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Cytosine DNA methylation is involved in transposable element

(TE) silencing, imprinting and X-chromosome inactivation. Plant

DNA methylation is mediated by MET1 (mammalian DNMT1),

DRM2 (mammalian DNMT3) and two plant-specific DNA methyl-

transferases, CMT2 and CMT3 (Law and Jacobsen, 2010).

De novo DNA methylation in plants is established by DRM2 via

the plant-specific RNA-directed DNA methylation (RdDM) path-

way that depends on two DNA-dependent RNA polymerases, Pol

IV and Pol V (Gallego-Bartolome et al., 2019; Law and

Jacobsen, 2010; Stroud et al., 2013). The DNA methylome of

cassava has been previously documented based on its haploid

collapsed genome (Wang et al., 2015). Since the cassava genome

is highly heterozygous, DNA methylome of the haplotype-

collapsed genome misses many features of the methylome. With

the development of long-read sequencing and chromosomal

conformation capture techniques, haplotype-resolved genomes

are available for highly heterozygous genomes (Mansfeld

et al., 2021; Qi et al., 2022; Sun et al., 2022; Zhou

et al., 2020), which provides high-quality reference genomes

facilitating studies of haplotype-resolved DNA methylomes.

To dissect the haplotype-resolved DNA methylome of cassava,

we conducted methylome studies in two haplotype genome-

resolved accessions of cassava (TME7 and TME204) using whole-

genome bisulfite sequencing (WGBS) and enzymatic methyl-seq

(EM-seq), respectively (Feng et al., 2020; Mansfeld et al., 2021;

Qi et al., 2022). Sequencing reads were mapped to different

haplotypes individually allowing zero mismatches and one best

hit, which allowed the separation of reads belonging to different

haplotypes. Overall, we found that although both WGBS and EM-

seq methods were used, the two haplotypes have similar whole-

genome methylation levels in TME7 and TME204 (Figure 1a;

Figure S1). We further plotted methylation levels over transcribed

regions of protein-coding genes and TEs, and observed similar

methylation levels between different haplotypes (Figure 1b,c;

Figure S2A,B).

Previous studies have revealed large numbers of haplotype-

specific structural variants (SVs) in cassava (Mansfeld et al., 2021;

Qi et al., 2022). To understand how DNA methylation is

associated with these SVs, we analysed methylation levels of

these SVs. Focusing on places where haplotype-specific SVs

occur, we found that flanking regions of SVs have approximately

two times lower methylation levels than random controls and

SVs, suggesting that SVs preferentially take place at lowly

methylated regions, with the SVs turning these regions to heavily

methylated regions (Figure 1d–f). The gain of methylation over

these SVs may subsequently inactivate surrounding regions and

silence nearby genes. Allele-specific expression (ASE) refers to

preferential expression of the allele transcribed from one haplo-

type (Gaur et al., 2013). Previous study has catalogued ASEs into

complete ASEs and partial ASEs (Mansfeld et al., 2021). Interest-

ingly, complete ASE genes showed higher gene body CHG

methylation than partial (P = 0.05) and non-ASE genes and partial

ASE genes showed lower CG methylation than others (P = 3.8 e-

08, Figure 1g), suggesting that DNA methylation alterations

between alleles from different haplotypes are frequently accom-

panied with ASEs.

Next, we analysed differentially methylated cytosines between

haplotypes (haplotypic DMCs). We first aligned the two haplo-

types and identified syntenic cytosines (Figure S2C). Methylation

levels of syntenic cytosines were compared between two haplo-

types. We observed at least three scenarios (Figure 1h) that

resulted in differential methylations between haplotypes: (i) SNP/

InDel in one haplotype leads to the loss of the cytosine (47.17%),

among which more than 99.25% are SNP variants (Figure 1i; see

TME204 data in Figure S2D); (ii) Cytosine context alterations (e.g.

CG in hap1 and CHH in hap2) that lead to the methylation level

changes detected in our analysis (28.98%); and (iii) Cytosines stay

in the same contexts between haplotypes but exhibit different

methylation levels (23.85%). For DMCs caused by scenarios 2 and
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3, the majority of them were CHH variations (Figure 1i). When CG

sites are mutated into CHG or CHH sites, they are more likely to

be hypomethylated, whereas CHH sites are more likely to be

hypermethylated when mutated into CHG and CG sites (Figure 1j,

k; Figure S2E,F). Furthermore, we found that DMCs are frequently

detected at TEs and distal intergenic regions, while depleted at

gene bodies and flanking regions, suggesting that TEs are hot

spots for frequent DNA methylation changes (Figure 1l,
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Figure S2G). Finally, we investigated the genetic diversity of DMC

sites and 400-bp flanking sequences and found that nucleotide

diversity of DMC sites is significantly higher than that of flanking

sequences (Figure 1m,n). Higher nucleotide diversity of DMCs

demonstrated that DMC sites are under more frequent natural

selection and revealed the crosstalk between sequence variations

and DNA methylation mutations. Together, our analyses com-

pared haplotype-resolved DNA methylomes of cassava and placed

genomic heterozygosity within the haplotypic epigenetic regula-

tory landscape.
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Appendix S1 Methods.

Figure S1 Whole genome methylation over chromosomes of

TME204 and TME7.

Figure S2 Haplotype-resolved DNA methylome of African

cassava.

Figure 1 Haplotype-resolved DNA methylome of African cassava. (a) Whole-genome methylation levels of hap1 and hap2 haplotypes in TME7 (n = 3) and

TME204 (n = 1). (b) Metaplot of CG, CHG and CHH methylation levels over protein-coding genes and flanking 1-kb sequences of hap1 and hap2

haplotypes in TME7. (c) Metaplot of methylation levels over transposon elements and flanking 1 kb sequences in TME7. (d–f) Metaplot of methylation levels

over structural variation regions and flanking 1 kb sequences in TME7. Regions of equal length were randomly selected in the genome (blue line). (g)

Methylation levels of complete, partial and non-ASE genes in TME7. (h) Representative screenshots of DMCs. Methylation site losses and mC context

changes are indicated on top of the track (red: hap1; blue: hap2). (i) Ratio of DMCs caused by SNP/InDel and DMCs caused by different methylation levels in

TME7. (j) Numbers of different types of cytosine context variations between the two haplotypes in TME7. (k) Consensus sequences of DMCs in TME7. (l)

Genomic distribution enrichment of DMCs in TME7. (m–n) Nucleotide diversity of 400-bp flanking regions of DMC in TME7 (m) and TME204 (n). Panels i, j, l

and k show results for TME7. Results for TME204 are shown in Figure S2.
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