Supporting Information

Ausin et al. 10.1073/pnas.1618019113

PNAS PNAS

Ptaedav.28490/1-895 AT1C69770_CMT3/1-839	1 MSP AKRTRRQTAG I ETPTLENGSAV <mark>KRQKSEGKESAT</mark> PKENGNTVKENGNTLKENGN I VKENGGTV 1 MAP	
Ptaedav.28490/1-895 AT1G69770_CMT3/1-839	69 NGGTVK ENGNTVK ENGG I VK ENGP S SAP KAKVGAAR LAGGDR P SGGP AAKTK L P G E D R L L GAP M P K 21 P K K R A P K R A K T V K E E P V T V V E E G E K H V A	
Ptaedav.28490/1-895 AT1G69770_CMT3/1-839	137 AQRRWPLRYEKKKNAQNKSNGSAGDDEEQVVLNVKAHYLRAQVDG-ELYNLGDCASVKGEDGKA 60 AKSTWPDRYKPIEVQPPKASSRKKTKDDEKVEIIRARCHYRRAIVDERQIYELNDDAYVQSGEGKD	
Ptaedav.28490/1-895 AT1G69770_CMT3/1-839	202 IGSILEFFETTDGKQYFTTQWFYRAEDTAIKTEASFHDKKRVFYSEIKDDNLLECITSKLK 28 ICKIIEMFEGANGKLYFTARWFYRPSDTVMKEFEILIKKKRVFFSEIQDTNELGLLEKKLNILMIP	
Ptaedav.28490/1-895 AT1G69770_CMT3/1-839	264 ERKESSIPPCDYYYDMGYNLAYTTFYTLPAGKSKNVAASSDSTSTVCDESENKADNDTWSG 196 ENTKETIPATENCDFFCDMNYFLPYDTFEAIQQETMMAISESSTISSDTDIREGAAAISEIGECSQ	
Ptaedav.28490/1-895 AT1G69770_CMT3/1-839	327 NG SK SELT LLDLY SGCGGMSTGLCFGANL SGVNLVTKWAVDLNEFACK SLKHNHP ET EVRNELADD 264 EGHK - KAT LLDLY SGCGAMSTGLCMGAQL SGLNLVTKWAVDMNAHACK SLQHNHP ET NVRNMTAED	
Ptaedav.28490/1-895 AT1G69770_CMT3/1-839	395 ELLKHWKKLYQKYCGSDGTKGNTKAAETKNQKEEDDDSEISEEEFEVESLIGIRY 331 FLLKEWEKLCIHFSLRNSPNSEEYANLHGLNNVEDNEDVSEESENEDDGEVFTVDKIVGISF	
Ptaedav.28490/1-895 AT1G69770_CMT3/1-839	452 ATKSDESGLQFKGYDESEDSWEPVEGLGDCEESMKEFVMKGAKAKLLPLPGDVDVICGGPPC 395 PKKLLKRGLYLKVRWLNYDDSHDTWEPIEGLSNCRGKIEEFVKLGYKSGILPLPGGVDVVCGGPPC	
Ptaedav.28490/1-895 AT1G69770_CMT3/1-839	516 A S G F N R F R N T E A P L E D S K NQQ I I V Y M D I V D F L K P R Y V L M E N V V D I L K F A G G V L G R Y A L S R L V H M S Y 463 I S G H N R F R N L L D P L E D Q K N K Q L L V Y M N I V E Y L K P K F V L M E N V V D M L K M A K G Y L A R F A V G R L L Q M N Y	
Ptaedav.28490/1-895 AT1G69770_CMT3/1-839	584 K LGMMVAGCYGLPQFRMR K LPQYP LPTHDVVQRGGVP NEWER NMVAYDENHTVK LE 531 R NGMMAAGAYGLAQFR LR FF LWGA LP SE I IPQ FP LPTHDLVHRGN I VK EFQGN I VAYDEGHTVK LA	
Ptaedav.28490/1-895 AT1G69770_CMT3/1-839	642 LILGDAISDLPEIANSEQRDEMQYGKAPRTEFQQYIRMPKEVMNGRMLPSGSASKRASQKAILYDH 999 LLLKDVISDLPAVANSEKRDEITYDKDPTTPFQKFIRLRKDEASGSQSKSKSKKHVLYDH	
Ptaedav.28490/1-895 AT1G69770_CMT3/1-839	710 LQ LN EDDYQRVCR I PKNKGAN FRD LPGVI I REDNVVELDT SMERIL LPSGKPL I PDYAI SFVKGR S 661 LN LN I NDY ERVCQVPKRKGAN FRD FPGVI VGPGNVVKLEEGKERVKLESGKT LVPDYALTYVDGK S	LK 777 CK 728
Ptaedav.28490/1-895 AT1G69770_CMT3/1-839	778 P F G R L WWD E T V P T V V T R A E P H NQ A V L H P EQ D R V L S I R E NAR L Q G F P D Y Y K L H G T V K E R Y I Q V G NA V 729 P F G R L WWD E I V P T V V T R A E P H NQ V I I H P EQ N R V L S I R E NAR L Q G F P D D Y K L F G P P K Q K Y I Q V G NA V	AV 845 AV 796
Ptaedav.28490/1-895 AT1G69770_CMT3/1-839	846 PVARALGFALGMAIQKLCT - DEPVVKLPEKFPLCFDNQQNEDGAMDVGEQT 797 PVAKALGYALGTAFQGLAVGKDPLLTLPEGFAFMKPTLPSELA	895 839

Fig. S1. Sequence alignment of Arabidopsis CMT3 and a putative CMT3 ortholog of P. taedav. Both protein sequences were extracted by reciprocal best hit of BLASTP, and then were aligned by Muscle.



Fig. 52. BS-seq coverage shown as the percentage of cytosines that are covered by at least "X" reads. Both replicates of needle and SE culture cell were calculated separately first and then merged together as Needle/Culture_merge. Approximately 83% and 76% of total cytosines were covered by at least four reads in needle and SE culture cell, respectively.

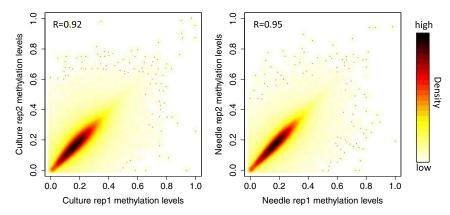
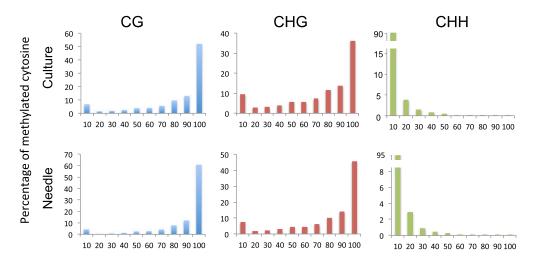



Fig. S3. Correlation between replicates of needles (*Right*) and SE culture (*Left*). Methylation levels were calculated for each 2-kbp window, and Pearson correlation coefficient was calculated and shown as R value.

Methylation level (%)

Fig. S4. Distribution of methylation levels of CG (Left), CHG (Center), and CHH (Right) in SE culture and needles. The methylation level is divided into 10 bins from 0 to 100%.

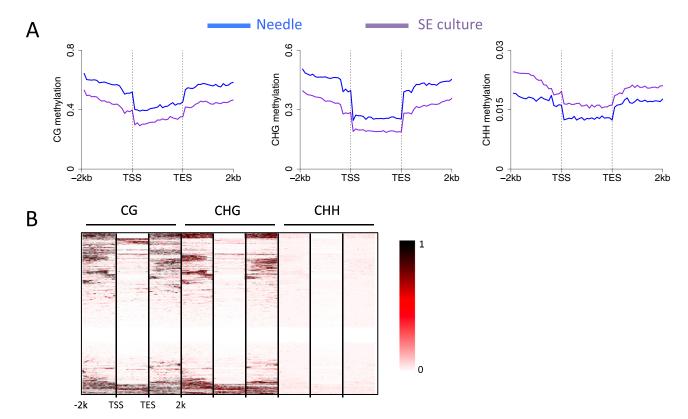


Fig. S5. Methylation patterns of genes excluding intronic TE insertions. (A) Metaplot of methylation in genes excluding intronic TE insertions. (B) Heatmap of methylation in genes excluding intronic TE insertions.

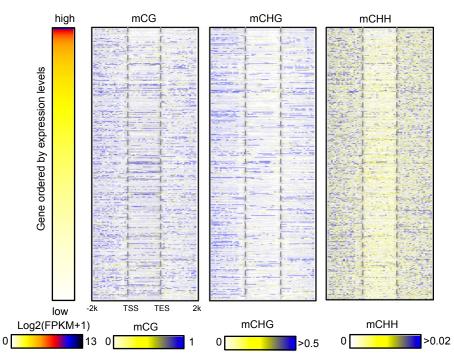


Fig. S6. Heatmap of DNA methylation in genes ordered by expression. Gene abundance was estimated by FPKM. In the case of zero value, we used log2(FPKM+1) to order gene expression. DNA methylation in each sequence context is shown correspondingly.

DN A C

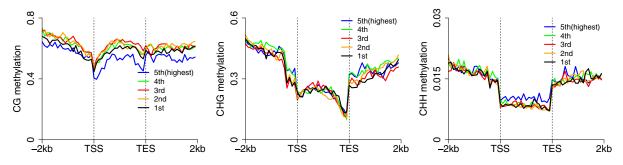


Fig. S7. Correlation between DNA methylation and transcription. Expressed genes were divided into five groups by expression level, from first (lowest expression) to fifth (highest expression). Each group contains a similar number of genes.

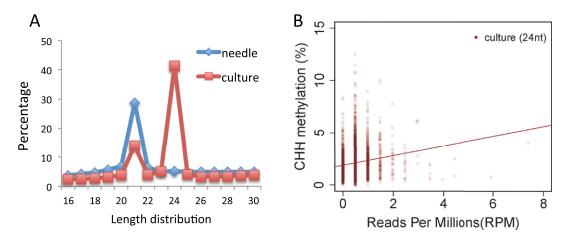
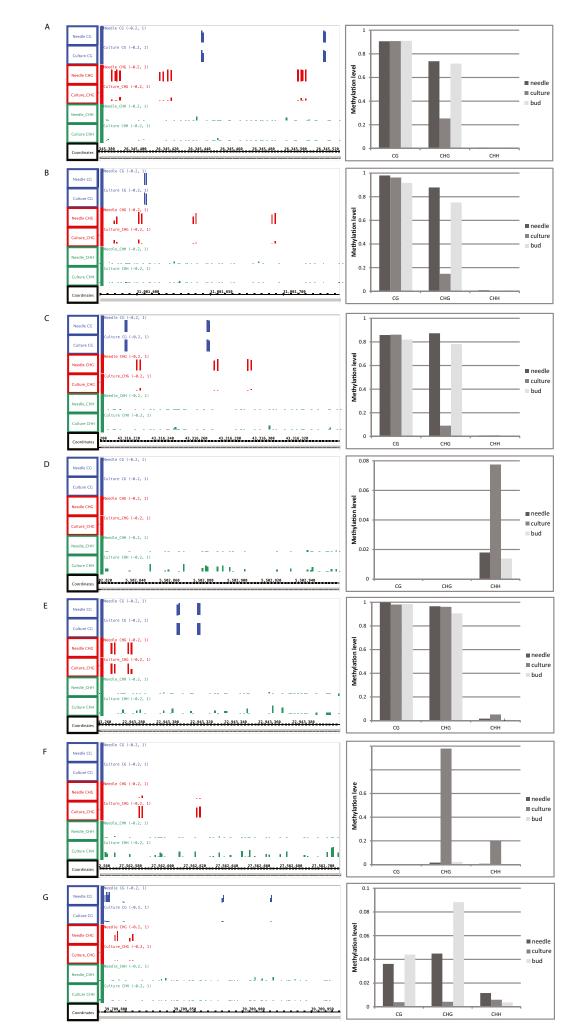



Fig. S8. Correlation between 24-nt siRNA abundance and CHH methylation levels. (A) Comparison of the length distributions of siRNA between needle and SE culture. (B) The correlation between CHH methylation and 24-nt siRNA abundance of supercontig1 in SE culture. Each bin represents a 500-bp window. Red line represents a fitted line from a linear model (Im function in R software) for SE culture.

Fig. 59. Detection of methylation differences between needles and SE culture by BS-seq and validation of BS-seq data by traditional bisulfite sequencing. BS-seq data [screenshot from Integrated Genome Browser (IGB) browser] from selected regions in supercontig 1 (see *Experimental Procedures* for supercontigs) are shown on the left and traditional bisulfite data (see Table S2 for PCR primers used) are shown on the right. In BS-seq data, CG, CHG, and CHH are shown in blue, red, and green, respectively. Regions in *A*–C lose CHG methylation in SE culture; regions in *D* and *E* gain CHH methylation in SE culture; region in *G* loses all three types of methylation in SE culture. Traditional bisulfite sequencing data obtained from buds is also included for comparison purpose.

S A NO

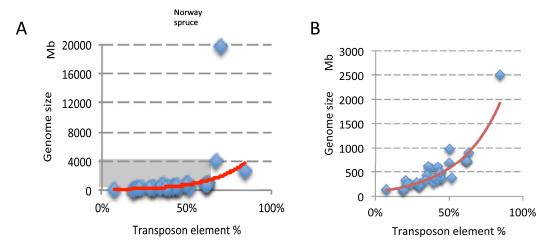


Fig. S10. Correlation between transposon element content and genome size. (A) Genome size is correlated with TE content. Thirty-three angiosperm species were used to show this correlation. (B) This is a zoomed-in view of the gray area in A. Red line is exponential regression line.

Table S1.	Summary of	BS-seq	results and	estimation	of methy	ylation levels
-----------	------------	--------	-------------	------------	----------	----------------

Samples	Read no.	Uniquely mapped	Mapped ratio, %	%mCG	%mCHG	%mCHH	Conversion rate, %	Sequencing depth, Gb
Needle rep1	4,071,099,559	2,374,889,504	58.3	74.7	69.1	1.5	94.91	118
Needle rep2	4,538,423,678	2,636,656,075	58.1	74.4	68.9	1.5	95.43	131
Culture rep1	3,776,335,406	2,102,719,947	55.7	68.6	62.8	2.6	94.49	105
Culture rep2	3,801,275,690	2,123,873,990	55.9	66.3	60.9	1.9	95.00	106

Table S2.	PCR primers used in traditional bisulfite sequencing
-----------	--

Regions	Primer sequences		
Supercontig1: 26,345,393–26,345,542	5′-TTGAGTGAAAAAATTYGAATATTATAAATTGTTTGGA-3		
	5'-TTTTAAACTTTTAACACRTTTCCATACCCT-3'		
Supercontig1: 31,001,585–31,001,748	5'-YTTTTTGAGTGTTTTGGGTTAAATTTGAG-3'		
	5'-CTAAAATAATCATTTAAAATACTTTTTCATATTCATAAATTTTATTTTTA-3'		
Supercontig1: 43,316,225–43,316,367	5'-TATATTATAATTTTTTTGTTTTATATTATGTTTTTTATTTTGYTTGAA-3'		
	5'-CATCAAACAAAAATTCTCTTTRCAAAATATATAAAAAAAA		
Supercontig1: 5,502,827–5,502,968	5'-ATTTGAGTGATTGTTTTTTTTTTTTYAGTATAYTGA-3'		
	5'-CACACTARACCTATCATACCACATAATATTTC-3'		
Supercontig1: 22,943,274–22,943,415	5′-TGTGYAATAATATAAYGAAATTGTGTGYGAATA-3′		
	5'-TCTTATTTCTTAAAAATTTTAATTAAAACTCTCACTCCATA-3'		
Supercontig1: 27,562,572–27,562,721	5'-TTATTATTGTTAATTTTTAATTGAYGAGATTTTAATTTTTTAATATAA-3'		
	5'-AAATTCTTCCTTCAAATACAAATARARTTAAAAATTTCTTA-3'		
Supercontig1: 39,709,799–39,709,973	5'-AGAGAGGATGAAGGGAATGATTGA-3'		
	5'-CΑΑΤΑΑΑΑΑΤΑΑΑΑΑΤΑΤΑΑΑΤΑΤΤΑΑCΤΑΑΑΑΑΤCΑΑΤΑCCAAAAATAAT-3'		

Table S3. S	Summary of	sRNA-seq	read a	alignment
-------------	------------	----------	--------	-----------

Samples	Total reads*	Uniquely mapped	Mapped ratio, %
Needle	2,061,322	1,494,660	72.51
SE culture	2,261,492	2,027,354	89.65

*Nonredundant reads.

Other Supporting Information Files

Dataset S1 (PDF)