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DNA methylation is a major epigenetic modification found across
species and has a profound impact on many biological processes.
However, its influence on chromatin accessibility and higher-order
genome organization remains unclear, particularly in plants. Here,
we present genome-wide chromatin accessibility profiles of
18 Arabidopsis mutants that are deficient in CG, CHG, or CHH
DNA methylation. We find that DNA methylation in all three se-
quence contexts impacts chromatin accessibility in heterochroma-
tin. Many chromatin regions maintain inaccessibility when DNA
methylation is lost in only one or two sequence contexts, and
signatures of accessibility are particularly affected when DNA
methylation is reduced in all contexts, suggesting an interplay be-
tween different types of DNA methylation. In addition, we found
that increased chromatin accessibility was not always accompa-
nied by increased transcription, suggesting that DNA methylation
can directly impact chromatin structure by other mechanisms. We
also observed that an increase in chromatin accessibility was ac-
companied by enhanced long-range chromatin interactions. To-
gether, these results provide a valuable resource for chromatin
architecture and DNA methylation analyses and uncover a pivotal
role for methylation in the maintenance of heterochromatin
inaccessibility.
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DNA methylation is a conserved epigenetic mark that plays
important roles in diverse biological processes, including

gene regulation, transposable element (TE) silencing, imprint-
ing, and X chromosome inactivation in eukaryotes. In plants,
cytosine methylation occurs in three sequence contexts; CG,
CHG, and CHH (where H refers to A, T, or C) (1–3). Methyl-
ation is mediated by METHYLTRANSFERASE 1 (MET1) (4)
and DOMAINS REARRANGED METHYLASE 2 (DRM2)
(5), orthologs of mammalian DNMT1 and DNMT3, respectively,
as well as by two plant-specific DNA methyltransferases,
CHROMOMETHYLASE2 (CMT2) (6) and CHROMOME-
THYLASE3 (CMT3) (7). MET1 cooperates with a conserved
cofactor VIM to maintain preexisting CG methylation during
DNA replication (8), whereas DRM2, CMT3, and CMT2 control
the maintenance of non-CG methylation (1). De novo DNA
methylation is mediated by the plant-specific RNA-directed
DNA methylation (RdDM) pathway that depends on DNA-
dependent RNA polymerases, Pol IV and Pol V (1, 9, 10).
Pol IV produces transcripts (P4-RNAs) that are converted

into double-stranded RNAs by RNA-DEPENDENT RNA
POLYMERASE 2 (RDR2). These transcripts are diced into
24-nucleotides (nt) small interfering RNAs (siRNAs) by
DICER-LIKE 3 (DCL3) and subsequently loaded into ARGO-
NAUTE 4 (AGO4) or its homologs, AGO6 and AGO9 (11–13).
Pol V produces long noncoding RNAs at target sites that pair
with AGO4/siRNA complexes (12). Pol V chromatin occupancy
requires the DNA-methylation reader proteins SUVH2 and

SUVH9 [homologs of SU(VAR)3-9], as well as the DDR com-
plex (13, 14). This latter complex consists of RNA-DIRECTED
DNA METHYLATION 1 (RDM1), DEFECTIVE IN MERI-
STEM SILENCING 3 (DMS3), and DEFECTIVE IN RNA-
DIRECTED DNA METHYLATION 1 (DRD1) (15, 16). The
RdDM pathway ultimately recruits DRM2 to specific genomic
sequences for de novo DNA methylation, as well as maintenance
of non-CG methylation (17). Several other factors are involved
in the RdDM pathway, though their functions remain less well
characterized (18–21).
In eukaryotic organisms, genomic DNA forms chromatin,

condensed arrangements of nucleoprotein complexes. The basic
unit of chromatin is the nucleosome, which consists of ∼147 base
pair (bp) of DNA wrapped around a histone octamer composed
of one H3/H4 tetramer and two H2A/H2B dimers (22). DNA
methylation is preferentially distributed over nucleosome regions
and is less enriched over flanking nucleosome-depleted DNA,
suggesting a link between nucleosome positioning and DNA
methylation (23). Furthermore, DNA methylation has an
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important role in heterochromatin condensation and silencing
(24). Indeed, mutations in both MET1 and the nucleosome
remodeler DDM1 (DECREASE IN DNA METHYLATION 1)
result in genome-wide loss of CG methylation, accompanied by
visible chromatin decondensation at chromocenters, suggesting a
connection between DNA methylation and chromatin compac-
tion (25). However, whether CG, CHG, and CHH methylations
have distinct relationships with chromatin accessibility, how they
further affect the three-dimensional (3D) architecture of the
genome, and the relationship between DNA methylation, chro-
matin accessibility, and transcription are unclear.
In Arabidopsis, various well-characterized DNA methylation

mutants exist that show different levels or types of DNA meth-
ylation deficiencies (25). These mutants provide an excellent
opportunity to explore the effects of different DNA methylation
contexts on chromatin accessibility. Here, we profiled chromatin
accessibility in 18 DNA methylation mutants, including met1,
ddm1, fwa, nrpd1, nrpe1, nrpe1 nrpd1, dms3, drm1 drm2, cmt2,
cmt3, cmt2 cmt3, drm1 drm2 cmt2 cmt3 (ddcc), drm3, idn2, idn2
idl1 idl2, suvr2, ago4, and frg1 frg2. These mutants decrease
methylation in different sequence contexts, with met1 leading to
loss of almost all CG methylation, cmt3 reducing CHG methyl-
ation, cmt2 impacting CHH methylation, and drm1 drm2 cmt2
cmt3 losing virtually all CHG and CHH methylation. The fwa
line was derived from crossing a met1 homozygous mutant with
wild type and selecting for a plant homozygous for wild-type
MET1 alleles in the F2 population. This line has a chimeric ge-
nomic methylation pattern showing methylation losses at FWA
and many other loci but has a wild-type methylation machinery
(15), allowing the analysis of differentially methylated regions of
the genome without the complication of possible indirect effects
of mutations in DNA methylation machinery components. The
other mutants impact the RdDM pathway and show decreases in
DNA methylation to different degrees. Using a combination of
DNA methylation profiling, chromatin accessibility profiling,
and higher-order chromosome conformation profiles of these
mutants, we find links between these parameters in Arabidopsis
chromatin. This comprehensive characterization reveals the in-
terplay of CG and non-CG methylation in chromatin
accessibility.

Results and Discussion
Genome-Wide Chromatin Accessibility Profiles of DNAMethylation–Deficient
Mutants.To investigate the relationship between DNAmethylation and
chromatin accessibility, we performed assay for transposase-accessible
chromatin using sequencing (ATAC-seq) (26) using wild-type Col-
0 floral buds of Arabidopsis. We first assessed the correlation of chro-
matin accessibility and DNA methylation by plotting CG, CHG, and
CHHmethylation and chromatin accessibility levels over chromosomes
divided into 100 kilobase (kb) bins. As was previously reported, we
observed that genome-wide accessible chromatin was enriched at eu-
chromatin and depleted at heterochromatin, while CG, CHG, and
CHH methylations are enriched at heterochromatin and depleted at
euchromatin (Fig. 1A) (27). Using HMMRATAC (28), we defined
40,164 open chromatin peaks in wild type. We plotted CG, CHG, and
CHH methylation levels over the summit of open chromatin peaks,
including 1 kb of flanking sequence, and observed a gradual depletion
of DNA methylation in all sequence contexts near open chromatin
peaks (Fig. 1B). A higher-resolution (1 kb bins) correlation analysis also
indicated that chromatin accessibility is anticorrelated with CG, CHG,
and CHH methylation (SI Appendix, Fig. S1). This anticorrelation is
also clearly evident at the level of individual genes and transposons
(example genome browser view in Fig. 1C). In summary, these results
show that chromatin accessibility anticorrelates with DNAmethylation,
as has been seen in previous studies (27, 29).
To examine the relationship between different DNA methyl-

ation sequence contexts and chromatin accessibility, we conducted
ATAC-seq in floral tissues of 18 representative backgrounds that

are deficient in methylation in one or more sequence contexts (CG,
CHG, and CHH), namely, met1, ddm1, fwa, nrpd1, nrpe1, nrpe1
nrpd1, dms3, drm1 drm2, cmt2, cmt3, cmt2 cmt3, drm1 drm2 cmt2
cmt3, drm3, idn2, idn2 idl1 idl2, suvr2, ago4, and frg1 frg2. To
quantify chromatin accessibility changes, accessibility differences
relative to wild type (fold change > 2 and P value < 0.05) were
computed by comparing chromatin accessibility signals in each
mutant with the wild-type control in a merged open chromatin peak
dataset containing Col-0 and the 18 mutants (58,446 total peaks).
We identified between 69 and 4,188 more highly accessible regions
(hereafter referred to as HARs) and between 21 and 2,181 less
accessible regions (hereafter referred to as LARs) in individual
mutants compared with Col-0 (Fig. 1D). In total, we identified 8,079
peaks that are more accessible and 4,862 peaks that are less ac-
cessible in at least one mutant. The length of the majority of HARs
and LARs were smaller than 500 bp, suggesting that DNA meth-
ylation affects chromatin accessibility of only a few nucleosomes in a
region (SI Appendix, Fig. S2). The total number of open chromatin
peaks (58,446 from all samples vs. 40,164 from Col-0) indicates that
DNAmethylation has a profound effect on genome-wide chromatin
accessibility. We determined the chromosomal distributions of the
differential peaks and found that 3,543 (43.85%) of HARs are lo-
cated in heterochromatin regions, while the majority of LARs, 4,439
(89.24%), are located in euchromatic regions (Fig. 1 E and F).
To quantify the relationship between DNA methylation

changes and chromatin accessibility changes, we compared the
number of differentially methylated regions (DMRs) and dif-
ferentially accessible peaks. In general, we observed that back-
grounds with reduced CG methylation, such as met1, fwa, and
ddm1, exhibited the most dramatic impact on chromatin acces-
sibility (Pearson correlation R = 0.84, P value = 1.6E-5, Fig. 1 D
and E). Mutants impacting CHG methylation, which include
cmt3, drm1 drm2 cmt2 cmt3, and cmt2 cmt3, had a moderate
impact on chromatin accessibility profiles, while cmt2 and
RdDM mutants, including nrpe1 nrpd1, nrpd1, nrpe1, drm3, idn2,
idn2 idl1 idl2, suvr2, ago4, and frg1 frg2, had the least impact on
chromatin accessibility (Pearson correlation R = 0.24, P value =
0.33, Fig. 1 D and E). To assess the landscape of chromatin
accessibility in these mutants, we plotted chromatin accessibility
variation in bins of 100 kb along chromosomes, finding that most
chromatin accessibility signal changes in these mutants occurred
in heterochromatin regions (SI Appendix, Fig. S3).

Relationships between DNA Methylation and Chromatin Accessibility
Changes. In plants, CG methylation tends to be found within the
transcribed gene bodies of particular genes, while CG, CHG, and
CHH methylations are found together at RdDM sites, TEs, and
heterochromatin regions (30). Previous studies have shown that
MET1 deficiency leads to genome-wide CG methylation loss and
partial non-CG methylation loss (25). Interestingly, most met1
CG DMRs, especially those localized within gene bodies, showed
no change or even showed decreased chromatin accessibility
profiles, indicating that other factors may contribute to the
maintenance of chromatin accessibility at these regions (SI Ap-
pendix, Fig. S4A). In agreement with previous studies, we de-
tected an increase in CHG methylation over gene bodies in met1
(31) and also found that regions that gained CHG methylation
became less accessible in met1 mutants (SI Appendix, Fig.
S4 B–E). To distinguish CG DMRs that affect chromatin ac-
cessibility from those that do not, we analyzed met1 ATAC-seq
data using K-means clustering. This method classified met1 CG
hypo-DMRs into three clusters (cluster 1: more accessible clus-
ter, cluster 2: unchanged cluster, cluster 3: less accessible cluster)
(Fig. 2A). Cluster 1 contained 4.5% (1,418 out of the 31,576) of
CG DMRs that showed increased chromatin accessibility in met1
mutants (Fig. 2A). The majority of cluster 1 CG DMRs were
found in heterochromatin regions, while cluster 3 DMRs tended
to be at genic regions, and cluster 2 DMRs were seen in both
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regions (Fig. 2 B–D). Interestingly, in addition to the loss of CG
methylation at cluster 1 accessible regions, we found that cluster
1 CG DMRs showed higher overlap with met1 CHG and CHH
hypo-DMRs, indicating that cluster 1 CG hypo-DMRs are also
non-CG hypo-DMRs (Fig. 2 E and F). Consistent with this re-
sult, metaplots of DNA methylation over the three DMR clus-
ters revealed that in addition to CG methylation loss, cluster 1
regions also completely or partially lost CHG and CHH meth-
ylation (Fig. 2 G–I). The simultaneous reduction of CG, CHG,
and CHH methylations in cluster 1 CG DMRs, where chromatin
accessibility is increased, suggested an interplay of CG and non-
CG methylation in chromatin accessibility. Similarly, we ob-
served that overlapped regions of CG and non-CG hypo-DMRs
in met1 and ddm1 have increased chromatin accessibility (Fig. 2 J
and K). Metaplots of DNA methylation in drm1 drm2 cmt2 cmt3,
cmt2 cmt3, drm1 drm2, cmt3, dms3, ago4, nrpd1, nrpe1, cmt2,
drm3, idn2, idn2 idl1 idl2, suvr2, and frg1 frg2 mutants also indi-
cated that both CG and non-CG methylation were reduced over
more accessible regions (SI Appendix, Fig. S5). The converse
analysis showed a similar trend, where the ATAC-seq signal over

CG, CHG, and CHH hypo-DMRs in these mutants showed that
CG, CHG, and CHH hypo-DMRs became more accessible (SI
Appendix, Fig. S6). Consistent with previous studies showing the
overlap of different hypo-DMRs in different mutants, HARs and
LARs also showed consistent overlaps (SI Appendix, Fig. S7) (25,
32). For example, strong RdDM mutants form a cluster, while
weak RdDM mutants also cluster (SI Appendix, Fig. S7). Overall,
these results suggest that DNA methylation plays an important
role in chromatin accessibilty via an interplay or redundancy of
CG and non-CG methylation.
To further explore the interplay of CG and non-CG methyl-

ations on chromatin accessibility, we next compared met1, ddm1,
and drm1 drm2 cmt2 cmt3 (hereafter termed ddcc) in detail since
these mutants showed the most dramatic changes in chromatin
accessibility. Genome-wide chromatin accessibility analysis indi-
cated that these three mutants exhibited similar patterns of in-
creased chromatin accessibility within heterochromatin regions,
though ddcc showed a smaller overall effect (Fig. 3A). Venn
diagram analysis of the accessible peaks showed a high degree of
overlap between the HARs in met1, ddm1, and ddcc mutants
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(Fig. 3B). Consistent with this trend, the HARs in the met1
mutant exhibited a decrease in CG and non-CG methylation at
these regions in all three mutant backgrounds (Fig. 3 C–F).
fwa is a background with wild-type methylation machinery but

heritably reduced DNA methylation at many genomic regions
and was created by crossing met1 with Col-0 and then selecting
for the wild-type MET1 alleles (33). As expected, fwa DNA
methylation levels were less affected than in met1 (SI Appendix,
Fig. S8); however, fwa did display dramatic changes in chromatin
accessibility when compared with Col-0 (Fig. 1 D and G). We
found that chromatin accessibility and DNA methylation of most
euchromatin regions in the fwa epiallele were comparable to
Col-0, while heterochromatin regions showed lower DNA
methylation and chromatin accessibility states than wild type
(Fig. 4A and SI Appendix, Fig. S8 D–F). HARs showed high
overlap between met1 and fwa (Fig. 4B). Metaplots of DNA
methylation over fwa HARs showed that these regions have
lower CG and CHG than Col-0 (Fig. 4 C–E). Chromatin ac-
cessibility was restored to wild-type levels only when CG and
non-CG methylations were both comparable to Col-0 (Fig. 4F).
Loss of CG and CHH methylations at the short repeats in the
FWA promoter creates heritable fwa epialleles which show

ectopic FWA expression and a late flowering phenotype (33).
Inspection of these short repeats revealed that bothmet1 and fwa
showed a small, accessible peak which is inaccessible in wild type
(Fig. 4G). We hypothesized that this small, accessible peak
should become less accessible if DNA methylation at this region
is reestablished. To test this hypothesis, we conducted ATAC-
seq in an artificial zinc finger DMS3 (ZF-DMS3) transgenic
plant line that targets DNA methylation to the short repeat re-
gion at the FWA locus (9). Indeed, we found that when the short
repeat region regained CG and CHH methylations, it became
inaccessible (Fig. 4G). In conclusion, these data further support
the hypothesis that CG and non-CG methylations promote
chromatin inaccessibility.

Increased Chromatin Accessibility Is Frequently Not Associated with
Transcription Changes. Given that increased chromatin accessi-
bility is associated with loss of DNA methylation in many tran-
scriptionally silent heterochromatin regions, a possibility is that
increased accessibility is solely due to increases in transcription.
To test this, we assessed whether the increased chromatin ac-
cessibility was correlated with an increase in transcription by
analyzing RNA sequencing (RNA-seq) and small RNA-seq
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profiles at HARs, including 1 kb of flanking sequence, in met1
and Col-0. We observed that the 4,188 HARs in met1 could be
classified into three groups based on the expression level of the

locus affected (Fig. 5 A–C). For group 1 (n = 1,200), increased
chromatin accessibility did not impact expression or siRNA levels,
and this group already had high expression levels in wild-type plants
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(Fig. 5 A–F). For group 2 (n = 1,600), increased chromatin ac-
cessibility was accompanied by derepression of mRNA expres-
sion in met1 mutants. Small RNA-seq metaplots indicated that
the derepression of group 2 was also accompanied by an increase
in 21 nt small RNAs, suggesting that RDR6-mediated RNA in-
terference was active in these regions (Fig. 5 A–F) (34). Most
interestingly, group 3 (n = 1,388) loci showed no expression in
either wild type or met1, and there was no increase in siRNA
levels at these loci (Fig. 5 A–F). Instead, we observed that 21 nt,
22 nt, and 24 nt siRNAs were actually decreased in group 3
HARs, likely because RdDM activity is reduced at these sites
(Fig. 5 D–F and SI Appendix, Fig. S9).
We also examined the relationship between chromatin acces-

sibility increases and transcriptional changes at annotated TEs,
which are frequently up-regulated in met1 (35). A heat map of
RNA-seq data indicated that some of the derepressed TEs in
met1 gained open chromatin peaks (SI Appendix, Fig. S10).
However, only 53% of HARs associated with TEs exhibited
transcriptional up-regulation, while 36% remained unexpressed
(Fig. 5 G and H). We also examined which families of TEs were
enriched in silenced (no expression change, SI Appendix, Table
S1) or derepressed (fold expression change > 2, SI Appendix,
Table S2) TEs (Fig. 5H) for TEs overlapping with HARs. This
showed a strong enrichment for a few families of TEs, including
AtCOPIA38A and AtGP2N, showing transcriptional derepres-
sion, while many different families, with little enrichment for any
particular TEs families, showed no expression change. Thus,

many types of TEs gain chromatin accessibility in met1 but are
not transcriptionally up-regulated.

Increased Chromatin Accessibility Is Associated with Changes in 3D
Genome Architecture. To test whether increased chromatin ac-
cessibility is associated with chromosome conformation varia-
tion, we performed high-throughput chromosome conformation
capture (Hi-C) sequencing in representative mutants that display
different levels of DNA methylation loss, including cmt2 cmt3
and ddcc, and combined this analysis with previously published
Hi-C data for met1, cmt3, and ddm1 (36). Consistent with pre-
vious analyses, met1 and ddm1 showed similar patterns of
chromosome conformation changes in heterochromatin regions
from our reanalysis (SI Appendix, Fig. S11). Additionally, we
observed that cmt3, cmt2 cmt3, and ddcc mutants showed similar
patterns of chromosome conformation changes in heterochro-
matin regions, though not as dramatically as those in met1 and
ddm1 (SI Appendix, Fig. S11). This result is consistent with the
ATAC-seq changes in these mutants and indicates that CG
methylation loss has a stronger impact on heterochromatin ac-
cessibility than non-CG methylation loss (Fig. 1 D and G). When
comparing Hi-C and ATAC-seq data at higher resolution, we
observed that the conformation variations detected by Hi-C were
highly correlated with the chromatin accessibility variations de-
tected by ATAC-seq, suggesting that the chromatin accessibility
changes are accompanied by redistribution of chromatin inter-
actions (SI Appendix, Fig. S12). For example, we observed that
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chromosome 5 exhibited more accessibility in heterochromatin
regions in met1, and these regions showed more long-range in-
teractions in Hi-C data (Fig. 6A). Furthermore, a comparison of
the first principal component (PC1) values between Col-0 and
met1 suggested that chromatin accessibility increases were as-
sociated with the conversion of regions from the inactive com-
partment to the active compartment in met1 (Fig. 6B). By closely
inspecting heterochromatin regions, it was apparent that HARs
in met1 showed increased interactions (Fig. 6C). This was also
true for HARs that showed no up-regulation of transcription in
met1 (Fig. 6D), suggesting that loss of methylation has a direct
impact on chromatin accessibility and 3D genome organization.

Conclusion
Our profiling of 18 different DNA methylation mutants showed
that reduction of DNA methylation caused increases in chro-
matin accessibility. We also found that chromatin accessibility
increases were accompanied by local changes in chromosome
conformation profiles with an increase of long-range chromatin
interactions. CG methylation loss led to the most significant ef-
fect on chromatin accessibility, as observed in met1, fwa, and
ddm1 backgrounds. In some cases, however, we also observed
decreases in accessibility; for instance, we found that although
gene body CG methylation is lost in met1 mutants, these regions
became less accessible, likely due to increased CHG methylation.

Interestingly, we found that chromatin accessibility increases
were not always associated with transcriptional derepression. For
instance, we found large increases in chromatin accessibility at
some TE sequences that were not associated with any tran-
scription. These regions also showed increases in 3D chromatin
interactions from Hi-C data. This suggests that DNA methyl-
ation, in addition to its role in regulating transcription, has a
separate effect on chromatin accessibility and 3D genome ar-
chitecture (see model in SI Appendix, Fig. S13). While we do not
understand the mechanisms at play, it seems possible that
methylation might recruit chromatin modifiers and/or nucleo-
some remodelers that directly impact the association of DNA
with nucleosomes and thus affect DNA accessibility. This is
consistent with findings in both plants and animals that DNA
methylation regions have a higher level of nucleosome occupancy
(23, 37–40). DNA methylation likely also regulates the binding of
transcription factors and other DNA binding proteins to DNA,
which likely contributes to chromatin accessibility changes.

Materials and Methods
Plant Materials. All Arabidopsis plants used in this study were of the Col-
0 ecotype and were grown at 22 °C under long-day conditions (16 h light, 8 h
dark). The following Arabidopsis mutant lines were used: met1-3 (CS16394)
(41), ddm1-2 (seventh-generation inbred) (42), fwa-4 epiallele (15), nrpe1
nrpd1 (crossing nrpd1-4 [SALK_083051] and nrpe1-11 [SALK_029919]) (43),
nrpd1-4 (SALK_083051) (44), nrpe1-12 (SALK_033852), cmt2 cmt3 (crossing
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WISCDSLOX7E02 and SALK_148381), dms3-4 (SALK_125019C), drm1 drm2
(crossing drm1-2 [SALK_031705] and drm2-2 [SALK_150863]), drm1 drm2 cmt2
cmt3 (6), cmt2-7 (WISCDSLOX7E02), cmt3-11 (SALK_148381), drm3-1
(SALK_136439), idn2-1 (SALK_012288), idn2 idl1 idl2 (crossing SALK_075378
and SALK_012288) (21), suvr2-1 (SAIL_832_E07) (18), ago4-5 (45), frg1 frg2
(crossing SALK_027637 and SALK_057016) (18), and DMS3-ZF (9).

Whole-Genome Bisulfite Sequencing and Analysis. Bisulfite sequencing reads
were obtained from the National Center for Biotechnology Information
(NCBI) Gene Expression Omnibus (GEO) as accession numbers GSE62801 (18),
GSE39901 (25), and GSE51304 (6) and mapped to the TAIR10 reference ge-
nome using bsmap (version 2.90) and allowing two mismatches and one best
hit (-v 2 -w 1) (SI Appendix, Table S3) (46). Reads with three or more con-
secutively methylated CHH sites were considered to be nonconverted reads
and were removed from the analysis. DNA methylation levels were calcu-
lated by #methylated cytosines/(#cytosines + #thymines). DMRs were called
by hcDMR caller with P < 0.01 and at least 33 libraries (out of 54) used as
supported controls for each bin for where the difference in CG, CHG, and
CHH methylations is at least 0.4, 0.2, and 0.1, respectively (32). DMRs within
200 bp of each other were merged.

ATAC-Seq and Analysis. Inflorescence tissues of 1-mo-old Col-0 and mutant
plants were collected for nuclei extraction as described previously (47). Ap-
proximately 5 g of inflorescence tissue were collected in ice-cold grinding
buffer and ground with an Omni International General Laboratory Ho-
mogenizer. Samples were filtered twice through a two-layer Miracloth and a
40 μm nylon mesh Cell Strainer (Fisher) and collected into a 50 mL tube.
Samples were spun for 10 min at 3,000 g. After centrifugation, the super-
natant was discarded, and the pellet was washed and resuspended with
25 mL of grinding buffer using a Dounce homogenizer. The centrifugation,
wash, and resuspension steps were repeated twice. Then nuclei were
resuspended with 0.5 mL of freezing buffer. Collected nuclei were used for
Tn5 transposition reaction (Illumina) with 25 μL of 2× dimethylformamide
mixed with 2.5 μL Tn5 and 22.5 μL nuclei suspension at 37 °C for 0.5 h and
purified with a ChIP DNA Clean & Concentrator Kit (Zymo). ATAC-seq li-
braries were generated with Phusion High-Fidelity DNA Polymerase (New
England Biolabs). We generated four biological replicates for wild-type Col-
0 and at least two biological replicates for mutants. ATAC-seq reads adap-
tors were trimmed with trim_galore before mapping to the Arabidopsis
thaliana reference genome TAIR10 using Bowtie (version 1.2.3, -X 2000 -m
1). Duplicated reads were deduplicated with SAMtools rmdup (version 1.9).
Reads that aligned to chloroplast and mitochondrial DNA were filtered out

for the following analyses. ATAC-seq peaks were called by HMMRATAC
(version 1.2.9) with minimum length of 50 bp for each replicate, and consensus
set of peaks of each replicates were merged by bedtools (version 2.26.0) intersect
while allowing 10 base pairs of distance (28, 48). To call differential accessible
peaks, the R package edgeR (version 3.30.0) was used (49).

Hi-C and Analysis. Hi-C libraries were prepared according to previous proto-
cols (36, 50). Previously published Hi-C data prepared by the same protocol
were downloaded from the NCBI Sequence Read Archive (SRA) as accession
number SRP043612 (36). Paired-end Hi-C reads were aligned to TAIR10 with
HiC-Pro (version 2.11.1) (51). The whole-genome Hi-C heat map was con-
verted with juicer_tools (version 1.13.02) and visualized with Juicebox (ver-
sion 1.11.08) (52). Hi-C loops were called with analyzeHiC in Homer2 with
200 bp resolution and P value < 1E-10 (53). The WashU EpiGenome Browser
version 46.2 (https://epgg-test.wustl.edu/browser/) was used to visualize Hi-C
loops and ATAC-seq data (54). PC1 values of Hi-C data were calculated with
Homer2 (53). Regional Hi-C visualization was performed by hicexplorer
(version 3.4.3) (55).

met1 RNA-Seq and Small RNA-Seq Analysis. RNA-seq reads were downloaded
from the NCBI GEO as accession number GSE93584 (35). Cleaned short reads
were aligned to reference genome TAIR10 by Bowtie2 (56), and expression
abundance was calculated by RSEM with default parameters (57). Heat maps
were visualized with the R package pheatmap (58). TEs that were located
within an accessible peak or in the 1,000 bp sequence flanking each side of a
peak were defined as accessible peak associated TEs. For small RNA-seq
analysis, small RNA-seq reads were downloaded from the same study (35).
Adaptor sequence was trimmed with cutadapt (version 2.5), and trimmed
reads were mapped to the reference genome TAIR10 using Bowtie (version
1.2.3) with only one unique hit (-m 1) and zero mismatches (-v 0) (59).

Data Availability. The sequences reported in this paper have been deposited
in the GEO database (accession no. GSE155503).
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