
CRISPR–Cas-mediated transcriptional control and
epi-mutagenesis
Jason Gardiner ,1 Basudev Ghoshal ,1 Ming Wang 1 and Steven E. Jacobsen 1,2,*,†

1 Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California, USA
2 Howard Hughes Medical Institute (HHMI), UCLA, Los Angeles, California, USA

*Author for correspondence: jacobsen@ucla.edu
These authors contributed equally (J.G., B.G., and M.W.).
†Senior author
All authors participated in writing of the article.
The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the
Instructions for Authors (https://academic.oup.com/plphys/pages/general-instructions) is Steven E. Jacobsen (jacobsen@ucla.edu).

Abstract
Tools for sequence-specific DNA binding have opened the door to new approaches in investigating fundamental questions
in biology and crop development. While there are several platforms to choose from, many of the recent advances in se-
quence-specific targeting tools are focused on developing Clustered Regularly Interspaced Short Palindromic Repeats-
CRISPR Associated (CRISPR-Cas)-based systems. Using a catalytically inactive Cas protein (dCas), this system can act as a
vector for different modular catalytic domains (effector domains) to control a gene’s expression or alter epigenetic marks
such as DNA methylation. Recent trends in developing CRISPR-dCas systems include creating versions that can target mul-
tiple copies of effector domains to a single site, targeting epigenetic changes that, in some cases, can be inherited to the
next generation in the absence of the targeting construct, and combining effector domains and targeting strategies to cre-
ate synergies that increase the functionality or efficiency of the system. This review summarizes and compares DNA target-
ing technologies, the effector domains used to target transcriptional control and epi-mutagenesis, and the different
CRISPR-dCas systems used in plants.

Introduction
Over the past three decades, the development of tools that
can bind to DNA in a sequence-specific manner has led to
technologies that can specifically target and regulate gene
transcription and epi-mutagenesis. Due to its ease of use, in
the most recent wave of developments, tools based on the
Clustered Regularly Interspaced Short Palindromic Repeats-
CRISPR-associated system (CRISPR–Cas) using a catalytically
inactive Cas protein have come to the forefront with an ar-
ray of attachments allowing for the targeted transcriptional
control or epi-mutagenesis of a specific locus; pushing the
functionality of CRISPR–Cas beyond gene editing.

These constructs rely on either the direct recruitment of
basal transcription machinery or the targeting of epigenetic
factors to manipulate transcription of nearby genes. While
the recruitment of basal transcription machinery requires
the presence of the targeting construct, changes in DNA
methylation can in some cases be mitotically and meiotically
inherited allowing for this targeted epi-mutagenesis to be
maintained in the following generations in the absence of
the targeting construct (Johnson et al., 2014; Gallego-
Bartolom�e et al., 2018; Papikian et al., 2019). The heritability
of DNA methylation is well documented at a few loci; how-
ever, further work is needed to understand how frequently
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methylation changes induced in one generation can be sta-
bly inherited into the next (Lloyd and Lister, 2021).
Furthermore, most other plant epigenetic marks are likely
not inherited from generation to generation and are either
reset during reproductive development or change dynami-
cally along with changes in gene expression. As we continue
to develop targeting systems through the addition of differ-
ent modular catalytic domains (effector domains) capable of
manipulating specific epigenetic marks, the function and
heritability of these marks can be more easily explored. The
expansion of this toolkit will offer a selection of tools that
can create changes that are or are not mitotically or meioti-
cally inherited that can be selected based on the end goal.

In plants, targeted manipulation of transcriptional control
and epimutagenesis have already been used to increase resis-
tance to drought, manipulate plant developmental pheno-
types, increase our understanding of interactions between
essential proteins, and further our understanding on how
plants add, maintain and use DNA methylation (Johnson
et al., 2014; Harris et al., 2018; Gallego-Bartolom�e et al., 2019;
Papikian et al., 2019; Roca Paix~ao et al., 2019; Ichino et al.,
2021; Lee et al., 2021; Leydon et al., 2021; Liu et al., 2021;
Tang et al., 2021; Xue et al., 2021). As we continue to de-
velop these tools by improving their efficiency and expand-
ing the available effector domains, more possible
applications in both research and industry arise.
Fundamental questions that once relied on generalities and
correlations resulting from mutations, stress induction, or
chemical treatments can instead be addressed using targeted
studies providing causative data revealing locus-specific func-
tion. While many of these tools have been demonstrated or
developed in animals, plants provide an exciting platform for
the further development and application of these tools both
from a research and an agronomic perspective.

In this review, we will cover the recent discoveries and
advancements in targeted transcriptional control and epi-
mutagenesis using CRISPR–dCas-based targeting technolo-
gies in plants.

Epigenetics and plant gene expression
Eukaryotic DNA is packaged into �146 base pair (bp) DNA
segments that wrap around a histone octamer known as a nu-
cleosome (Luger et al., 1997; Richmond and Davey, 2003; Ou
et al., 2017). Nucleosomes are the base units of chromatin and
can adopt two main configurations: euchromatin, which is less
compact and more accessible to transcription factors and other
proteins, or heterochromatin, which is more compact and less
accessible (Roudier et al., 2009) (Figure 1). This means that
gene regulation depends not only on the presence or absence
of transcription factors, but also on chromatin accessibility (Li
et al., 2007). Chromatin state can be altered by chromatin
remodeling complexes (CRCs), histone modifications, histone
variants, and DNA methylation, which work together to acti-
vate or repress of different transcriptional networks in eukar-
yotes (Li et al., 2007; Bannister and Kouzarides, 2011; Pikaard
and Mittelsten Scheid, 2014; Zhong et al., 2021).

In Arabidopsis (Arabidopsis thaliana), CRCs, such as the
SWITCHING DEFECTIVE 2/SUCROSE NON-FERMENTING 2
(SWI2/SNF2) proteins use ATP hydrolysis to alter the struc-
ture or positioning of nucleosomes, which in turn mediate
the accessibility of the chromatin to transcription factors
and other regulatory proteins (Corona and Tamkun, 2004;
Jiang and Pugh, 2009). In addition to the CRCs, histone
modifications and histone variants can affect transcriptional
gene regulation by modulating histone–DNA interactions
(Feng et al., 2010; Bannister and Kouzarides, 2011). The ex-
posed N-terminal tails of the core histones are subjected to
various post-translational modifications, including acetyla-
tion, methylation, phosphorylation, ubiquitylation,
SUMOylation, etc. (Pfluger and Wagner, 2007). The addition
or removal of these histone modifications corresponds with
activation or repression of transcription (Feng et al., 2010;
Bannister and Kouzarides, 2011). For example, adding acety-
lation to the histone tails via histone acetyltransferases is as-
sociated with transcriptional activation, while the removal of
acetylation through histone deacetylases leads to transcrip-
tional repression (Pandey et al., 2002; Lawrence et al., 2004).

Unlike histone acetylation, which corresponds with the acti-
vation of transcription, histone methylation can be associated
with activation or repression of transcription, depending on
which lysine residues are methylated (Xiao et al., 2016). For
example, three methyl groups on the fourth lysine of the his-
tone 3 tail (H3K4me3), H3K36me2, and H3K36me3 are associ-
ated with active transcription (Zhao et al., 2005; Xu et al.,
2008; Zhang et al., 2009; Ding et al., 2012) (Figure 1). On the
contrary, H3K27me1, H3K27me3, and H3K9me2 are associ-
ated with transcriptional repression (Goodrich et al., 1997;
Gendall et al., 2001; Jackson et al., 2002; Malagnac et al., 2002;
Johnson et al., 2007; Zhang et al., 2007; Bernatavichute et al.,
2008; Jacob et al., 2009; Du et al., 2012).

ADVANCES

• Recent advancements in DNA targeting systems
have largely focused on the development of
CRISPR–dCas systems to include peptide tails and
RNA binding proteins, allowing these systems to
recruit multiple copies of any given effector
protein.

• Effector protein domains capable of manipulating
DNA methylation have been successfully
deployed and, in some cases, changes have been
shown to be heritable to the next generation in
the absence of the targeting construct.

• Fusion and co-targeting strategies using common
modular activator domains can synergistically
activate transcription to levels higher than
targeting with a single type of activator domain.

• CRISPR-dCas systems can be used to repress
genes by targeting of modular repression
domains, DNA methylation, or CRISPRi.
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DNA cytosine methylation, which in plants occurs in the
CG, CHG, and CHH sequence contexts (H is any nucleotide
other than G), has also been associated with gene regulation.
Often, the presence or absence of DNA methylation is associ-
ated with repression and activation, respectively, of nearby
genes or transposable elements. In plants, DNA methylation
is maintained by four different DNA methylation mainte-
nance pathways and can be established de novo by the
RNA-directed DNA methylation (RdDM) pathway (Law and
Jacobsen, 2010). The canonical RdDM pathway can be split
into two different arms: the Polymerase IV (Pol IV) arm,
which is responsible for the generation of small interfering

RNAs (siRNAs), and the Pol V arm, which provides an RNA
scaffold for the recruitment of the DOMAINS REARRANGED
METHYLTRANSFERASE 2 (DRM2) at the target site
(Erdmann and Picard, 2020) (Figure 1). While the majority of
the siRNAs used in RdDM are produced by the Pol IV–RDR2
complex (Herr et al., 2005; Raja et al., 2008; Stroud et al.,
2013; Huang et al., 2021), a small amount are generated from
other sources including inverted repeats, microRNA (miRNA)
precursors, fragments of cleaved mRNA, or other non-Pol IV
generated non-coding RNAs that can also trigger a non-
canonical RdDM pathway. These siRNAs are loaded into
ARGONAUTE (AGO) proteins that direct the Pol V arm of

Figure 1 Overview of histone and DNA epigenetic modifications. Heterochromatin and euchromatin represent a more compact or less compact
chromatin status, respectively, that can be manipulated by CRCs. The fundamental unit of chromatin is the nucleosome, which is composed of
histones wrapped with DNA. Both histone tails and DNA cytosines can be epigenetically modified. Histone tail modifications: histone tails can be
modified by various epigenetic marks, including methylation, acetylation, phosphorylation, SUMOylation, etc. Histone epigenetic marks are associ-
ated with transcriptional gene regulation. For example, histone acetylation and trimethylation of H3 Lysine 4 (H3K4me3) and H3K36me3 are asso-
ciated with transcriptional activation. De novo DNA cytosine methylation: Cytosines can be de novo methylated through the RdDM pathway.
During canonical RdDM, SAWADEE HOMEODOMAIN HOMOLOGUE 1 is recruited to sites containing methyl groups on the ninth lysine of the
histone 3 tail (H3K9) and directly interacts with and recruits Polymerase IV (Pol IV) to these sites initiating transcription of short �32 nt RNA
transcripts. Pol IV then feeds this transcript directly into RNA-DEPENDENT RNA POLYMERASE 2 (RDR2) that then converts the single stranded
RNA transcripts into double-stranded RNAs, which are then digested into 24 nt small interfering RNAs (siRNAs) by RNase III endonuclease
DICER-LIKE 3 (DCL3), and loaded into ARGONAUTE 4, 6, or 9 (AGO4/6/9). Concurrently, a complex consisting of SU(VAR) homologs (SUVH) 2
or 9, DEFECTIVE IN MERISTEM SILENCING 3 (DMS3), DEFECTIVE IN RNA-DIRECTED DNA METHYLATION 1 (DRD1), RNA-DIRECTED DNA
METHYLATION 1 (RDM1), and Pol V is brought to a locus through the interaction between DNA methylation and SUVH2/9. The RNA scaffold of
Pol V transcripts can be recognized by the siRNA–AGO4/6/9 complex with help from SUPPRESSOR OF TY 5-LIKE (SPT5L). DOMAINS
REARRANGED METHYLTRANSFERASE 2 (DRM2) is then recruited to sites recognized by sRNA-bound AGO4/6/9 through RDM1, allowing DRM2
to methylate the adjacent DNA. DRM2 adds methylation to the targeted DNA, SUVH4/5/6 binds the DNA methylation and deposits H3K9 meth-
ylation, which attracts the Pol IV arm of the pathway thus, creating a positive feedback loop that helps maintain the newly added methylation.
siRNAs generated from sources other than Pol IV are sometimes incorporated into RdDM in a process called non-canonical RdDM. These siRNAs
can be generated from inverted repeats, miRNA precursor’s, fragments of cleaved mRNA, or other non-coding dsRNAs that are processed by DCL
proteins or a combination of AGO4 and exonucleases, loaded into AGO4/6/9, and directly recruit the POLV arm of the pathway to a target site.
Removal of DNA methylation: DEMETER (DME) family of bifunctional glycosylase/lyases, consisting of DME and DME -LIKE 1/REPRESSOR OF
SILENCING 1 (DML1/ROS1), DML2, and DML3, actively remove methylated cytosines which are then replaced with unmethylated cytosines by
the base excision repair (BER) pathway. Created with BioRender.com.
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the RdDM pathway to specific sites, and are important for
pioneering sites of RdDM de novo (Allen et al., 2005; Slotkin
et al., 2005; Vazquez et al., 2008; Chellappan et al., 2010;
Khraiwesh et al., 2010; Wu et al., 2010, 2012; Garcia et al.,
2012; Mar�ı-Ordó~nez et al., 2013; Nuthikattu et al., 2013;
Creasey et al., 2014; Bond and Baulcombe, 2015; McCue
et al., 2015; Panda et al., 2016; Yang et al., 2016; Ye et al.,
2016; Sigman et al., 2021) (Figure 1).

DNA methylation is a mitotically and meiotically heritable
mark (Law and Jacobsen, 2010). Maintenance of methylation
by RdDM in euchromatic regions depends on siRNAs. DNA
methylation in all sequence contexts is replicated on the
newly formed daughter strands through the concerted effort
of three additional DNA methyltransferases as well.
Methylation at CG sites is maintained during replication by
DNA METHYLTRANSFERASE 1 (MET1), through an interac-
tion with VARIANT IN METHYLATION 1 (VIM1), VIM2,
and VIM3 proteins that can bind to methylated cytosines in
CG context on the parent strands (Woo et al., 2007, 2008).
Non-CG methylation in heterochromatic regions is primarily
maintained by the plant-specific CHROMOMETHYLASE 2
(CMT2) and CMT3 methyltransferases via a positive feed-
back loop with H3K9me2 histone modification and by
RdDM in euchromatic regions (Lindroth et al., 2001; Du

et al., 2012; Stroud et al., 2013, 2014; Erdmann and Picard,
2020). In plants, DNA methylation is actively removed by
the DEMETER (DME) family of bifunctional glycosylase/
lyases consisting of DME and DME -LIKE 1/REPRESSOR OF
SILENCING 1 (DML1/ROS1), DML2, and DML3 (Choi et al.,
2002; Gong et al., 2002; Agius et al., 2006; Gehring et al.,
2006; Morales-Ruiz et al., 2006; Penterman et al., 2007;
Ortega-Galisteo et al., 2008) (Figure 1).

Technologies to recruit factors to manipulate
transcription
Targeted manipulation of epigenetic marks or gene expression
requires a way to specifically and ectopically recruit molecular
components capable of transcriptional control or epi-
mutagenesis to the site of interest on the genome. Several
targeting technologies are reviewed in the following section.

Small RNA-based targeting
Both siRNAs and miRNAs have been broadly applied for
transcriptional and post-transcriptional gene silencing, not
only because small RNA-mediated gene silencing is sequence
specific and efficient, but also because they can cause partial
loss-of-function alleles that can overcome the lethality of

Figure 2 Targeting systems A. The small interfering RNA (siRNA) targeting system which takes advantage of artificially designed inverted repeats
or microRNAs (miRNA) to target specific sequences through RNA-directed DNA methylation (RdDM) or RNA interference mechanisms. DICER-
LIKE (DCL); ARGONAUTE (AGO) B, The Zinc Finger targeting system where each artificially designed Zinc Finger domain is capable of recognizing
a unique nucleotide triplet. C, The TRANSCRIPTION ACTIVATOR-LIKE EFFECTOR (TALE) targeting system highlighting the RVDs, which give nu-
cleotide binding specificity to each repeat unit. D, The CRISPR–Cas9 targeting system highlighting the CRISPR RNA (crRNA), trans-acting crRNA
(tracrRNA) and protospacer adjacent motif (PAM). E, Direct fusion, SunTag, and MS2 based CRISPR–dCas9 systems and how these have been
combined in the CRISPR ACT 3.0 system. MS2 coat protein (MCP), Single chain variable fragment (ScFV). Created with BioRender.com.
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certain null mutants (Ossowski et al., 2008). Endogenously,
siRNAs and miRNAs are the slicing products of DICER-LIKE
(DCL) proteins from double-stranded RNAs (dsRNAs) and
primary miRNA transcripts with a stem–loop structure, re-
spectively (Kurihara and Watanabe, 2004; Xie et al., 2005)
(Figure 2A). Both siRNAs and miRNAs are loaded into AGO
proteins to form an RNA-induced silencing complex (Mallory
and Vaucheret, 2010), which in turn silences the target gene
with the complementary sequence (Huang et al., 2019). One
of the most popular methods for the generation of synthetic
siRNAs or miRNAs in plants is to express hairpin RNA or
inverted repeats that are linked by an intron sequence. This
hairpin RNA can be recognized and processed by plant DCLs
into siRNAs and then cause the target gene silencing
(Chuang and Meyerowitz, 2000; Wesley et al., 2001). While
these are frequently designed to target exon regions to trigger
post-transcriptional gene silencing, they can also be designed
to target promoter regions to trigger RdDM-directed silencing
(Mette et al., 2000; Dadami et al., 2014; Williams et al., 2015;
Gallego-Bartolom�e et al., 2019). Some other small RNA-
mediated approaches to silence genes include virus-induced
gene silencing (Wassenegger et al., 1994; Baulcombe, 1999;
Burch-Smith et al., 2004), and artificial miRNA directed gene
silencing (Schwab et al., 2006; Ossowski et al., 2008).

While synthetic siRNAs and miRNAs can target gene si-
lencing, they cannot recruit other factors or be used for tar-
geted activation, and are prone to off-target effects (Xu
et al., 2006; Ossowski et al., 2008) (Table 1). Technologies
allowing for the targeting of effector domains in a sequence
dependent manner allow for more specific control of tran-
scriptional activation in addition to repression.

Sequence-dependent DNA binding modules

Zinc Fingers
Zinc Fingers (ZFs) are one of the earliest and best character-
ized tools for targeting effector domains to specific regions
of a genome. These proteins typically contain a classical
C2H2 ZF structure with two b-sheets and one a-helix

maintained by hydrophobic interactions and a zinc ion (Lee
et al., 1989). Each finger primarily recognizes and binds to a
unique 3-bp DNA sequence encoded in the amino acid resi-
dues of the a-helix (Pavletich and Pabo, 1991; Elrod-Erickson
et al., 1996) (Figure 2B). This amino acid sequence can be
manipulated and repeated to develop artificial ZF proteins
with multiple finger domains capable of differentiating the
DNA sequence of a target site from the rest of the genome
(Liu et al., 1997; Segal et al., 1999; Dreier et al., 2001). These
artificial ZFs can then be fused to an effector domain in or-
der to activate or repress transcription. While ZF targeting
systems have been widely used, they have several drawbacks
relative to other targeting systems, such as a relative lack of
specificity, which are outlined in Table 1 (Beerli et al., 1998;
Johnson et al., 2014; Gallego-Bartolom�e et al., 2019; Gardiner
et al., 2020; Liu et al., 2021).

Transcription activator-like effectors
Like ZFs, TRANSCRIPTION ACTIVATOR-LIKE EFFECTORS
(TALEs) contain specific amino acid sequences that allow
for the programmable recognition of specific DNA sequen-
ces (Figure 2C). The TALE DNA binding domain consists of
around 18 units of repeats with each unit comprising �34
amino acids containing two variable amino acids at posi-
tions 12 and 13, known as repeat-variable diresidues (RVDs),
which direct the binding specificity of a unit (Boch et al.,
2009; Moscou and Bogdanove, 2009) (Figure 2C). Thus, by
rearranging these repeat units, designer TALEs can be cre-
ated to target specific sequences (Boch et al., 2009;
Morbitzer et al., 2010). Assembly of additional TALEs to tar-
get a unique site is mostly a matter of assembling these re-
peat units so that the RVD nucleotide preference matches
the target site. Certain RVDs either only bind to or are un-
able to bind to methylated DNA (Bultmann et al., 2012;
Deng et al., 2012; Valton et al., 2012; Tsuji et al., 2016), and
can be used to build TALE constructs that can discriminate
between methylated and unmethylated recognition sites
(Deng et al., 2012; Valton et al., 2012; Tsuji et al., 2016).

Table 1 Comparison of targeting systems

Parameters sRNA TALE Zinc Finger CRISPR–dCas9

1. Target sites No limit Occurs every �35 bp Occurs at every �200–
500 bp

Depends on PAM sites. New
PAM-less CRISPR variants are
available that increase available
target sites

2. Specificity Less specific More specific than other
technologies

Less specific Highly specific

3. User friendly Easy to clone constructs Cloning is laborious and
tedious

Cloning is laborious and
tedious

Easy to clone constructs
a. Cloning
b. Adaptability to target

new sites
Highly adaptable— only

need to modify the pre-
cursor RNA sequence

Less adaptable—must de-
sign new protein for each
new target; protein engi-
neering can be
unpredictable

Less adaptable—must de-
sign new protein for each
new target; protein engi-
neering can be
unpredictable

Highly adaptable—only need to
modify the guide RNA
sequence

c. Cost Targeting new site depends
on manipulating the pre-
cursor sequence, which is
less expensive

Can be expensive as it
requires testing of several
TALEs to target new site

Can be expensive as it
requires testing of several
Zinc Fingers to target
new site

Targeting new site depends on
manipulating guide RNA se-
quence, which is less expensive
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While a powerful tool, TALEs are difficult to assemble due
to the repetitiveness of the units, which only differ by two
amino acids (Cermak et al., 2011; Morbitzer et al., 2011;
Zhang et al., 2011) (Table 1).

CRISPR–Cas direct fusion
CRISPR–Cas systems can be used to target specific regions
of a genome. These systems are naturally occurring in bacte-
ria and archaea, and evolved as a type of adaptive immune
system (Sorek et al., 2013). Unlike ZF or TALE systems that
use the manipulation of amino acid sequences to specify
the target site, CRISPR–Cas systems use non-coding RNAs
(Figure 2D). The natural targeting system consists of an
RNA sequence complementary to the target sequence
known as the spacer or CRISPR RNA (crRNA) and a scaffold
sequence that is bound by the Cas protein known as the
trans-activating crRNA (tracrRNA) (Deltcheva et al., 2011)
(Figure 2D). To simplify the tool, the crRNA and tracrRNA
have been fused to form a single RNA molecule called a
guide RNA (gRNA) (Jinek et al., 2012). The gRNA compo-
nent is loaded into a Cas protein that is then able to iden-
tify and create a double-stranded break at the appropriate
target site. Recognition of the target sequence also requires
a protospacer adjacent motif (PAM) specific to the Cas pro-
tein being used limiting the number of possible targets
(Figure 2D). However, recent advancements in the develop-
ment of CRISPR–Cas systems have created systems that do
not require this PAM motif (Walton et al., 2020; Ren et al.,
2021). In addition to using Cas to trigger mutations at target
sites, modified systems using catalytically inactive Cas (dCas)
fused to an effector domain can be designed to cause a
wide range of targeted effects, depending on the effector do-
main used (Jinek et al., 2012; Larson et al., 2013; Qi et al.,
2013; Lowder et al., 2015; Piatek et al., 2015; Liu et al., 2016;
Li et al., 2017, 2020; Tang et al., 2017; Khakhar et al., 2018;
Selma et al., 2019; Ghoshal et al., 2021).

The reduced expense, ease of construction, and high spe-
cificity of targeting has made CRISPR–dCas systems incredi-
bly popular leading to the further development of more
advanced systems beyond the simple direct fusion. To en-
hance the targeted effect of these systems, additional sys-
tems with the ability to synergistically target multiple
effector domains to a single locus have been developed as
discussed below.

SunTag
The SunTag system was originally developed in animals to
recruit multiple copies of GREEN FLUORESCENT PROTEIN
(GFP) to a single locus allowing for the visualization of the
target (Tanenbaum et al., 2014). This was quickly incorpo-
rated into a dCas9-based system for other uses such as the
activation of transcription or the addition/removal of DNA
methylation in both plants and animals (Tanenbaum et al.,
2014; Morita et al., 2016; Gallego-Bartolom�e et al., 2018;
Pflueger et al., 2018; Papikian et al., 2019; Tang et al., 2021).
The SunTag-dCas9 system requires the coordinated expres-
sion of three different components: a dCas9 fused to a

peptide tail containing an array of epitope repeats; a com-
plementary single-chain variable fragment (scFv) fused to an
effector domain and a gRNA (Figure 2E). This enables each
dCas9 to recruit multiple copies of the effector domain via
interactions between the scFv and the epitope tail. While
this increases the complexity of the system, recruiting multi-
ple copies of an effector domain to a single locus has proven
more effective than targeting a single effector domain
through a direct fusion to dCas9 (Morita et al., 2016;
Pflueger et al., 2018). More recently, epitope tails containing
a combination of two different epitopes bound by separate
scFvs have enabled the co-targeting of two different unique
scFv-effector fusions at the same time (Boersma et al., 2019).
Recruiting multiple copies of an effector protein using the
SunTag system raises the possibility that these systems can
have a larger targeted epigenetic footprint than the directly
fused dCas9-effector version. Although this might be true in
certain cases, the targeted epigenetic footprint seems to be
influenced by several factors. For example, in mammalian
cell lines, targeting the mammalian de novo DNA methyl-
transferase DNA-methyltransferase 3 alpha (DNMT3A),
fused directly to dCas9 resulted in a DNA methylation foot-
print of approximately 200 bp (McDonald et al., 2016; Vojta
et al., 2016). While using the SunTag system with the
DNMT3A resulted in a wider DNA methylation footprint of
�4 kb on the Homeobox A5 (HOXA5) gene, this was not ob-
served when the DNMT3A-SunTag system targeted the
Krüppel-like factor 4 gene, indicating a locus-specific effect
(Huang et al., 2017). The influence of genomic context was
also implied in plants (Ghoshal et al., 2021). For example, in
Arabidopsis, identical targeted DNA methylation footprints
were observed at the FWA gene when targeting a CG-specific
bacterial methyltransferase using either a direct fusion with
dCas9 or the SunTag system. This was most likely due to the
targeted region being flanked by genomic regions lacking CG
sites limiting the span of DNA methylation targeted by both
tools. Thus, further research is required to directly assess the
factors influencing the DNA methylation footprints induced
by these multi-effector protein targeting tools.

MS2
Like the SunTag system, the MS2 system is a CRISPR–dCas9-
based system that gives the user the ability to target multi-
ple effector proteins to a specific locus (Konermann et al.,
2015). However, unlike SunTag or direct fusions to dCas9,
the MS2 system recruits effector proteins via interactions
with a modified gRNA. The MS2 system takes advantage of
the MS2 bacteriophage coat protein and its known RNA
binding site. Like the SunTag system, this system also
requires the coordinated expression of three components: a
dCas9, a MS2 coat protein-effector domain fusion, and a
gRNA scaffold including an MS2 binding site added to the
tetraloop and/or stem loop 2 positions of the tracrRNA
(Konermann et al., 2015) (Figure 2E). The MS2 system can
be combined with dCas9 direct fusion (known as the
Synergistic Activation Mediator system or SAM) or the
SunTag system or both (known as CRISPR Act 3.0) to recruit
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even more or different effector proteins to a target site via
effector protein interactions with both the gRNA and the
dCas9 (Konermann et al., 2015; Lowder et al., 2018; Pan
et al., 2021) (Figure 2E).

Targeted epi-mutagenesis and transcriptional
control

Effector domains used for transcriptional activation
There are an array of different effector domains that can be
used to activate transcription in targeted systems. This can
be achieved directly by attracting basal transcription factors,
or indirectly by adding active histone marks or removing re-
pressive marks. Targeting of the modular activating domain
of the herpes simplex virus VP16 to a specific locus has
been extensively described as an efficient way to activate
transcription (Dreier et al., 2001; Sánchez et al., 2002; Stege
et al., 2002; Morbitzer et al., 2010; Geißler et al., 2011; Miller
et al., 2011; Zhang et al., 2011; Cheng et al., 2013; Maeder
et al., 2013; Mali et al., 2013; Perez-Pinera et al., 2013; Qi
et al., 2013; Liu et al., 2014; Tanenbaum et al., 2014;
Vazquez-Vilar et al., 2016; Li et al., 2017; Park et al., 2017; Lee
et al., 2019; Papikian et al., 2019; Selma et al., 2019).The
VP16 activator domain is an acidic peptide that interacts
with basal transcription factors and the mediator complex
to facilitate the assembly of the pre-initiation complex at its
target site (Hall and Struhl, 2002; Hirai et al., 2010). Vp16
also interacts with histone acetyltransferases and the SWI/
SNF ATPase complex to manipulate the surrounding chro-
matin structure into an active state (Hall and Struhl, 2002;
Hirai et al., 2010). Creating a tetramer (VP64) or octamer
(VP128) of the minimal VP16 activator domain can dramati-
cally increase the potency of this activator (Beerli et al.,
1998; Li et al., 2017). In addition to this, recruiting multiple
copies of VP64 via systems like the SunTag can improve the
activation of downstream targets compared to direct fusion
systems (Tanenbaum et al., 2014; Lowder et al., 2018; Selma
et al., 2019).

Directly targeting transcriptional activation can also be
achieved through targeting the highly conserved plant-
specific acidic-type activator domains found in the
APETALA2 family of proteins, known as the EDLL domains.
The EDLL domain of AtEFR98 is frequently used as a modu-
lar component to activate gene expression (Tiwari et al.,
2012; Piatek et al., 2015; Selma et al., 2019). This EDLL motif
is relatively small (24 amino acids) compared to other com-
mon activator domains like the VP16 (78 amino acids) mak-
ing this activating domain an attractive option for
development of compact synthetic targeted activation sys-
tems. However, at some target sites, multiple copies of EDLL
were needed to achieve similar transcriptional activation as
VP16 (Tiwari et al., 2012). Like VP16 and EDLL domains, TAL
acidic-type activator domains, found in natural TALE sys-
tems, have also been used in a modular way to activate
gene expression (Piatek et al., 2015; Li et al., 2017; Selma
et al., 2019). This effector domain, when targeted using the
TALE system, can activate genes upstream and downstream

of its binding site regardless of which strand the effector is
targeted to (Wang et al., 2017).

In addition to the direct activation of transcription by
recruiting activator domains, another option is recruiting
domains capable of adding active or removing repressive
epigenetic marks, thereby activating gene expression indi-
rectly. In plants, targeting transcriptional activation through
H3K27 acetylation using the p300 domain from humans or
the catalytic domain of the plant-specific ARABIDOPSIS
HISTONE ACETYLTRANSFERASE OF THE CBP FAMILY 1
(HAC1) can activate transcription of targeted genes; how-
ever, at least in the case of p300, a higher level of activation
is achieved when VP64 is used (Lee et al., 2019; Roca Paix~ao
et al., 2019; Selma et al., 2019). Removing repressive DNA
methylation from a promoter using the human TEN-
ELEVEN TRANSLOCATION1 (TET1) can also cause tran-
scriptional activation (Maeder et al., 2013; Amabile et al.,
2016; Choudhury et al., 2016; Liu et al., 2016; Morita et al.,
2016; Xu et al., 2016; Lo et al., 2017; Okada et al., 2017;
Gallego-Bartolom�e et al., 2018; Li et al., 2020; Tang et al.,
2021). In animals, the TET family of oxidases can oxidize
methylated DNA, leading to either the passive removal of
the methyl group through a lack of maintenance during
DNA replication or the active removal by glycosylases such
as thymine DNA glycosylase (Lio et al., 2020). Such oxidized
variants have been detected in plants; however, at such low
levels that its importance is called into question (Mahmood
and Dunwell, 2019). While no proteins homologous to the
TET family have been described in plants, ectopic expression
of TET proteins, targeted or otherwise, in plants causes a
loss of DNA methylation, suggesting the existence of a simi-
lar passive or active mechanism for the removal of oxidized
DNA methyl groups in plants (Hollwey et al., 2016; Gallego-
Bartolom�e et al., 2018; Ji et al., 2018).

Unlike recruiting the basal transcriptional machinery,
which can cause unwanted overexpression, using epigenetic
marks to control transcription only facilitates the accessibil-
ity of the target promoter to the transcriptional machinery.
This highlights an advantage to the manipulation of epige-
netic marks over the targeting of an activator domain. In ad-
dition to this, altering epigenetic marks can also facilitate
the accessibility of targeted activator domains and thus,
achieve a synergistic effect when they are combined (Roca
Paix~ao et al., 2019).

Co-targeting Activation
While many studies have attempted to compare single acti-
vator domains to determine the best one to use for targeted
activation, such studies will be heavily influenced by a num-
ber of unrelated factors, including the choice of targeting
system and target site. While an activator domain might ap-
pear superior in a specific system or at a specific target site,
this cannot be extrapolated to every possible scenario that
exists in every plant genome, and thus a variety of tools are
needed. However, a consistent trend seen in the develop-
ment of these tools is that the ones that are capable of tar-
geting multiple activator domains to a single locus have
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consistently been shown to perform better than those tar-
geting a single domain (Beerli et al., 1998; Tiwari et al., 2012;
Li et al., 2017; Selma et al., 2019; Morita et al., 2020; Pan
et al., 2021). While there are limits to the number of domain
repeats that can be included in a single coding sequence
due to protein instability, using multiple different activator
domains to synergistically activate gene expression has been
an immensely successful strategy (Li et al., 2017; Selma et al.,
2019). Targeting direct fusions of VP128 to EDLL or VP128
to TAL activator domains leads to an increase in the activa-
tion of gene expression (Li et al., 2017). In addition the fu-
sion of VP64 to P65 and Rta, two additional modular
activator domains originally shown to work in animals
(VPR), is also capable of activating gene expression in plants
to a higher level than VP64 alone (Chavez et al., 2015; Li
et al., 2017). Further, systems that allow the co-targeting of
different activator domains can now push this further by
combining even more activator domains such as the EDLL
domain with the VPR fusion (Selma et al., 2019). However,
quantitatively comparing these different co-targeting strate-
gies is challenging and again depends on the target site and
targeting system. For example, co-targeting the EDLL domain
with multimers of the VP16 activator domain either through
the SAM targeting system or direct fusion, has been shown
to be inferior to fusions to other activator domains or sim-
ply by co-targeting multiple VP64 peptides to the target lo-
cus (Li et al., 2017; Lowder et al., 2018; Pan et al., 2021).
However, when the EDLL domain is co-targeted along with
the VPR fusion using the SAM targeting system, it has been
shown to produce a higher gene activation than targeting
multiple VP64 domains. Thus, if an activator domain is ef-
fective at one locus or with a particular targeting system, it
does not mean it will be effective when used in a different
system or at a different locus.

Further, in animal cells, when VP64 and TET1 were co-
targeted to the same locus they worked synergistically to
upregulate gene expression causing a greater fold change in-
crease in expression than targeting either factor alone
(Morita et al., 2020), suggesting that manipulating the epige-
netic landscape to be more amenable to activation is syner-
gistic with targeting activator domains. In plants, targeting
multiple VP64 activator modules to the FWA promoter using
the SunTag targeting system also resulted in the loss of DNA
methylation, suggesting that simultaneously targeting mecha-
nisms that remove DNA methylation and directly activate of
gene expression could work synergistically in plants as it does
in animals (Papikian et al., 2019; Morita et al., 2020).

Effector domains used for transcriptional repression
Targeted transcriptional repression can be achieved by sev-
eral mechanisms such as chromatin remodeling, adding re-
pressive or removing active epigenetic marks on histones,
adding DNA methylation, inhibiting RNA Polymerase II
processivity, or by triggering degradation of mRNA.

The most widely used effector domains for targeted gene
repression in plants are the ERF-associated amphiphilic re-
pression (EAR) domains, such as those found in SUPERMAN

or BODENLOS. Outside of the targeting systems discussed
here, these domains have been used extensively as a way to
study highly redundant genes, as these repressor domains
are dominant over activator domains, including VP16, and
can be used to turn a constitutive activator into a constitu-
tive repressor (Hiratsu et al., 2002, 2004; Kagale and
Rozwadowski, 2011). EAR domains have been found to re-
cruit histone deacetylases such as HDA19 and co-repressors
such as TOPLESS (Kagale and Rozwadowski, 2011). The EAR
domain SUPERMAN-REPRESSIVE DOMAIN X, an optimized
version of the SUPERMAN EAR domain, and the down-
stream co-repressor TOPLESS have been used together with
the targeting systems discussed above to specifically target
transcriptional repression (Lowder et al., 2015; Tang et al.,
2017; Khakhar et al., 2018).

Targeted addition of DNA methylation to promoters using
DNA methyltransferases has also been used successfully to
repress transcription. The catalytic domain of the RdDM-
based DNA methyltransferase from tobacco (Nicotiana taba-
cum), DOMAINS REARRANGED METHYLTRANSFERASE
(DRM) can add DNA methylation to a target promoter,
resulting in transcriptional repression (Papikian et al., 2019).
The inheritance of the targeted DNA methylation and thus,
the transcriptional repression is highly dependent on the lev-
els of CG methylation established at the target site (Gallego-
Bartolom�e et al., 2019). To increase the heritability of the tar-
geted methylation recent studies in plants have used the
CG-specific bacterial Mollicutes Spiroplasma DNA methyl-
transferase MQ1 containing a Q147L mutation to increase
the specificity of the effector domain (Ghoshal et al., 2021).
In the absence of the RdDM pathway, the targeted gene was
found to only have CG methylation, while in wild type plants
non-CG methylation was also observed, indicating that MQ1
only installs CG methylation to the target site which then
recruits other DNA methylation (Ghoshal et al., 2021).

Besides modifying the epigenome for transcriptional re-
pression, a direct mechanism to repress gene expression is
by hindering the movement of the RNA polymerase II,
known as CRISPR interference (CRISPRi). This is achieved by
targeting CRISPR–dCas-based systems to the TSS region or
downstream of the transcriptional start site of a gene and
has been well demonstrated in mammalian cells (Qi et al.,
2013). However, reports of CRISPRi are limited in plants.
Only one example has shown partial repression of a gene by
CRISPRi in maize (Zea mays) (Gentzel et al., 2020). In plants,
no studies have been reported on co-targeting different re-
pressor domains to repress transcription. However, in ani-
mals, recruiting a DNMT3a domain, a DNMT3-LIKE
(DNMT3L) domain, and a Krüppel-associated box transcrip-
tional repression domain to a target gene via direct fusion
of all three to dCas9 has been demonstrated as a powerful
gene repression strategy (Nu~nez et al., 2021).

Conclusions
While a number of platforms have been developed for tar-
geted transcriptional control and epi-mutagenesis in plants,
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including small RNAs, ZFs, and TALEs, development of
CRISPR-based systems have recently become the dominant
focus due to their ease of use and flexibility. Recent develop-
ments in CRISPR–dCas systems have focused on increasing
efficiency and functionality, including creating systems capa-
ble of recruiting multiple copies and multiple types of effec-
tors to a target site. In addition to this, progress has also
been made in the development of additional and optimized
delivery systems for these tools (Box 1). The development of
CRISPR–dCas systems for targeted transcriptional control
and epi-mutagenesis is still in its infancy and there are many
ways in which these tools can be improved (see
Outstanding Questions). Their recent development means
that these tools have only been utilized in a few studies

outside of the ones creating or optimizing them; however,
examples are available and demonstrate the usefulness of
these systems in answering basic questions and bioengineer-
ing (Lee et al., 2021; Leydon et al., 2021). The further devel-
opment of these tools provides us with additional ways to
target specific transcriptional or epigenetic manipulations in
plants, allowing us to collect more direct evidence for the
function of epigenetic marks and genes which can then be
applied to the benefit of agriculture.
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OUTSTANDING QUESTIONS

• What effector domains can be used synergistically through direct fusion or co-targeting to create artificial
protein complexes to regulate the chromatin environment through histone marks, DNA methylation, and
basal transcription factors to ensure heritability of the transcriptional modification, allowing the targeting
construct to be segregated out in later generations without reversion?

• Can tissue-specific expression of advanced CRISPR–dCas systems improve targeting efficiency, as has been the
case with ZF and CRISPR–Cas9 constructs?

• How can we create tools which allow for the targeting of different effectors to separate sites in the genome to
provide the ability to adjust entire transcriptional networks by activating and repressing specific components
simultaneously?

• Can these tools be delivered to plants using a non-transgenic approach?

BOX 1 Advances in the delivery of targeting systems Generally, the preferred mode of delivery for CRISPR–Cas sys-
tems in plants has been through generating stable transgenic plants by Agrobacterium tumefaciens-mediated
gene transfer or particle bombardment (Altpeter et al., 2016; Lowder et al., 2017, 2018; Tang et al., 2017; Gallego-
Bartolom�e et al., 2018; Lee et al., 2019; Papikian et al., 2019; Ghoshal and Gardiner, 2021; Ghoshal et al., 2021).
However, transient delivery methods provide the advantage of spatially and temporally regulating the expression
of the CRISPR–Cas systems in the plants. This can reduce the off-target effects of CRISPR–Cas systems and by-
pass the process of generating transgenic plants, which can be tedious and time-consuming for many crop spe-
cies (Altpeter et al., 2016). Transient methods such as agroinfiltration, viral-based delivery approaches, lipid-based
systems, or nanomaterial-based techniques have been used for the transient delivery of genome editing systems
into plants (Sandhya et al., 2020). So far, only agroinfiltration and viral delivery approaches have been adopted to
transiently deliver CRISPR components for regulating gene expression or for epimutagenesis in whole plants
(Piatek et al., 2015; Ghoshal et al., 2020; Khakhar and Voytas, 2021). Delivery of dCas-based reagents by PEG-me-
diated transformation for transcriptional activation has only been achieved in protoplasts (Li et al., 2017; Lowder
et al., 2018). Viral delivery of CRISPR reagents to whole plants has excellent potential for developing non-trans-
genic approaches for genome and epigenome editing; however, it has two major challenges. The first is ensuring
the efficient delivery of the CRISPR reagents to the appropriate targeted cells, such as meristematic cells, that fa-
cilitate the inheritance of the introduced change (Altpeter et al., 2016). Recent studies have used plant mobile
RNA signal sequences that enhance the movement of the RNA viruses to facilitate the delivery of CRISPR
reagents into meristematic cells (Ghoshal et al., 2020; Ma et al., 2020; Zhang et al., 2020; Khakhar and Voytas,
2021). The second challenge is the limited cargo size of viral vectors. For genome editing, studies with certain vi-
ruses have shown to be promising to deliver large cargoes, such as the whole of CRISPR–Cas9 constructs (Zhang
et al., 2020). However, these viruses have a limited host range and such trials remain to be explored for epige-
nome editing purposes, so additional strategies are required to deliver CRISPR–dCas9 components efficiently.
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