resolution H1 NOS map and rounded all
NOS values to the nearest whole integer and replaced all values above 545 as 545. This new
whole integer NOS map was used for all subsequent analyses. We then downloaded coordi-
nates of conserved elements in the human genome and aligned them to hg19 using liftOver[1,
63]. We combined these coordinates with gene coordinates from RefSeq and ENCODE black-
list regions[26, 65]. We used these combined coordinates to remove all conserved, blacklist,
and coding sites from our NOS map. Using the ancestral genome from Ensembl, we calculated
the ancestral allele and the current allele for all remaining sites taking into account strand sym-
metry[9]. Additionally, we removed all sites without known ancestral or current allele informa-
tion and kept the analysis to sites in which the ancestral allele had a high confidence call
according to Ensembl. In total, after this filtering, we ended up with greater than 2 billion
bases. For each ancestral base, A or C, the data was broken up into 10 roughly equal sized
groups corresponding to increasing NOS. Base-specific MR were calculated for each group as
the number of base-specific mutations divided by the total number of bases. Finally, we
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calculated a total NOS specific MR by dividing the number of mutations by the total number of
bases found for each whole integer NOS of 0–545.

Germline and cancer mutations
Germline mutations were downloaded as processed mutation calls with gene coordinates from
supplementary information and converted to hg19 by use of liftOver[30, 63]. We broke up the
human genome into 10 roughly equal sized groups of increasing NOS. The germline mutation
rate was calculated for each group by taking the total number of germline mutations in that
group and dividing it by the total number of bases. For cancer mutations, we downloaded pro-
cessed mutation data from six Cancer Genome Atlas Research Network studies and The Cata-
log of Somatic Mutations in Cancer (COSMIC) and combined all the mutations with two
caveats[2–8]. First, we kept the analysis to one single nucleotide variant (SNV) per genomic
coordinate for each cancer type, regardless of the frequency of a mutation within a cancer.
SNVs in different cancers were analyzed as multiple mutations per genomic coordinate with
the amount of mutations equaling the number of different cancers they were found in. For
indels and microindels this same approach was used but for an indel to be excluded both the
start and end coordinates must have been the same. Indel and microindel start and stop coordi-
nates were used as the genomic coordinates of the mutation and all bases that fell within these
coordinates were ignored for downstream analysis. All insertion or deletion mutations 50 bp or
greater were called indels and all those greater than 1 bp but less than 50 were called microin-
dels. As before, to ease downstream analysis we took our single bp resolution H1 NOS map
and rounded all NOS values to the nearest whole integer and replaced all values above 545 as
545. From this map we assigned a NOS to each cancer mutation. We initially extracted just the
non-coding mutations and calculated NOS specific cancer non-coding MR as the total number
of non-coding mutations divided by the total number of non-coding bases found for each
whole integer NOS of 0–545. The total cancer mutation rate was calculated as the total number
of cancer mutations (coding and non-coding) divided by the total number of bases found for
each whole integer NOS of 0–545.

H1 genome sequencing and analysis
We prepared paired-end libraries from H1 DNA with the use of the Illumina Paired-End DNA
Sample Prep Kit according to the manufacturer’s instructions with the following exception. In
order to reduce potential PCR amplification bias, we performed two separate PCR reaction
steps and combined the product of the two reactions[57, 58]. The libraries were then sequenced
using PE150 chemistry on the Illumina HiSeq2500 in replicate on two flow cells (R170 and
R171). Two biological replicates for H1 were performed, each consisting of two technical repli-
cates. In accordance with GATK Best Practices, this data was processed using base quality
score recalibration, indel realignment, duplicate removal, SNP and INDEL discovery, standard
hard filtering parameters, and variant quality score recalibration[66–69]. Called mutations
were processed as above.

Yeast DNA repair knockout strains and mutations
We downloaded yeast genomic sequencing data from 16 mismatch repair knockouts, one con-
trol, and MNase-Seq data from the NCBI[19, 37, 38, 70]. The yeast MNase-Seq data was pro-
cessed through the same pipeline stated above. Using VarScan 2, mutations for all 16
knockouts were called against the control strain[71]. We kept our subsequent analysis to non-
coding mutations and calculated mutation rates against yeast NOS, exactly as done for the
human data as stated above.
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Supporting Information
S1 Fig. Mutation density and nucleotide diversity as a function of NOS. A, The average SNP
density was calculated as the number of SNPs per 1,000 bp then averaged for each equal sized
group corresponding to increasing nucleosome occupancy. Genetic variation data was gener-
ated from The 1000 Genomes Project. B, Groups 1–10 correspond to groups with increasing
nucleosome occupancy scores (NOS). The π score is a measure of nucleotide diversity and was
calculated in 1,000 bp bins.
(TIF)

S2 Fig. Base-specific and overall mutation rate as a function of increasing NOS. A, Ances-
tral base-specific mutation rates (MR) calculated for ten equally sized groups corresponding to
increasing nucleosome occupancy scores (NOS) with color coded legend for the type of muta-
tion at top, with asterisks denoting statistical significance (p-value< 0.01) between the first
and last group. B, Ancestral MR in relation to nucleosome occupancy with a Pearson’s correla-
tion coefficient (PCC) of 0.817.
(TIF)

S3 Fig. H1 mutation rate (MR) as a function of nucleosome occupancy. Bottom x-axis corre-
sponds to the bar graph depicting the NOS for 10 equally sized groups of increasing nucleo-
some occupancy. Top x-axis corresponds to the scatter plot depiction of the same data for each
individual NOS. Pearson’s correlation coefficient (PCC) of 0.833.
(TIF)

Acknowledgments
We thank Suzanne B. Sandmeyer, Melanie Oakes, Seung-Ah Chung, and Valentina Ciobanu
for help on Illumina sequencing technology (UCI Genomics High-Throughput Facility). This
work was supported by the Ko Family Foundation and Oxnard Foundation (to P.H.W.). S.E.J
is an investigator of the Howard Hughes Medical Institute. P.G.Y. and B.A.P. are recipients of
fellowship awards from the California Institute of Regenerative Medicine (CIRM TG2–01152).

Author Contributions
Conceived and designed the experiments: PGY BAP. Performed the experiments: PGY BAP
OSK YHC. Analyzed the data: PGY BAP JFT SEJ. Contributed reagents/materials/analysis
tools: PGY BAP JFT OSK YHC YC PHW. Wrote the paper: PGY BAP JFT OSK PHW.

References
1. Lindblad-Toh K, Garber M, Zuk O, Lin MF, Parker BJ, Washietl S, et al. A high-resolution map of human

evolutionary constraint using 29 mammals. Nature. 2011; 478(7370):476–82. doi: 10.1038/
nature10530 PMID: 21993624; PubMed Central PMCID: PMC3207357.

2. Forbes SA, Tang G, Bindal N, Bamford S, Dawson E, Cole C, et al. COSMIC (the Catalogue of Somatic
Mutations in Cancer): a resource to investigate acquired mutations in human cancer. Nucleic acids
research. 2010; 38(Database issue):D652–7. doi: 10.1093/nar/gkp995 PMID: 19906727; PubMed
Central PMCID: PMC2808858.

3. The Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and
rectal cancer. Nature. 2012; 487(7407):330–7. doi: 10.1038/nature11252 PMID: 22810696; PubMed
Central PMCID: PMC3401966.

4. The Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma.
Nature. 2011; 474(7353):609–15. doi: 10.1038/nature10166 PMID: 21720365; PubMed Central
PMCID: PMC3163504.

Nucleosome Occupancy Is Correlated with Mutation Rate

PLOS ONE | DOI:10.1371/journal.pone.0136574 August 26, 2015 12 / 16

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0136574.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0136574.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0136574.s003
http://dx.doi.org/10.1038/nature10530
http://dx.doi.org/10.1038/nature10530
http://www.ncbi.nlm.nih.gov/pubmed/21993624
http://dx.doi.org/10.1093/nar/gkp995
http://www.ncbi.nlm.nih.gov/pubmed/19906727
http://dx.doi.org/10.1038/nature11252
http://www.ncbi.nlm.nih.gov/pubmed/22810696
http://dx.doi.org/10.1038/nature10166
http://www.ncbi.nlm.nih.gov/pubmed/21720365


5. The Cancer Genome Atlas Research Network. Comprehensive genomic characterization of squamous
cell lung cancers. Nature. 2012; 489(7417):519–25. doi: 10.1038/nature11404 PMID: 22960745;
PubMed Central PMCID: PMC3466113.

6. The Cancer Genome Atlas Research Network. Genomic and epigenomic landscapes of adult de novo
acute myeloid leukemia. The New England journal of medicine. 2013; 368(22):2059–74. doi: 10.1056/
NEJMoa1301689 PMID: 23634996.

7. The Cancer Genome Atlas Research Network. Comprehensive molecular characterization of clear cell
renal cell carcinoma. Nature. 2013; 499(7456):43–9. doi: 10.1038/nature12222 PMID: 23792563.

8. The Cancer Genome Atlas Research Network, Kandoth C, Schultz N, Cherniack AD, Akbani R, Liu Y,
et al. Integrated genomic characterization of endometrial carcinoma. Nature. 2013; 497(7447):67–73.
doi: 10.1038/nature12113 PMID: 23636398.

9. Flicek P, Amode MR, Barrell D, Beal K, Brent S, Carvalho-Silva D, et al. Ensembl 2012. Nucleic acids
research. 2012; 40(Database issue):D84–90. doi: 10.1093/nar/gkr991 PMID: 22086963; PubMed Cen-
tral PMCID: PMC3245178.

10. Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K, Sivachenko A, et al. Mutational heteroge-
neity in cancer and the search for new cancer-associated genes. Nature. 2013. doi: 10.1038/
nature12213 PMID: 23770567.

11. De S, Michor F. DNA replication timing and long-range DNA interactions predict mutational landscapes
of cancer genomes. Nature biotechnology. 2011; 29(12):1103–8. doi: 10.1038/nbt.2030 PMID:
22101487; PubMed Central PMCID: PMC3923360.

12. Liu L, De S, Michor F. DNA replication timing and higher-order nuclear organization determine single-
nucleotide substitution patterns in cancer genomes. Nature communications. 2013; 4:1502. doi: 10.
1038/ncomms2502 PMID: 23422670; PubMed Central PMCID: PMC3633418.

13. Schuster SC, Miller W, Ratan A, Tomsho LP, Giardine B, Kasson LR, et al. Complete Khoisan and
Bantu genomes from southern Africa. Nature. 2010; 463(7283):943–7. doi: 10.1038/nature08795
PMID: 20164927.

14. Chen X, Chen Z, Chen H, Su Z, Yang J, Lin F, et al. Nucleosomes suppress spontaneous mutations
base-specifically in eukaryotes. Science. 2012; 335(6073):1235–8. doi: 10.1126/science.1217580
PMID: 22403392.

15. Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ. Crystal structure of the nucleosome
core particle at 2.8 A resolution. Nature. 1997; 389(6648):251–60. doi: 10.1038/38444 PMID: 9305837.

16. Segal E, Fondufe-Mittendorf Y, Chen L, Thastrom A, Field Y, Moore IK, et al. A genomic code for nucle-
osome positioning. Nature. 2006; 442(7104):772–8. doi: 10.1038/nature04979 PMID: 16862119;
PubMed Central PMCID: PMC2623244.

17. Schones DE, Cui K, Cuddapah S, Roh TY, Barski A, Wang Z, et al. Dynamic regulation of nucleosome
positioning in the human genome. Cell. 2008; 132(5):887–98. doi: 10.1016/j.cell.2008.02.022 PMID:
18329373.

18. Mavrich TN, Jiang C, Ioshikhes IP, Li X, Venters BJ, Zanton SJ, et al. Nucleosome organization in the
Drosophila genome. Nature. 2008; 453(7193):358–62. doi: 10.1038/nature06929 PMID: 18408708;
PubMed Central PMCID: PMC2735122.

19. Kaplan N, Moore IK, Fondufe-Mittendorf Y, Gossett AJ, Tillo D, Field Y, et al. The DNA-encoded nucle-
osome organization of a eukaryotic genome. Nature. 2009; 458(7236):362–6. doi: 10.1038/
nature07667 PMID: 19092803; PubMed Central PMCID: PMC2658732.

20. Valouev A, Johnson SM, Boyd SD, Smith CL, Fire AZ, Sidow A. Determinants of nucleosome organiza-
tion in primary human cells. Nature. 2011; 474(7352):516–20. doi: 10.1038/nature10002 PMID:
21602827; PubMed Central PMCID: PMC3212987.

21. Yen K, Vinayachandran V, Batta K, Koerber RT, Pugh BF. Genome-wide nucleosome specificity and
directionality of chromatin remodelers. Cell. 2012; 149(7):1461–73. doi: 10.1016/j.cell.2012.04.036
PMID: 22726434; PubMed Central PMCID: PMC3397793.

22. Ernst J, Kheradpour P, Mikkelsen TS, Shoresh N, Ward LD, Epstein CB, et al. Mapping and analysis of
chromatin state dynamics in nine human cell types. Nature. 2011; 473(7345):43–9. doi: 10.1038/
nature09906 PMID: 21441907; PubMed Central PMCID: PMC3088773.

23. Tolstorukov MY, Volfovsky N, Stephens RM, Park PJ. Impact of chromatin structure on sequence vari-
ability in the human genome. Nature structural & molecular biology. 2011; 18(4):510–5. doi: 10.1038/
nsmb.2012 PMID: 21399641; PubMed Central PMCID: PMC3188321.

24. Warnecke T, Becker EA, Facciotti MT, Nislow C, Lehner B. Conserved substitution patterns around
nucleosome footprints in eukaryotes and Archaea derive from frequent nucleosome repositioning
through evolution. PLoS computational biology. 2013; 9(11):e1003373. doi: 10.1371/journal.pcbi.
1003373 PMID: 24278010; PubMed Central PMCID: PMC3836710.

Nucleosome Occupancy Is Correlated with Mutation Rate

PLOS ONE | DOI:10.1371/journal.pone.0136574 August 26, 2015 13 / 16

http://dx.doi.org/10.1038/nature11404
http://www.ncbi.nlm.nih.gov/pubmed/22960745
http://dx.doi.org/10.1056/NEJMoa1301689
http://dx.doi.org/10.1056/NEJMoa1301689
http://www.ncbi.nlm.nih.gov/pubmed/23634996
http://dx.doi.org/10.1038/nature12222
http://www.ncbi.nlm.nih.gov/pubmed/23792563
http://dx.doi.org/10.1038/nature12113
http://www.ncbi.nlm.nih.gov/pubmed/23636398
http://dx.doi.org/10.1093/nar/gkr991
http://www.ncbi.nlm.nih.gov/pubmed/22086963
http://dx.doi.org/10.1038/nature12213
http://dx.doi.org/10.1038/nature12213
http://www.ncbi.nlm.nih.gov/pubmed/23770567
http://dx.doi.org/10.1038/nbt.2030
http://www.ncbi.nlm.nih.gov/pubmed/22101487
http://dx.doi.org/10.1038/ncomms2502
http://dx.doi.org/10.1038/ncomms2502
http://www.ncbi.nlm.nih.gov/pubmed/23422670
http://dx.doi.org/10.1038/nature08795
http://www.ncbi.nlm.nih.gov/pubmed/20164927
http://dx.doi.org/10.1126/science.1217580
http://www.ncbi.nlm.nih.gov/pubmed/22403392
http://dx.doi.org/10.1038/38444
http://www.ncbi.nlm.nih.gov/pubmed/9305837
http://dx.doi.org/10.1038/nature04979
http://www.ncbi.nlm.nih.gov/pubmed/16862119
http://dx.doi.org/10.1016/j.cell.2008.02.022
http://www.ncbi.nlm.nih.gov/pubmed/18329373
http://dx.doi.org/10.1038/nature06929
http://www.ncbi.nlm.nih.gov/pubmed/18408708
http://dx.doi.org/10.1038/nature07667
http://dx.doi.org/10.1038/nature07667
http://www.ncbi.nlm.nih.gov/pubmed/19092803
http://dx.doi.org/10.1038/nature10002
http://www.ncbi.nlm.nih.gov/pubmed/21602827
http://dx.doi.org/10.1016/j.cell.2012.04.036
http://www.ncbi.nlm.nih.gov/pubmed/22726434
http://dx.doi.org/10.1038/nature09906
http://dx.doi.org/10.1038/nature09906
http://www.ncbi.nlm.nih.gov/pubmed/21441907
http://dx.doi.org/10.1038/nsmb.2012
http://dx.doi.org/10.1038/nsmb.2012
http://www.ncbi.nlm.nih.gov/pubmed/21399641
http://dx.doi.org/10.1371/journal.pcbi.1003373
http://dx.doi.org/10.1371/journal.pcbi.1003373
http://www.ncbi.nlm.nih.gov/pubmed/24278010


25. Chen K, Xi Y, Pan X, Li Z, Kaestner K, Tyler J, et al. DANPOS: dynamic analysis of nucleosome posi-
tion and occupancy by sequencing. Genome research. 2013; 23(2):341–51. doi: 10.1101/gr.142067.
112 PMID: 23193179; PubMed Central PMCID: PMC3561875.

26. Consortium EP, Dunham I, Kundaje A, Aldred SF, Collins PJ, Davis CA, et al. An integrated encyclope-
dia of DNA elements in the human genome. Nature. 2012; 489(7414):57–74. doi: 10.1038/nature11247
PMID: 22955616; PubMed Central PMCID: PMC3439153.

27. Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, et al. Human DNAmethylomes
at base resolution show widespread epigenomic differences. Nature. 2009; 462(7271):315–22. doi: 10.
1038/nature08514 PMID: 19829295; PubMed Central PMCID: PMC2857523.

28. Yu M, Hon GC, Szulwach KE, Song CX, Zhang L, Kim A, et al. Base-resolution analysis of 5-hydroxy-
methylcytosine in the mammalian genome. Cell. 2012; 149(6):1368–80. doi: 10.1016/j.cell.2012.04.
027 PMID: 22608086; PubMed Central PMCID: PMC3589129.

29. The 1000 Genomes Project Consortium, Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM,
et al. An integrated map of genetic variation from 1,092 human genomes. Nature. 2012; 491(7422):56–
65. doi: 10.1038/nature11632 PMID: 23128226; PubMed Central PMCID: PMC3498066.

30. Kong A, Frigge ML, Masson G, Besenbacher S, Sulem P, Magnusson G, et al. Rate of de novo muta-
tions and the importance of father's age to disease risk. Nature. 2012; 488(7412):471–5. doi: 10.1038/
nature11396 PMID: 22914163; PubMed Central PMCID: PMC3548427.

31. Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, et al. dbSNP: the NCBI database
of genetic variation. Nucleic acids research. 2001; 29(1):308–11. PMID: 11125122; PubMed Central
PMCID: PMC29783.

32. Gaffney DJ, McVicker G, Pai AA, Fondufe-Mittendorf YN, Lewellen N, Michelini K, et al. Controls of
nucleosome positioning in the human genome. PLoS genetics. 2012; 8(11):e1003036. doi: 10.1371/
journal.pgen.1003036 PMID: 23166509; PubMed Central PMCID: PMC3499251.

33. Weghorn D, Lassig M. Fitness landscape for nucleosome positioning. Proceedings of the National
Academy of Sciences of the United States of America. 2013; 110(27):10988–93. doi: 10.1073/pnas.
1210887110 PMID: 23784778.

34. North JA, Shimko JC, Javaid S, Mooney AM, Shoffner MA, Rose SD, et al. Regulation of the nucleo-
some unwrapping rate controls DNA accessibility. Nucleic acids research. 2012; 40(20):10215–27. doi:
10.1093/nar/gks747 PMID: 22965129; PubMed Central PMCID: PMC3488218.

35. Shim EY, Hong SJ, Oum JH, Yanez Y, Zhang Y, Lee SE. RSCmobilizes nucleosomes to improve
accessibility of repair machinery to the damaged chromatin. Molecular and cellular biology. 2007; 27
(5):1602–13. doi: 10.1128/MCB.01956–06 PMID: 17178837; PubMed Central PMCID: PMC1820475.

36. Brogaard K, Xi L, Wang JP, Widom J. A map of nucleosome positions in yeast at base-pair resolution.
Nature. 2012; 486(7404):496–501. doi: 10.1038/nature11142 PMID: 22722846.

37. Lang GI, Parsons L, Gammie AE. Mutation rates, spectra, and genome-wide distribution of spontane-
ous mutations in mismatch repair deficient yeast. G3. 2013; 3(9):1453–65. doi: 10.1534/g3.113.006429
PMID: 23821616; PubMed Central PMCID: PMC3755907.

38. Gammie AE, Erdeniz N, Beaver J, Devlin B, Nanji A, Rose MD. Functional characterization of patho-
genic human MSH2missense mutations in Saccharomyces cerevisiae. Genetics. 2007; 177(2):707–
21. doi: 10.1534/genetics.107.071084 PMID: 17720936; PubMed Central PMCID: PMC2034637.

39. Leroy JL, Kochoyan M, Huynh-Dinh T, Gueron M. Characterization of base-pair opening in deoxynu-
cleotide duplexes using catalyzed exchange of the imino proton. Journal of molecular biology. 1988;
200(2):223–38. PMID: 2836594.

40. Duguid JG, Bloomfield VA, Benevides JM, Thomas GJ Jr. DNAmelting investigated by differential
scanning calorimetry and Raman spectroscopy. Biophys J. 1996; 71(6):3350–60. doi: 10.1016/S0006–
3495(96)79528–0 PMID: 8968604; PubMed Central PMCID: PMC1233822.

41. Chodavarapu RK, Feng S, Bernatavichute YV, Chen PY, Stroud H, Yu Y, et al. Relationship between
nucleosome positioning and DNAmethylation. Nature. 2010; 466(7304):388–92. doi: 10.1038/
nature09147 PMID: 20512117; PubMed Central PMCID: PMC2964354.

42. Johnson SM, Tan FJ, McCullough HL, Riordan DP, Fire AZ. Flexibility and constraint in the nucleosome
core landscape of Caenorhabditis elegans chromatin. Genome research. 2006; 16(12):1505–16. doi:
10.1101/gr.5560806 PMID: 17038564; PubMed Central PMCID: PMC1665634.

43. Shen JC, Rideout WM 3rd, Jones PA. The rate of hydrolytic deamination of 5-methylcytosine in double-
stranded DNA. Nucleic acids research. 1994; 22(6):972–6. PMID: 8152929; PubMed Central PMCID:
PMC307917.

44. Lynch M. Rate, molecular spectrum, and consequences of humanmutation. Proceedings of the
National Academy of Sciences of the United States of America. 2010; 107(3):961–8. doi: 10.1073/
pnas.0912629107 PMID: 20080596; PubMed Central PMCID: PMC2824313.

Nucleosome Occupancy Is Correlated with Mutation Rate

PLOS ONE | DOI:10.1371/journal.pone.0136574 August 26, 2015 14 / 16

http://dx.doi.org/10.1101/gr.142067.112
http://dx.doi.org/10.1101/gr.142067.112
http://www.ncbi.nlm.nih.gov/pubmed/23193179
http://dx.doi.org/10.1038/nature11247
http://www.ncbi.nlm.nih.gov/pubmed/22955616
http://dx.doi.org/10.1038/nature08514
http://dx.doi.org/10.1038/nature08514
http://www.ncbi.nlm.nih.gov/pubmed/19829295
http://dx.doi.org/10.1016/j.cell.2012.04.027
http://dx.doi.org/10.1016/j.cell.2012.04.027
http://www.ncbi.nlm.nih.gov/pubmed/22608086
http://dx.doi.org/10.1038/nature11632
http://www.ncbi.nlm.nih.gov/pubmed/23128226
http://dx.doi.org/10.1038/nature11396
http://dx.doi.org/10.1038/nature11396
http://www.ncbi.nlm.nih.gov/pubmed/22914163
http://www.ncbi.nlm.nih.gov/pubmed/11125122
http://dx.doi.org/10.1371/journal.pgen.1003036
http://dx.doi.org/10.1371/journal.pgen.1003036
http://www.ncbi.nlm.nih.gov/pubmed/23166509
http://dx.doi.org/10.1073/pnas.1210887110
http://dx.doi.org/10.1073/pnas.1210887110
http://www.ncbi.nlm.nih.gov/pubmed/23784778
http://dx.doi.org/10.1093/nar/gks747
http://www.ncbi.nlm.nih.gov/pubmed/22965129
http://dx.doi.org/10.1128/MCB.0195606
http://www.ncbi.nlm.nih.gov/pubmed/17178837
http://dx.doi.org/10.1038/nature11142
http://www.ncbi.nlm.nih.gov/pubmed/22722846
http://dx.doi.org/10.1534/g3.113.006429
http://www.ncbi.nlm.nih.gov/pubmed/23821616
http://dx.doi.org/10.1534/genetics.107.071084
http://www.ncbi.nlm.nih.gov/pubmed/17720936
http://www.ncbi.nlm.nih.gov/pubmed/2836594
http://dx.doi.org/10.1016/S00063495(96)795280
http://dx.doi.org/10.1016/S00063495(96)795280
http://www.ncbi.nlm.nih.gov/pubmed/8968604
http://dx.doi.org/10.1038/nature09147
http://dx.doi.org/10.1038/nature09147
http://www.ncbi.nlm.nih.gov/pubmed/20512117
http://dx.doi.org/10.1101/gr.5560806
http://www.ncbi.nlm.nih.gov/pubmed/17038564
http://www.ncbi.nlm.nih.gov/pubmed/8152929
http://dx.doi.org/10.1073/pnas.0912629107
http://dx.doi.org/10.1073/pnas.0912629107
http://www.ncbi.nlm.nih.gov/pubmed/20080596


45. Tang Y, Gao XD, Wang Y, Yuan BF, Feng YQ. Widespread existence of cytosine methylation in yeast
DNAmeasured by gas chromatography/mass spectrometry. Anal Chem. 2012; 84(16):7249–55. doi:
10.1021/ac301727c PMID: 22852529.

46. Cadet J, Douki T, Ravanat JL. Oxidatively generated damage to the guanine moiety of DNA: mechanis-
tic aspects and formation in cells. Acc Chem Res. 2008; 41(8):1075–83. doi: 10.1021/ar700245e
PMID: 18666785.

47. Cheng KC, Cahill DS, Kasai H, Nishimura S, Loeb LA. 8-Hydroxyguanine, an abundant form of oxida-
tive DNA damage, causes G——T and A——C substitutions. The Journal of biological chemistry.
1992; 267(1):166–72. PMID: 1730583.

48. Kamiya H, Kasai H. Formation of 2-hydroxydeoxyadenosine triphosphate, an oxidatively damaged
nucleotide, and its incorporation by DNA polymerases. Steady-state kinetics of the incorporation. The
Journal of biological chemistry. 1995; 270(33):19446–50. PMID: 7642627.

49. Yang XL, Sugiyama H, Ikeda S, Saito I, Wang AH. Structural studies of a stable parallel-stranded DNA
duplex incorporating isoguanine:cytosine and isocytosine:guanine basepairs by nuclear magnetic reso-
nance spectroscopy. Biophys J. 1998; 75(3):1163–71. doi: 10.1016/S0006–3495(98)74035–4 PMID:
9726918; PubMed Central PMCID: PMC1299791.

50. Langley SA, Karpen GH, Langley CH. Nucleosomes shape DNA polymorphism and divergence. PLoS
genetics. 2014; 10(7):e1004457. doi: 10.1371/journal.pgen.1004457 PMID: 24991813; PubMed Cen-
tral PMCID: PMC4081404.

51. Kenigsberg E, Bar A, Segal E, Tanay A. Widespread compensatory evolution conserves DNA-encoded
nucleosome organization in yeast. PLoS computational biology. 2010; 6(12):e1001039. doi: 10.1371/
journal.pcbi.1001039 PMID: 21203484; PubMed Central PMCID: PMC3009600.

52. West JA, Cook A, Alver BH, Stadtfeld M, Deaton AM, Hochedlinger K, et al. Nucleosomal occupancy
changes locally over key regulatory regions during cell differentiation and reprogramming. Nature com-
munications. 2014; 5:4719. doi: 10.1038/ncomms5719 PMID: 25158628; PubMed Central PMCID:
PMC4217530.

53. Polak P, Karlic R, Koren A, Thurman R, Sandstrom R, Lawrence MS, et al. Cell-of-origin chromatin
organization shapes the mutational landscape of cancer. Nature. 2015; 518(7539):360–4. doi: 10.
1038/nature14221 PMID: 25693567.

54. Nahkuri S, Taft RJ, Mattick JS. Nucleosomes are preferentially positioned at exons in somatic and
sperm cells. Cell cycle. 2009; 8(20):3420–4. PMID: 19823040.

55. Andersson R, Enroth S, Rada-Iglesias A, Wadelius C, Komorowski J. Nucleosomes are well positioned
in exons and carry characteristic histone modifications. Genome research. 2009; 19(10):1732–41. doi:
10.1101/gr.092353.109 PMID: 19687145; PubMed Central PMCID: PMC2765275.

56. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic
stem cell lines derived from human blastocysts. Science. 1998; 282(5391):1145–7. PMID: 9804556.

57. Aird D, Ross MG, ChenWS, DanielssonM, Fennell T, Russ C, et al. Analyzing and minimizing PCR
amplification bias in Illumina sequencing libraries. Genome biology. 2011; 12(2):R18. doi: 10.1186/gb-
2011–12–2-r18 PMID: 21338519; PubMed Central PMCID: PMC3188800.

58. Cokus SJ, Feng S, Zhang X, Chen Z, Merriman B, Haudenschild CD, et al. Shotgun bisulphite sequenc-
ing of the Arabidopsis genome reveals DNAmethylation patterning. Nature. 2008; 452(7184):215–9.
doi: 10.1038/nature06745 PMID: 18278030; PubMed Central PMCID: PMC2377394.

59. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nature methods. 2012; 9
(4):357–9. doi: 10.1038/nmeth.1923 PMID: 22388286; PubMed Central PMCID: PMC3322381.

60. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map for-
mat and SAMtools. Bioinformatics. 2009; 25(16):2078–9. doi: 10.1093/bioinformatics/btp352 PMID:
19505943; PubMed Central PMCID: PMC2723002.

61. Allan J, Fraser RM, Owen-Hughes T, Keszenman-Pereyra D. Micrococcal nuclease does not substan-
tially bias nucleosomemapping. Journal of molecular biology. 2012; 417(3):152–64. doi: 10.1016/j.jmb.
2012.01.043 PMID: 22310051; PubMed Central PMCID: PMC3314939.

62. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformat-
ics. 2010; 26(6):841–2. doi: 10.1093/bioinformatics/btq033 PMID: 20110278; PubMed Central PMCID:
PMC2832824.

63. Meyer LR, Zweig AS, Hinrichs AS, Karolchik D, Kuhn RM, Wong M, et al. The UCSCGenome Browser
database: extensions and updates 2013. Nucleic acids research. 2013; 41(Database issue):D64–9.
doi: 10.1093/nar/gks1048 PMID: 23155063; PubMed Central PMCID: PMC3531082.

64. Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, et al. The variant call format and
VCFtools. Bioinformatics. 2011; 27(15):2156–8. doi: 10.1093/bioinformatics/btr330 PMID: 21653522;
PubMed Central PMCID: PMC3137218.

Nucleosome Occupancy Is Correlated with Mutation Rate

PLOS ONE | DOI:10.1371/journal.pone.0136574 August 26, 2015 15 / 16

http://dx.doi.org/10.1021/ac301727c
http://www.ncbi.nlm.nih.gov/pubmed/22852529
http://dx.doi.org/10.1021/ar700245e
http://www.ncbi.nlm.nih.gov/pubmed/18666785
http://www.ncbi.nlm.nih.gov/pubmed/1730583
http://www.ncbi.nlm.nih.gov/pubmed/7642627
http://dx.doi.org/10.1016/S00063495(98)740354
http://www.ncbi.nlm.nih.gov/pubmed/9726918
http://dx.doi.org/10.1371/journal.pgen.1004457
http://www.ncbi.nlm.nih.gov/pubmed/24991813
http://dx.doi.org/10.1371/journal.pcbi.1001039
http://dx.doi.org/10.1371/journal.pcbi.1001039
http://www.ncbi.nlm.nih.gov/pubmed/21203484
http://dx.doi.org/10.1038/ncomms5719
http://www.ncbi.nlm.nih.gov/pubmed/25158628
http://dx.doi.org/10.1038/nature14221
http://dx.doi.org/10.1038/nature14221
http://www.ncbi.nlm.nih.gov/pubmed/25693567
http://www.ncbi.nlm.nih.gov/pubmed/19823040
http://dx.doi.org/10.1101/gr.092353.109
http://www.ncbi.nlm.nih.gov/pubmed/19687145
http://www.ncbi.nlm.nih.gov/pubmed/9804556
http://dx.doi.org/10.1186/gb-2011122-r18
http://dx.doi.org/10.1186/gb-2011122-r18
http://www.ncbi.nlm.nih.gov/pubmed/21338519
http://dx.doi.org/10.1038/nature06745
http://www.ncbi.nlm.nih.gov/pubmed/18278030
http://dx.doi.org/10.1038/nmeth.1923
http://www.ncbi.nlm.nih.gov/pubmed/22388286
http://dx.doi.org/10.1093/bioinformatics/btp352
http://www.ncbi.nlm.nih.gov/pubmed/19505943
http://dx.doi.org/10.1016/j.jmb.2012.01.043
http://dx.doi.org/10.1016/j.jmb.2012.01.043
http://www.ncbi.nlm.nih.gov/pubmed/22310051
http://dx.doi.org/10.1093/bioinformatics/btq033
http://www.ncbi.nlm.nih.gov/pubmed/20110278
http://dx.doi.org/10.1093/nar/gks1048
http://www.ncbi.nlm.nih.gov/pubmed/23155063
http://dx.doi.org/10.1093/bioinformatics/btr330
http://www.ncbi.nlm.nih.gov/pubmed/21653522


65. Pruitt KD, Tatusova T, Brown GR, Maglott DR. NCBI Reference Sequences (RefSeq): current status,
new features and genome annotation policy. Nucleic acids research. 2012; 40(Database issue):D130–
5. doi: 10.1093/nar/gkr1079 PMID: 22121212; PubMed Central PMCID: PMC3245008.

66. McKenna A, HannaM, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The Genome Analysis
Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome
research. 2010; 20(9):1297–303. doi: 10.1101/gr.107524.110 PMID: 20644199; PubMed Central
PMCID: PMC2928508.

67. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, et al. A framework for variation dis-
covery and genotyping using next-generation DNA sequencing data. Nature genetics. 2011; 43
(5):491–8. doi: 10.1038/ng.806 PMID: 21478889; PubMed Central PMCID: PMC3083463.

68. Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levy-Moonshine A, et al. From
FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr
Protoc Bioinformatics. 2013; 11(1110):11 0 1–0 33. doi: 10.1002/0471250953.bi1110s43 PMID:
25431634; PubMed Central PMCID: PMC4243306.

69. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformat-
ics. 2009; 25(14):1754–60. doi: 10.1093/bioinformatics/btp324 PMID: 19451168; PubMed Central
PMCID: PMC2705234.

70. Leinonen R, Sugawara H, Shumway M, International Nucleotide Sequence Database Collaboration.
The sequence read archive. Nucleic acids research. 2011; 39(Database issue):D19–21. doi: 10.1093/
nar/gkq1019 PMID: 21062823; PubMed Central PMCID: PMC3013647.

71. Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD, Lin L, et al. VarScan 2: somatic mutation and
copy number alteration discovery in cancer by exome sequencing. Genome research. 2012; 22
(3):568–76. doi: 10.1101/gr.129684.111 PMID: 22300766; PubMed Central PMCID: PMC3290792.

Nucleosome Occupancy Is Correlated with Mutation Rate

PLOS ONE | DOI:10.1371/journal.pone.0136574 August 26, 2015 16 / 16

http://dx.doi.org/10.1093/nar/gkr1079
http://www.ncbi.nlm.nih.gov/pubmed/22121212
http://dx.doi.org/10.1101/gr.107524.110
http://www.ncbi.nlm.nih.gov/pubmed/20644199
http://dx.doi.org/10.1038/ng.806
http://www.ncbi.nlm.nih.gov/pubmed/21478889
http://dx.doi.org/10.1002/0471250953.bi1110s43
http://www.ncbi.nlm.nih.gov/pubmed/25431634
http://dx.doi.org/10.1093/bioinformatics/btp324
http://www.ncbi.nlm.nih.gov/pubmed/19451168
http://dx.doi.org/10.1093/nar/gkq1019
http://dx.doi.org/10.1093/nar/gkq1019
http://www.ncbi.nlm.nih.gov/pubmed/21062823
http://dx.doi.org/10.1101/gr.129684.111
http://www.ncbi.nlm.nih.gov/pubmed/22300766

