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Genome-wide characterization by next-generation sequencing has
greatly improved our understanding of the landscape of epigenetic
modifications. Since 2008, whole-genome bisulfite sequencing
(WGBS) has become the gold standard for DNAmethylation analysis,
and a tremendous amount of WGBS data has been generated by the
research community. However, the systematic comparison of DNA
methylation profiles to identify regulatory mechanisms has yet to be
fully explored. Herewe reprocessed the raw data of over 500 publicly
available Arabidopsis WGBS libraries from various mutant back-
grounds, tissue types, and stress treatments and also filtered them
based on sequencing depth and efficiency of bisulfite conversion.
This enabled us to identify high-confidence differentially methylated
regions (hcDMRs) by comparing each test library to over 50 high-
quality wild-type controls. We developed statistical and quantitative
measurements to analyze the overlapping of DMRs and to cluster
libraries based on their effect on DNA methylation. In addition to
confirming existing relationships, we revealed unanticipated connec-
tions between well-known genes. For instance, MET1 and CMT3
were found to be required for the maintenance of asymmetric CHH
methylation at nonoverlapping regions of CMT2 targeted heterochro-
matin. Our comparative methylome approach has established a frame-
work for extracting biological insights via large-scale comparison of
methylomes and can also be adopted for other genomics datasets.
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DNA methylation plays essential roles in regulating gene ex-
pression and maintaining genome stability. In mammals,

DNA methylation is mostly restricted to CpG dinucleotides in so-
matic tissues, whereas non-CG methylation has been reported in
pluripotent stem cells (1–3) and the mouse germ line (4, 5), as well as
in the mouse cortex (6) and human brain (7, 8). Arabidopsis broadly
deploys methylation in both CG and non-CG contexts (including
CHG and CHH, where H can be A, T, or C) (9, 10) via the action of
several DNA methyltransferases. METHYLTRANSFERASE 1
(MET1) and CHROMOMETHYLASE 3 (CMT3) maintain CG
and CHG methylation, respectively; DOMAINS REARRANGED
METHYLTRANSFERASE 2 (DRM2) targets CHH methylation
via the RNA-directed DNA methylation (RdDM) machinery,
whereas CHROMOMETHYLASE 2 (CMT2) carries out CHH
methylation at heterochromatic regions independently of small
RNA activity (11, 12). Although we have learned a great deal
about the mechanisms of these methylation pathways, insights into
the interactions between pathways and their biological effects are
still largely unknown.
Whole-genome bisulfite sequencing (WGBS) enables the gen-

eration of global DNA methylation profiles at single-nucleotide
accuracy (13, 14) and has been widely adopted for characterizing
Arabidopsis methylomes (15, 16). However, experimental condi-

tions, library preparation, and downstream bioinformatic analysis
techniques can vary widely among research groups, and a means
to compare and extract insight from metadata generated across
these different laboratory conditions has currently been lacking.
Here we collected 500 WGBS libraries and analyzed over 300 in
depth from various genotypes and tissues that have been de-
posited in the Gene Expression Omnibus (GEO) database by the
Arabidopsis community using a standardized pipeline (see Dataset
S1 for the list of libraries). For each library, we defined differ-
entially methylated regions (DMRs) with high robustness and
confidence by comparison with 54 common control libraries. We
clustered the libraries based on two statistical methods, named
statistical measurement of overlapping of DMRs (S-MOD) and
quantitative measurement of overlapping of DMRs (Q-MOD).

Significance

In plants, DNA cytosine methylation plays a central role in di-
verse cellular functions, from transcriptional regulation to
maintenance of genome integrity. Vast numbers of whole-
genome bisulphite sequencing (WGBS) datasets have been
generated to profile DNA methylation at single-nucleotide
resolution, yet computational analyses vary widely among re-
search groups, making it difficult to cross-compare findings.
Here we reprocessed hundreds of publicly available Arabi-
dopsis WGBS libraries using a uniform pipeline. We identified
high-confidence differentially methylated regions and com-
pared libraries using a hierarchical framework, allowing us to
identify relationships between methylation pathways. Fur-
thermore, by using a large number of independent wild-type
controls, we effectively filtered out spontaneous methylation
changes from those that are biologically meaningful.
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Our analysis in different mutants revealed a previously overlooked
hierarchical framework regulating non-CG methylation and estab-
lished connections between different epigenetic regulators. For
example, MOM1 and MORC family proteins coordinately target a
small but specific subset of RNA-directed DNAmethylation (RdDM)
regions, whereas MET1 and CMT3 are each required for CHH
methylation at unique subsets of CMT2 targeted regions. This
framework could be adopted to perform large-scale methylome
comparisons in other model organisms or for other types of NGS data.

Results and Discussion
Uniform Processing and Quality Check of Arabidopsis WGBS Libraries
in GEO. We retrieved 503 Arabidopsis whole-genome bisulfite se-
quencing libraries from the National Center for Biotechnology
Information GEO database (17), which included a wide spectrum
of genotypes, tissues, and treatments (Dataset S1). Considering the
variation in sequencing depth and quality among these libraries, we
developed a uniform procedure to process all libraries and assess
their quality (Fig. 1A; see Materials and Methods for more details).
We excluded libraries with low efficiency of bisulfite conversion,
libraries with low coverage, libraries that were not in the reference
Col-0 background, and libraries that represent duplicated GEO
entries (Fig. 1 B and C and Dataset S2). In total, these quality
control steps filtered out 189 libraries. The remaining 314 high-
quality WGBS libraries, including 54 designated as “control” li-
braries (this set includes all libraries of wild-type leaf or seedling
tissue—these are the most common tissue types submitted for
WGBS analysis) and 260 “test” libraries (this set includes all non-
WT genotypes, treatments, or nonleaf/seedling tissue types), were
selected for further analysis.

Identification of High-Confidence Differentially Methylated Regions.
To establish connections among the different WGBS libraries,
we first evaluated the changes in methylation [differentially
methylated regions (DMRs)] for each genotype/tissue/treatment
by comparing each of the 260 test libraries to each of the 54 control

libraries (see Materials and Methods for more details and Datasets
S3 and S4). In brief, we defined six types of DMR (hyper- or hypo-
CG/CHG/CHH) and performed DMR calling with 100-bp bin
resolution for each test library. A DMR is only valid when the test
library differs from at least 33 out of the 54 control libraries (see
Materials and Methods for more details; SI Appendix, Figs. S1 and
S2; and Dataset S3). These DMRs were designated as “high-
confidence” DMRs (hcDMRs) and are listed in Datasets S5–S10,
and the hcDMR calling pipeline is available for download at https://
github.com/yu-z/hcDMR_caller. By design, hcDMRs should filter
out spontaneous DMRs that occur in wild-type plants (18, 19)
through comparison with a large number of control libraries. To
validate the hcDMRs, we sought to complement a mutant because
true DMRs arising as a consequence of the genetic knockout
should be restored after the reintroduction of a functional copy of
the gene, whereas DMRs that arise spontaneously should not. We
chose to complementmorc6 because this mutant is known to cause
very modest changes in methylation (20, 21), allowing us to assess
both the accuracy and sensitivity of the hcDMR calling method.
We reintroduced a FLAG tagged version of MORC6 into the
morc6mutant background and performed RNAseq in the first (T1)
generation alongside wild-type and morc6 mutant controls. This
confirmed the functional activity of the MORC6 transgene because
nearly all genes derepressed in the morc6 mutant were restored to
wild-type levels (SI Appendix, Fig. S3). Next, we performed WGBS
on the complementation line and found that whereas only 3% of
hcDMRs were not complemented (9/311), ∼26% of DMRs de-
rived by comparing morc6 to a matched wild-type control (22)
failed to regain methylation by 10% or more (355/1,391) (Fig. 2 A
and B). The increased rate of false positives using the matched
control method could be the result of the different life histories of
the laboratory strain wild-type and morc6 T-DNA plant. Each ac-
quires independent spontaneous methylation changes through
generations, which are filtered out using the hcDMR method, but
would be identified using a matched control method because the
methylation differences are real, although unconnected to the
underlying genetic mutation. These results indicate that our pipe-
line is both sensitive and robust, identifying true DMRs even for a
mutant with relatively weak methylation defects.

Validation and Comparison of hcDMRs to Existing DMR Calling Methods.
To extend our comparison of hcDMRs to the standard method for
DMR detection of comparing matched wild-type controls, we uti-
lized three nrpe1 mutant libraries which have been sequenced by
independent laboratories alongside wild-type controls from the
same studies (23–25). Although the total number of DMRs identi-
fied using the laboratory matched control method was higher
compared with hcDMRs, the intersect of DMRs among these three
nrpe1 libraries was much lower than that of the hcDMR method
(∼30% in laboratory matched compared with ∼70% in hcDMRs)
(Fig. 2C). This indicates that a high proportion of laboratory
matched control identified DMRs may represent false positives.
Additionally, the hcDMR method identified 5,296 DMRs that are
commonly shared among all three nrpe1 samples, whereas the
matched control method identified only 2,901 common DMRs (Fig.
2C), suggesting that hcDMRs more accurately reflect DMRs that
result from the mutation. In conclusion, the hcDMR method allows
us to extract and identify a robust set of DMRs from a mutant
genotype that is broadly independent of the laboratory of origin.

Statistical and Quantitative Measurement of Overlapping of DMRs
and Library Clustering. Having established hcDMRs for each li-
brary, we sought to use this information to gain insight into the re-
latedness and relationships between the libraries. To evaluate the
degree of overlap between libraries, we first calculated the probability
of obtaining the observed number of shared DMRs once the total
number of potential DMRs and DMRs identified in each library has
been taken into account (seeMaterials and Methods for more details).
This probability was calculated in a pairwise manner for each test
library against every other test library, and we refer to this
method as S-MOD (Materials and Methods and Fig. 3A). Thus, for
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Fig. 1. Quality check and data processing of Arabidopsis WGBS libraries in
GEO. (A) Summary of the pipeline for processing ArabidopsisWGBS libraries.
(B) Percentage of unconverted-C from reads that mapped to nucleic and
chloroplastic genome of each library. Libraries in the shaded area were
discarded from further analysis due to the low bisulfite conversion rate.
(C) Distribution of total data size and average genome coverage of se-
quencing reads of each library. Libraries in the shaded area were discarded
from further analysis due to the low genome coverage.

E1070 | www.pnas.org/cgi/doi/10.1073/pnas.1716300115 Zhang et al.

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 U
C

L
A

 o
n 

Ja
nu

ar
y 

5,
 2

02
3 

fr
om

 I
P 

ad
dr

es
s 

13
1.

17
9.

22
2.

36
.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1716300115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1716300115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1716300115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1716300115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1716300115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1716300115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1716300115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1716300115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1716300115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1716300115/-/DCSupplemental
https://github.com/yu-z/hcDMR_caller
https://github.com/yu-z/hcDMR_caller
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1716300115/-/DCSupplemental
www.pnas.org/cgi/doi/10.1073/pnas.1716300115


the 260 mutant libraries, we obtained a 260 × 260 symmetric matrix
containing pairwise S-MOD scores (Fig. 3 A and B; SI Appendix,
Figs. S4–S9; and Dataset S11), with higher scores indicating
stronger statistical significance. The matrix was clustered using
hierarchical clustering, which groups samples with high correlation.
The S-MOD approach was sufficient to cluster libraries into major
groups representing the key methylation pathways, such as the
CMT2 (CHH methylation at heterochromatic regions) and RdDM
(DRM2-mediated CHH methylation) pathways (11) (Fig. 3B and
SI Appendix, Figs. S4–S9). Next, to quantitatively dissect the rela-
tionships between different mutants, we used the percentage of
overlapped hcDMRs between test libraries to assist in finer clus-
tering of the matrix (Fig. 3 C and D; SI Appendix, Figs. S10–S15;
and Dataset S12). We refer to this method as Q-MOD. Using
Q-MOD, we were able obtain matrix clustering that revealed a
clear separation between weak and strong RdDM mutants (Fig. 3D
and SI Appendix, Fig. S15).

Nonredundancy Within CHH Methylation Pathways and Within CHG
Demethylation Pathways and a Connection Between MOM1 and MORC.
Previous studies have shown that the CMT2 and RdDM pathways
act nonredundantly to control genome-wide CHH methylation in
Arabidopsis (11, 12). This is consistent with the results from both our
S-MOD and Q-MOD analyses, which revealed that the overlap
between hypo-CHH DMRs observed in cmt2 and RdDM mutants
was minimal (SI Appendix, Fig. S16A). We also noticed interesting
patterns of nonoverlap looking at hyper-CHG DMR clustering.
Ectopic gains of CHG methylation over gene bodies versus trans-
posable elements (TEs) are prevented by distinct pathways, and our
analysis confirmed this nonredundancy (SI Appendix, Fig. S16B).

The Arabidopsis H3K9 demethylase, IBM1, removes H3K9me2 in
gene bodies to prevent the establishment of CHG methylation (26–
29), and our analysis showed that loss-of-function ibm1 mutants
contain over 109,000 hyper-CHG hcDMRs (SI Appendix, Fig.
S16B). In contrast to gene bodies, heterochromatic regions in
Arabidopsis are marked by the H2A variant H2A.W, which is
encoded by the gene HTA6. hta6 loss-of-function mutants result in
TE derepression and elevated levels of CHG methylation (30).
Consistent with the clear separation between these two distinct
pathways, Q-MOD analysis showed that the overlap of hyper-
CHG DMRs between ibm1 and hta6 was minimal (SI Appendix,
Fig. S16B). Pollen samples, which include microspore, sperm cell,
and vegetative nucleus, ranked very highly based on the total
number of hyper-CHG DMRs (SI Appendix, Fig. S16B). These
pollen hyper-CHG DMRs almost exclusively overlapped with the
hta6 hyper-CHG DMRs and not with the ibm1. In line with our
observation, the expression level of HTA6 in pollen is among the
lowest compared with that from other types of Arabidopsis tissue
(31) (SI Appendix, Fig. S17). This suggests that during pollen de-
velopment, TEs rather than protein-coding genes tend to be
hypermethylated in the CHG context, which is partially due to the
down-regulation of HTA6. This is also consistent with the obser-
vation that pollen cells undergo epigenetic reprogramming to re-
inforce TE silencing via small RNA reactivation (32).
In addition, we observed extensive clustering of root tissue

samples, indicating a distinct methylation profile for this tissue type,
and confirmed extensive hypermethylation in the CHG and CHH
contexts in columella cells (Dataset S12) as described (33). On the
other hand, we did not detect any distinct clustering patterns for
stress treated samples, perhaps suggesting that any methylation
changes observed are not consistent between treatments.
We also observed a connection between the methylation profile

of mom1 and morc mutants. MOM1 is a plant-specific transcrip-
tional silencer (34, 35). It acts synergistically with MORC6 to si-
lence the transcription of a group of TEs (22). Genome-wide
bisulfite sequencing suggested that MOM1 has minimum effects
on DNA methylation: TEs that are suppressed by MOM1 display
no changes in DNA methylation inmom1mutants (15, 34, 36, 37).
However, our large-scale BS-seq analysis revealed that mom1 in-
deed affects DNA methylation at a small number of loci (53 hypo-
CHH, 271 hypo-CHG, and 721 hypo-CG). These loci show
significant overlap with those of morc1/2/4/5/6/7 (20) at a subset
of RdDM loci (SI Appendix, Fig. S16 C and D), which is espe-
cially evident for non-CG methylation (SI Appendix, Fig. S16 C
and D). For example, the strong RdDM mutants, nrpe1 and rdr2,
represent over 80% of the hypo-CHH DMR found in mom1 (SI
Appendix, Fig. S16C). Similarly, although morc1/2/4/5/6/7 only
results in 1% of the genome-wide hypo-CHH DMRs, they ac-
count for 75% of the hypo-CHH DMRs found also in mom1 (SI
Appendix, Fig. S16 C and D).

MET1 and CMT3 Are Independently Required for the Maintenance of
Asymmetric CHH Methylation at CMT2 Target Sites. We noticed that
the mutants of the primary CG and CHG methyltransferases,
MET1 and CMT3, share significant and largely nonoverlapping
hypo-CHH DMRs with cmt2 (Fig. 4A). Although we previously
noted nonoverlapping hypo-CHH DMRs in cmt3 andmet1 (15), the
extent of interdependence and the relationship with CMT2 remain
to be investigated. Using the libraries generated previously (15), we
found that of the 21,782 hypo-CHHDMRs in cmt2, 4,867 are shared
by met1 (∼22%, hereafter referred to as “met1 subset”), and
2,290 are shared by cmt3 (∼11%, hereafter referred to as “cmt3
subset”), whereas only 119 are shared by all three (∼0.5%). Because
this lack of overlap between the met1 and cmt3 subsets may result
from the artificial selection of DMR cutoffs, we directly compared
CHHmethylation levels in cmt3 andmet1. The vast majority of cmt3
sites were unaltered in met1, and vice versa, indicating that many
of these sites are truly independent, requiring either MET1 or
CMT3 for CHH methylation maintenance (Fig. 4B). Comparison
of WT methylation levels at these sites revealed that met1 subset
loci had higher levels of mCG and that cmt3 subset loci had higher
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Fig. 2. Validation of hcDMRs and comparison with other DMR calling strategy.
(A) Boxplot for methylation levels atmorc6 (lib_GSM1375965) defined hypo-CHH
hcDMRs (n = 311). Lines connect levels of methylation at individual hcDMRs in
the genotypes indicated (WT = lib_GSM1375966). (B) Boxplot for methylation
levels at morc6 (lib_GSM1375965) matched wild-type (WT = lib_GSM1375966)
defined hypo-CHH DMRs (n = 1,391). Note that lines at a near-horizontal or
descending incline from “morc6” to “MORC6 in morc6” indicate a lack of
complementation in theMORC6-FLAG T1 line. (C) Venn diagrams for comparison
of number of DMRs identified in three independent nrpe1 samples, generated
by using oneWT from the same experiment (Left) and a group of at least 33WTs
(hcDMRs; Right). The numbers outside the Venn diagrams show the percentage
of overlapped DMRs (intersect/total number of DMRs) in each sample. Middle
illustrates the overlap of intersect set of DMRs identified by these two methods.
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levels of mCHG (Fig. 4C). Furthermore, the CG density at met1
sites is more than twice of that at cmt3 sites (6.5% vs. 2.7%),
whereas conversely, the CHG density is greater at cmt3 sites than
met1 sites (6.9% vs. 5.5% at met1 sites) (Fig. 4D). These higher
densities are consistent with the well-established in vivo function of
these enzymes because MET1 and CMT3 are primarily associated
with maintenance of CG and CHG levels, respectively, throughout
the genome.
However, these features do not explain why CHH methylation

levels are reduced inmet1 or cmt3 because CMT2 itself remains the
most likely candidate for deposition of CHH at these loci (11, 12).
We hypothesized that the loss of CHH methylation may be oc-
curring indirectly, through loss of H3K9me2, which is needed for
CMT2 function (11). Using a met1 H3K9me2 ChIP–Chip data set
(38), we found that TEs with met1-dependent CHH methylation
indeed experienced a striking coincident reduction in H3K9me2
(Fig. 4 E and F). At cmt3 sites, H3K9me2 levels are somewhat
increased in the met1 background. This is consistent with the ec-
topic gains of H3K9me2 previously observed in the met1 back-
ground (38) and perhaps suggests that although global levels of
H3K9me2 are maintained, there may be an antagonistic relation-
ship between H3K9me2 levels at cmt3 vs. met1 subset sites. The
coincident loss of CHH and H3K9me2 is consistent with a model
whereby symmetric cytosine methylation at a subset of CMT2
target sites is required to maintain sufficient levels of H3K9me2 for
CMT2 function. In support of this hypothesis, the met1/cmt3 dou-
ble mutant shows a near-complete loss of CHH methylation (see
ref. 15 and Fig. 4A). Although the interdependence of CHG
methylation and H3K9me2 can be explained through the well-
established feedback loop between CMT3 and KRYPTONITE/
SUHV4 (39, 40), the connection between CG methylation and

H3K9me2 at these sites is less obvious. Although the hypo-CHH
DMRs in the suvh4 mutant reside clearly within the cmt3 subset
block, the suvh4/5/6mutant resides in the cmt2 block along with the
met1/cmt3 double mutant (Fig. 4A). This perhaps suggests that
SUVH5 and/or SUVH6 may be responsible for linking CG meth-
ylation to H3K9me2 at the met1 subset loci. A recent informatics
study of DNA methylation patterns predicted that the different
SUVHs might show distinct trinucleotide context preferences for
binding to methylated DNA (41). Ultimately, future work will be
required to elucidate the functional connection between symmetric
methylation and H2K9me2 at CMT2 targeted heterochromatin.

Conclusion
Spontaneous changes in DNA methylation are known to occur at
many sites throughout the Arabidopsis genome (18, 19). Here we
effectively filter out such unstable regions through comparison of
each library to a large number of published wild-type controls.
These hcDMRs therefore represent an ideal starting point for
researchers attempting to interpret methylation changes in their
experimental Arabidopsis thaliana line of interest. Using a two-
step statistical framework for clustering hcDMRs, we have con-
structed a hierarchical network for genes controlling DNA
methylation in Arabidopsis (SI Appendix, Fig. S20). We also ob-
served detailed relationships between different DNA methyl-
ation mutants, including a nonoverlapping requirement for
MET1 and CMT3 for CHH methylation at a subset of CMT2
sites, suggesting a potential link between symmetric methylation
and H3K9me2 at heterochromatic loci. Hierarchical clustering
therefore provides predictive power, and our work demonstrates
that large-scale mining of genomics data can uncover biologically
meaningful connections in this big-data era.
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Materials and Methods
Bioinformatic Analysis.
BS-seq analysis and DMR calling. Raw sequencing data (SRA files) of 503 Ara-
bidopsis WGBS libraries were downloaded from GEO (Dataset S1). RNA-seq
and BS-seq data from MORC6 transgenic materials are deposited to GEO
under accession GSE98872 (reviewer access token: odwdowmwtvitpwv).

BS-seq reads from each library were mapped to Arabidopsis TAIR10 ge-
nome using BSMAP (42), allowing only uniquely mapped reads, with up to
4% mismatches. We also applied a CHH filter, which discarded reads with
three or more consecutive CHH sites to remove reads with low conversion
efficiency (13, 15). Fractional DNA methylation levels were computed by #C/
(#C + #T) using 100-bp bin. Libraries with a high proportion of unconverted-
C in chloroplast (>1%) and low genome coverage (<5) were discarded. Li-
braries that are not in Col-0 background or have duplicated GEO entries
were also filtered out from further analysis.

The remaining 314high-qualityWGBS libraries, including 54 designatedwild-
type control (Col-0 leaf or seedling) and 260 test libraries, were selected for DMR
analysis. StandardDMR calling between test and control librarieswas performed
as previously described (15), where the difference in CG, CHG, and CHH
methylation in each bin needed to be at least 0.4, 0.2, and 0.1, respectively (15).
DMRs were defined as 100-bp different methylated genomic fragments.

To identify the number of shared control sets required for robust DMR
designation, we assessed DMR calling in each control library (in addition to
test type libraries) against the other 53 control libraries (Dataset S3). For each
100-bp bin, setting the cutoff for DMR designation to one control library
results in a large number of DMRs being called from both the test and the
control libraries (SI Appendix, Fig. S1), many of which are spontaneous or
false positive DMRs. As the cutoff increases, the number of DMRs in each of the
control libraries drops significantly, whereas the number of DMRs from the test
libraries remains substantial. However, requiring a cutoff of 54—meaning that

the locus in the test library must be different from every other control library—
appeared too stringent because most libraries only retained a small number of
DMRs using this criterion (Dataset S3). To find the balance between stringency
and false positive DMR designation, we calculated the deceleration of number
of DMRs identified in control libraries as the increase of the number of sup-
porting control libraries using the equation a= ðnc −nc−1Þ− ðnc−1 −nc−2Þ,
where nc is the average of number of DMRs identified from 54 control libraries,
which are supported by at least c control libraries (c ≥ 3). In all six contexts
(hypo-/hyper-CG/CHG/CHH), the deceleration rate of the amount of DMRs be-
ing called becomes steady at around 33 control sets (SI Appendix, Fig. S2). Thus,
a hcDMR is only defined when the test library bin differs from at least 33 out of
the 54 control libraries. Note that it is not necessarily the same 33 libraries (of
54) that are taken as supported controls for each bin. Although these stringent
criteria afford a reduced the rate of false positives, this comes at a trade-off
with false negatives (Fig. 2 A and B). We recorded both the number of
“Goodbin” (i.e., 100-bp bin with sufficient coverage, ≥5) and the number of
DMRs for all libraries in CG, CHG, and CHH contexts. For the matched WT hypo-
CHH DMRs (Fig. 2), we used the same 100-bp bins and 0.1 methyl ratio change
cutoff, then applied Fisher’s exact test requiring an adjusted P value
of <0.01 for DMR designation. Our pipeline for calling hcDMRs can be down-
loaded from https://github.com/yu-z/hcDMR_caller.
Comparative analysis of DMRs across libraries. Given two test libraries, we
compare them by testing the dependence of DMR sets A1 and A2 from the
two libraries. The null hypothesis to be tested against is that A1 and A2 are
independent samples from the population of all of the libraries; the alter-
native hypothesis is that A1 and A2 are dependent samples. We use the
number of overlapping DMRs n between A1 and A2 as test statistic with
performance of hypergeometic test. The null hypothesis will be rejected
when the test statistics are high. The statistical significance for the overlap
of DMRs between two test libraries were calculated using the equation
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(Wilcoxon rank sum test).

Zhang et al. PNAS | Published online January 16, 2018 | E1073

PL
A
N
T
BI
O
LO

G
Y

PN
A
S
PL

U
S

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 U
C

L
A

 o
n 

Ja
nu

ar
y 

5,
 2

02
3 

fr
om

 I
P 

ad
dr

es
s 

13
1.

17
9.

22
2.

36
.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1716300115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1716300115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1716300115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1716300115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1716300115/-/DCSupplemental
https://github.com/yu-z/hcDMR_caller


p value=
Pminðn1 ,n2Þ

i=m

�
N
i

��
N− i
n1 − i

��
N−n1

n2 − i

���
N
n1

��
N
n2

�
, in which n1 and

n2 are the number of DMRs in the two libraries being compared,m is the number
of common DMRs shared by the two libraries, and N is defined as the size of the
union of all possible DMRs identified in the whole dataset of test libraries. Hence,
the p_value indicates the level of their dependence between two libraries.

The p_value between libraries was then transformed into an S-MOD score
using the equation S-MOD score = −log(p_value). Pairwise S-MOD scores
between all test libraries were stored in a symmetric matrix, of which the
horizontal and vertical coordinate are library IDs. Before Q-MOD clustering,
we filtered out libraries in which the S-MOD score was below 100 in all
pairwise comparisons, indicating that the library has low relatedness to all
other libraries (this was performed separately for hyper-/hypo-CG/CHG/CHH).
We chose 100 as the S-MOD cutoff score because it can filter out most libraries
with no/weak relatedness and libraries with low number (<40) of DMRs (SI
Appendix, Fig. S18). Also, to offset the effect of library quality on number of
hcDMRs (libraries with lower sequencing depth typically yield fewer hcDMRs),
the total number of hcDMRs in the denominator was adjusted to remove
hcDMRs that do not have sufficient coverage in both mutant libraries (SI
Appendix, Fig. S19). Q-MOD overlap percentages were calculated using the
equation overlapð%Þ= cardðAi ∩AjÞ=cardðAiÞ, where Ai and Aj represent the
set of DMRs of the two test libraries being compared. The total number of
hcDMRs in the denominator was adjusted to remove hcDMRs that do not
have sufficient coverage in both test libraries (Goodbin filter). The matrix of
overlap percentage was clustered using the Ward method in R.

Experimental Procedures.
Transgenic plant material and constructs. Wild-type and morc6-3 mutant lines
(gene AT1G19100, GABI_599B06, aka crh6-5) are from the ecotype Columbia
(Col-0) and were grown under 16-h light, 8-h dark cycles. The pAtMORC6::
AtMORC6-FLAG construct was previously described (43). Agrobacterium

tumfaciens AGLO strain carrying this construct were used to transform
morc6-3 using the floral dip method. For Western blot, HRP-coupled FLAG-
specific antibody (A8592; Sigma) was used.
RNA-seq. RNA was extracted from unopened floral bud tissue using TRIzol
(Thermo Fisher) and the Direct-Zol RNA MiniPrep kit (R2050; Zymo Research)
including in-columnDNase treatment. Seventy-five nanograms total RNAwas
used as input for the TruSeq StrandedmRNA Library Prep Kit for Neoprep (NP-
202-1001; Illumina). Libraries were sequenced on a HiSeq 2000 (Illumina).
Reads were aligned with TopHat, including the fr-firststrand parameter.
Cufflinks was used to generate count data using annotation from TAIR10 that
was fed into the DEseq2 package in R for differential expression analysis.
BS-seq. Genomic DNA from leaf tissue from a T1 (transgenic generation one)
pAtMORC6:AtMORC6-FLAG in morc6-3 plant was isolated using DNeasy Plant
Mini kit (69106; Qiagen). Five hundred nanograms genomic DNA starting
material was sheared using the Covaris instrument. Libraries were generated
using the KAPA hyper prep kit (KK8502) with EZ DNA methylation lightning
kit for bisulfite conversion (D5030; Zymo Research) and MyTaq HS mix (BioLine
BIO-25045) for amplification. Libraries were sequenced on a HiSeq 2000 (Illu-
mina), and reads were aligned to the TAIR10 genome using BSMAP.
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