

Supporting Information for

Genome editing in plants using the compact editor $Cas\Phi$.

Zheng Li^a, Zhenhui Zhong^a, Zhongshou Wu^a, Patrick Pausch^b, Basem Al-Shayeb^{c,d}, Jasmine Amerasekera^e, Jennifer A. Doudna^{c,f,g,h,i,j,k} and Steven E. Jacobsen^{a,l,1}

¹ To whom correspondence may be addressed. Email: jacobsen@ucla.edu

This PDF file includes:

Figures S1 to S9 Tables S1 to S7

D T3 offspring plant populations of version 2 AtPDS3 gR10 T1 plants #6:

Fig. S1. CasΦ-2 mediated editing of the AtPDS3 gene with version 1 and version 2

constructs. (A) AtPDS3 homolog protein sequences from different species were aligned with Clustal Omega by the Geneious software, with the two amino acids deleted in version 1 construct T1 plant #33 labeled. (B) Amplicon sequencing results of T1 plant leaves of version 2 AtPDS3 gRNA10 construct. (C) Sanger sequencing results of the AtPDS3 gRNA10 target region of six out of 96 total seedlings from the T2 population of version 2 AtPDS3 gR10 T1 plant #6, showing that they are heterozygous for mutation in this region. (D) Seedlings of six T3 offspring plant populations of version 2 AtPDS3 gRNA10 T1 plant #6, corresponding to the six T2 plant indicated in (C), with albino seedlings circled.

А

Aajor mutant alleles of the AtPDS3 gene in albino T3 offspring seedlings of version 2 AtPDS3 gR10 T1 plant #6:					
		AtPDS3 gR10			
WT sequence:	TGGAATTAATGTTCATGTGATGAAGTTCTTTTGGCTCTCAAATAATTGCAGGATTGC	GCTGGATTGTCAACTGCAA			
T3 population #8:	MAXMAN MANA MANA MANA MANA MANA MANA MAN				
T3 population #17:	MAXMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA				
T3 population #28:	MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM				
T3 population #31:	MA MANAATGTTCATGTGAT				
T3 population #69:	Martaatgttcatgtgatgaagttcttttggctctctcaaataattgcaggatt				
T3 population #85:	M mmmmmm				

в

PCR amplification of albino T3 offspring seedlings of version 2 AtPDS3 gR10 T1 plant #6 for a fragment of CasΦ-2 transgene:

Fig. S2. Characterization of the editing of the *AtPDS3* gene by CasΦ-2 with the version 2 construct in the T3 generation. (A) multiple albino seedlings from T3 populations corresponding to the T2 plants in Fig. S1C were sanger sequenced and the major mutant alleles are displayed. (B) PCR amplification of the DNA of 16 randomly selected albino seedlings from the T3 populations in (A) for a fragment of the CasΦ-2 transgene. Successful DNA extraction was suggested by successful PCR amplification of the AtPDS3 gRNA10 targeted region followed by sanger sequencing with the same DNA samples from these 16 albino seedlings from each of the T3 populations, with major mutation pattern as shown in (A).

Fig. S3. The impact of transgene silencing and temperature on target gene editing efficiency by CasΦ-2. (A) Version 1 and version 2 constructs with *AtPDS3* gRNA10 were transformed into Col-0 (WT) and *rdr6-15* (*rdr6*) backgrounds. Editing efficiencies in T1 leaves determined by amplicon sequencing were plotted. The numbers of independent T1 plants (n) scored for each population are: n=43 for version 1 construct in WT background, n=42 for version 1 construct in *rdr6* background, n=41 for version 2 construct in WT background and n=23 for version 2 construct in *rdr6* background. (B) The Col-0 protoplasts were transfected with version 2 construct with *AtPDS3* gRNA10 and incubated at 23°C and 28°C. Two replicate transfections

were performed for each temperature and the editing efficiency of each individual transfection, as well as the mean and standard deviation of the two replicates were plotted. (C) and (D), version 1 and version 2 constructs with AtPDS3 gRNA10 were transformed into WT background (C) and the rdr6 mutant background (D). T1 plants were incubated constantly at 23°C (23°C sets) or initially at 28°C for 2 weeks then at 23°C (28°C sets). Editing efficiencies in T1 leaves were plotted. The numbers of independent T1 plants (n) scored for each population are: in the WT background (C), n=43 for the set of 23°C version 1 construct, n=15 for the set of 28°C version 1 construct. n=41 for the set of 23°C version 2 construct and n=10 for the set of 28°C version 2 construct; In the rdr6 background (D), n=42 for the set of 23°C version 1 construct, n=10 for the set of 28°C version 1 construct, n=23 for the set of 23°C version 2 construct and n=12 for the set of 28°C version 2 construct. In (A), (C) and (D), truncated violin plots and all data points are shown, with median and quartiles indicated (thicker and thinner line, respectively). One or zero outliers were removed from each population as determined by the Grubbs method (Alpha =0.0001) for clearer viewing of the major population. Mann-Whitney test was used to calculated the P value for each comparison indicated. ns, non-significant, P>0.05; **, 0.01<P<0.001; ****, P<0.0001.

Fig. S4. *In vitro* cleavage of PCR amplified *FWA* gene fragment by CasΦ-2 RNP with *FWA* gRNA1 to gRNA10. A1.57kb *FWA* gene fragment spanning all gRNA target regions was amplified by PCR and gel purified. The *FWA* gene fragment was incubated with CasΦ-2 RNPs containing gRNA1 to gRNA10 (gR1 to gR10) and a scrambled gRNA control (C) at 37°C for 1 hour. Reactions were stopped by adding EDTA and digestion of CasΦ-2 protein with proteinase K. 2% agarose gels were used to visualize the cleavage products along with a DNA ladder for sizing.

Fig. S5. Comparison of the level of the *AtPDS3* **gRNA10 driven by the U6 and the CmYLCV promoter in protoplasts.** Real-time quantitative PCR was used to measure the level of *AtPDS3* gRNA10 expression level in protoplasts transfected with the same amounts of the version 2 U6::*AtPDS3* gRNA10 plasmid and the version 2 CmYLCVp::*AtPDS3* gRNA10 plasmid. Protoplasts transfected with the version 2 U6::*AtPDS3* gRNA10 plasmid. Protoplasts transfected with the version 2 U6::*AtPDS3* gRNA10 plasmid. and the version 2 U6::*AtPDS3* gRNA8 plasmid was used as the vector control to evaluate basal noise level of the primer pair used for the *AtPDS3* gRNA10 amplification. The *IPP2* gene was used as a reference gene for normalization. Three technical replicates were performed. Mean and standard error of the relative quantity calculated by the Bio-Rad CFX software are plotted.

Fig. S6. Comparison of editing efficiency and indel size distribution profile by the vCas Φ and nCas variants and WTCas via protoplasts. (A) RNPs reconstituted with WTCas Q, vCasΦ and nCasΦ proteins and guide RNAs as indicated were transfected into protoplasts prepared from Col-0 plants (WT) (left panel) and from fwa-4 epi-mutant plants (right panel). Individual replicate values and mean of the four replicates of each test were plotted. (B) Target gene editing efficiencies in (A) were normalized by calculating the ratio of editing efficiencies over that of mean editing efficiency by WTCas of for each guide RNA. Mean and standard error of the normalized editing efficiencies for all gRNAs were plotted. Unpaired t-test was used to calculate P value of indicated comparisons. ****, P<0.0001. (C) The indel size distribution was calculated as the percentage of reads of a particular insertion or deletion size, from 1 bp to 30 bp, among all reads with indels for each protoplast transfections in Fig. 4A. Mean and standard error of the indel size distributions of all guide RNAs in Fig. 4A are plotted. For the control samples (bottom right panel), protoplasts transfected with the HBT-sGFP plasmid were amplified for the target regions of the six guide RNAs used in Fig. 4A (six amplicon sequencing for the control samples in total). The indel size distribution was calculated as the percentage of reads of a particular insertion or deletion size among all reads.

Fig. S7. Heritability analysis of the editing of the *AtPDS3* gene by the vCas Φ and nCas Φ variants in the T2 generation. (A) Pictures of two representative T2 populations of transgenic plants of indicated constructs in the *rdr6-15* background. gR10, *AtPDS3* gRNA10. (B) PCR amplification of the DNA of randomly selected albino seedlings from three T2 populations of vCAS Φ and nCAS Φ U6::*AtPDS3* gR10 in the *rdr6-15* background for a fragment of the Cas Φ -2 transgene.

Fig. S8. Summary of high confidence variants discovered in the transgene-free albino T2 seedlings. (A) Screenshots of aligned reads and coverage of a control *rdr6-15* plant at the *AtPDS3* (*AT4G14210*) gRNA10 target region (left) and a potential off-target site (*AT4G08510*) (right). Capitalized and colored sequences are the reference genomic sequences at these two loci. *AtPDS3* gRNA10 spacer sequence is shown in black letters with uncapitalized red letters showing the mismatched nucleotides between *AtPDS3* gRNA10 spacer and the potential offtarget site. (B) The number of high confidence SNPs and Indels identified genome wide for the sequenced transgene-free albino seedlings.

Fig. S9. The editing of *Lc* **gene by Cas** Φ **in maize protoplasts.** (A)-(E) RNPs reconstituted with WTCas Φ , vCas Φ and nCas Φ proteins and 11 guide RNAs targeting the maize *Lc* gene were transfected into maize protoplasts. Editing of the target region was detected with five out of the 11 guide RNAs tested and editing efficiencies of the two replicate transfections are shown. (A) *Lc* gRNA3. (B) *Lc* gRNA4. (C) *Lc* gRNA5. (D) *Lc* gRNA6. (E) *Lc* gRNA7.

tissue	editing event*	supporting reads	total edited reads	total reads	editing efficiency (%)	
flower a	-5:6D	284	284	3383814	0.0083929	
	-5:6D	1656570				
	-4:6D	2728				
leaf a	-6:6D	657	1660178	3671170	45.22204093	
	-1:5D	114				
	-2:6D	109				
	-5:6D	1922514				
leaf b	-4:6D	2701	10260/3	3887866	49.5398504	
	-6:6D	697	1920043			
	-2:6D	131				
leaf c	-5:6D	425	520	3616680	0.01462667	
ieai c	-4:7D	104	529	3010080	0.01462667	
	-5:6D	425481				
leaf d	-4:6D	882	426469	3954723	10.78378941	
	-6:6D	106				

Table S1. Detailed editing events detected in version 1 construct with *AtPDS3* gRNA10 in T1 plant # 33.

*Editing events are shown as: (position where the editing starts) : (number of nucleotides of) D (deletion) or I (insertion). position 0 is between the 18th and 19th nucleotides of the guide, so that the 18th nucleotide is position -1, the 19th nucleotide is position +1.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	<i>rdr6</i> WTCasФ U6::gR10			rdr6 vCasΦ U6∷gR10			<i>rdr6</i> nCasФ U6::gR10		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1 out of 31 screened T2 populations have albino seedlings			6 out of 30 hav) screened T2 po ve albino seedlin	pulations gs	14 out of 29 screened T2 populations have albino seedlings		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	population number	albino/total seedling number	% of albino seedlings	population number	albino/total seedling number	% of albino seedlings	population number	albino/total seedling number	% of albino seedlings
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T2-17	1/313	0.32%	T2-13	18/294	6.12%	T2-10	13/214	6.07%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	T2-1	0/317	0%	T2-26	4/239	1.67%	T2-8	3/50	6.00%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	T2-2	0/319	0%	T2-29	5/334	1.50%	T2-2	8/150	5.33%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	T2-3	0/321	0%	T2-16	2/229	0.87%	T2-6	7/191	3.66%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	T2-4	0/334	0%	T2-25	2/332	0.60%	T2-16	1/37	2.70%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	T2-5	0/285	0%	T2-30	1/361	0.28%	T2-25	2/100	2.00%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	T2-6	0/285	0%	T2-1	0/207	0%	T2-26	2/100	2.00%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	T2-7	0/198	0%	T2-2	0/214	0%	T2-20	4/203	1.97%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	T2-8	0/352	0%	T2-3	0/201	0%	T2-9	3/193	1.55%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	T2-9	0/339	0%	T2-4	0/192	0%	T2-3	3/201	1.49%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	T2-10	0/148	0%	T2-5	0/211	0%	T2-21	2/145	1.38%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	T2-11	0/256	0%	T2-6	0/191	0%	T2-17	2/175	1.14%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	T2-12	0/134	0%	T2-7	0/231	0%	T2-12	1/170	0.59%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	T2-13	0/285	0%	T2-8	0/225	0%	T2-4	1/180	0.56%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	T2-14	0/327	0%	T2-9	0/240	0%	T2-1	0/87	0%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	T2-15	0/323	0%	T2-10	0/235	0%	T2-5	0/164	0%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	T2-16	0/286	0%	T2-11	0/351	0%	T2-7	0/106	0%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	T2-18	0/297	0%	T2-12	0/271	0%	T2-11	0/197	0%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	T2-19	0/339	0%	T2-14	0/230	0%	T2-13	0/150	0%
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	T2-20	0/291	0%	T2-15	0/345	0%	T2-14	0/180	0%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	T2-21	0/193	0%	T2-17	0/341	0%	T2-15	0/200	0%
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	T2-22	0/271	0%	T2-18	0/300	0%	T2-18	0/200	0%
T2-24 0/378 0% T2-20 0/314 0% T2-22 0/100 0% T2-25 0/286 0% T2-21 0/300 0% T2-23 0/100 0% T2-26 0/336 0% T2-22 0/239 0% T2-24 0/100 0% T2-27 0/242 0% T2-23 0/295 0% T2-27 0/100 0% T2-28 0/311 0% T2-24 0/368 0% T2-28 0/96 0% T2-29 0/289 0% T2-27 0/350 0% T2-29 0/93 0%	T2-23	0/342	0%	T2-19	0/276	0%	T2-19	0/87	0%
T2-25 0/286 0% T2-21 0/300 0% T2-23 0/100 0% T2-26 0/336 0% T2-22 0/239 0% T2-24 0/100 0% T2-27 0/242 0% T2-23 0/295 0% T2-27 0/100 0% T2-28 0/311 0% T2-24 0/368 0% T2-28 0/96 0% T2-29 0/289 0% T2-27 0/350 0% T2-29 0/93 0%	T2-24	0/378	0%	T2-20	0/314	0%	T2-22	0/100	0%
T2-26 0/336 0% T2-22 0/239 0% T2-24 0/100 0% T2-27 0/242 0% T2-23 0/295 0% T2-27 0/100 0% T2-28 0/311 0% T2-24 0/368 0% T2-28 0/96 0% T2-29 0/289 0% T2-27 0/350 0% T2-29 0/93 0%	T2-25	0/286	0%	T2-21	0/300	0%	T2-23	0/100	0%
T2-27 0/242 0% T2-23 0/295 0% T2-27 0/100 0% T2-28 0/311 0% T2-24 0/368 0% T2-28 0/96 0% T2-29 0/289 0% T2-27 0/350 0% T2-29 0/93 0%	T2-26	0/336	0%	T2-22	0/239	0%	T2-24	0/100	0%
T2-28 0/311 0% T2-24 0/368 0% T2-28 0/96 0% T2-29 0/289 0% T2-27 0/350 0% T2-29 0/93 0%	T2-27	0/242	0%	T2-23	0/295	0%	T2-27	0/100	0%
T2-29 0/289 0% T2-27 0/350 0% T2-29 0/93 0%	T2-28	0/311	0%	T2-24	0/368	0%	T2-28	0/96	0%
1 + 2 + 2 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +	T2-20	0/289	0%	T2_27	0/350	0%	T2-29	0/93	0%
T2-30 0/295 0% T2-28 0/216 0%	T2-30	0/203	0%	T2-22	0/216	0%	12-23	0/30	0 /0
T2-31 0/188 0%	T2-31	0/188	0%	12-20	0/210	0 /0			

Table S2. Detailed number of total seedlings and albino seedlings scored in T2 populations of WTCas Φ U6::gR10, vCas Φ U6::gR10 and nCas Φ U6::gR10 in the *rdr6* background.

				-		-					
								T2 transgene	-negative plan	t	
			rdr6 co	ontrol		rdr6 vC	rdr6 vCasphi U6PDS3gR10 rdr6 nCasphi U6F			Casphi U6PDS	S3gR10
		plant 1	plant 2	plant 3	plant 4	line1	line2	line3	line1	line2	line3
Reads	Number	104272905	244547548	57313755	46421199	150763760	87663735	136018868	117908027	126570163	154534923
Reads	Length	150	150	150	150	150	150	150	150	150	150
Read	s Type	PE	PE	PE	PE	PE	PE	PE	PE	PE	PE
Cove	erage	261.41	613.07	143.68	116.38	377.96	219.77	340.99	295.59	317.30	387.41
Марре	ed reads	102752061	241841799	56528541	45991324	148973332	86547235	134468420	116178427	125262252	152400339
Reads Ra	Mapping ate	98.5415%	98.8936%	98.6300%	99.0740%	98.8124%	98.7264%	98.8601%	98.5331%	98.9667%	98.6187%
Duplicat	tion Rate	18.76%	20.72%	10.98%	9.22%	22.70%	17.06%	19.49%	17.93%	20.99%	19.87%
Covered	l Genome	99.8307%	99.8285%	99.8295%	99.8285%	99.8328%	99.8312%	99.8321%	99.8319%	99.8320%	99.8319%
OATK	SNP	9229	9169	9490	9364	9620	9403	9233	9367	9264	9080
GATK	InDel	7669	6787	8338	7123	8520	9170	8606	8399	9500	7914
Strelka	SNP	3419	3840	2983	2725	3726	3374	4033	3841	3713	4610
2	InDel	5880	5461	5656	4690	9526	6367	6795	6436	10063	6133
GAT Stre overla SNP-	K and elka2 apping +InDel	NA	NA	NA	NA	9083	7547	8046	7450	9727	7938
Filte backo	r <i>rdr6</i> ground	NA	NA	NA	NA	504	304	239	197	666	149
Filter de	epth < 30	NA	NA	NA	NA	491	293	226	187	649	135
Fi Reference e allele ratio	ilter ce/Alternat e reads o > 3	NA	NA	NA	NA	203	162	124	94	293	66
Overlap OFF predic tar	with Cas- inder ted off- gets	NA	NA	NA	NA	0	0	0	0	0	0

Table S3. Summary of the analysis of whole genome sequencing data of the *rdr6-15* control and Cas Φ transgene-free T2 albino seedlings.

				T2 transgene-negative pl		lant			
Chromosome	Position	Reference sequence	Variant sequence	rdr6 vCasphi U6PDS3gR10			rdr6 nCasphi U6PDS3gR10		
				line1	line2	line3	line1	line2	line3
chr1	6785692	Т	TC	ND*	Y*	ND	ND	ND	ND
chr1	7071325	G	А	ND	ND	Y	ND	ND	ND
chr1	7636794	G	А	ND	Y	ND	ND	ND	ND
chr1	9937635	GTTGTA	G	ND	ND	ND	ND	Y	ND
chr1	11229308	GTCTTTGTGTGAGC	G	ND	Y	ND	ND	ND	ND
chr1	11510229	С	Т	ND	ND	ND	ND	ND	Y
chr1	12571948	А	Т	ND	ND	Y	ND	ND	ND
chr1	13829012	А	Т	ND	ND	ND	ND	ND	Y
chr1	19941306	TGCAATGAGGTTTTG	т	Y	ND	ND	ND	ND	ND
chr1	22302430	GAAAGAAAC	G	ND	ND	ND	ND	ND	Y
chr1	26337186	ATC	А	ND	ND	ND	Y	ND	ND
chr1	27602641	A	т	Υ	ND	ND	ND	ND	ND
chr1	28528239	С	т	ND	ND	ND	Y	ND	ND
chr1	29180720	СТ	С	ND	ND	ND	ND	ND	Y
chr2	1123998	G	А	ND	Y	ND	ND	ND	ND
chr2	1775712	G	А	Υ	ND	ND	ND	ND	ND
chr2	2396463	A	G	ND	ND	ND	ND	ND	Y
chr2	3037107	Т	А	ND	Y	ND	ND	ND	ND
chr2	3189614	Т	А	Υ	ND	ND	ND	ND	ND
chr2	3778595	GA	G	ND	Y	ND	ND	ND	ND
chr2	4070245	G	т	ND	ND	ND	ND	Y	ND
chr2	4473538	G	А	ND	ND	ND	ND	Y	ND
chr2	4597486	Т	С	ND	ND	ND	Y	ND	ND
chr2	5939955	A	Т	ND	ND	ND	ND	ND	Y
chr2	9981681	TTGATCAAGTAAATG ACATA	т	ND	ND	ND	ND	Y	ND
chr2	9982805	ТА	Т	ND	ND	Y	ND	ND	ND
chr2	12499196	т	TTA	ND	Y	ND	ND	ND	ND
chr2	13166249	CAT	С	ND	Y	ND	ND	ND	ND
chr2	15371283	TGAAG	т	Y	ND	ND	ND	ND	ND
chr2	15371288	ТСТАААТА	Т	Y	ND	ND	ND	ND	ND
chr2	15371297	ТАА	Т	Y	ND	ND	ND	ND	ND
chr2	15371300	С	т	Y	ND	ND	ND	ND	ND
chr2	15371303	А	Т	Y	ND	ND	ND	ND	ND
chr2	15371304	С	G	Y	ND	ND	ND	ND	ND
chr2	19035384	т	С	ND	ND	ND	ND	ND	Y
chr2	19623291	С	т	ND	ND	Y	ND	ND	ND
chr3	2788054	А	т	Y	ND	ND	ND	ND	ND
chr3	4305186	G	т	ND	ND	Y	ND	ND	ND
chr3	5085451	TAGGGTCTA	т	ND	ND	ND	ND	Y	ND

Table S4. High confidence variants (excluding the *AtPDS3* gRNA10 site) in CasΦ transgene-free T2 albino seedlings.

chr3	8206493	G	А	ND	Y	ND	ND	ND	ND
chr3	8609529	С	Т	ND	ND	ND	ND	Y	ND
chr3	12512717	С	Т	ND	ND	ND	Y	ND	ND
chr3	12613340	A	Т	ND	Y	ND	ND	ND	ND
chr3	14064862	С	Т	ND	ND	ND	Y	ND	ND
chr3	15021799	A	Т	ND	ND	ND	ND	Y	ND
chr3	16056216	С	G	ND	ND	ND	ND	Y	ND
chr3	16378772	TATACCTATACGA	Т	ND	ND	ND	Y	ND	ND
chr3	16717520	TGACGAGCTTGAG	Т	ND	Y	ND	ND	ND	ND
chr3	17108050	G	А	ND	ND	ND	Y	ND	ND
chr4	1843939	G	А	ND	ND	ND	ND	ND	Y
chr4	2261579	т	С	ND	ND	ND	ND	Y	ND
chr4	3360240	С	Т	Y	ND	ND	ND	ND	ND
chr4	5305862	G	А	Y	ND	ND	ND	ND	ND
chr4	6581636	С	CA	Y	ND	ND	ND	ND	ND
chr4	8633317	TG	Т	ND	ND	ND	ND	ND	Y
chr4	8801901	G	А	ND	ND	ND	ND	ND	Y
chr4	10685528	С	CA	ND	Y	ND	ND	ND	ND
chr4	15242376	Т	С	ND	Y	ND	ND	ND	ND
chr5	1309571	A	G	ND	ND	ND	ND	ND	Υ
chr5	2561456	ATATGGTTTTGTTAAC CGTG	А	ND	ND	ND	ND	Y	ND
chr5	6762332	AAGTTTG	А	ND	ND	ND	ND	ND	Υ
chr5	8524857	Т	А	ND	ND	ND	ND	Y	ND
chr5	9697518	CCGTCAAAAACTATA	С	ND	Y	ND	ND	ND	ND
chr5	10036901	G	А	ND	ND	ND	Y	ND	ND
chr5	10444172	С	Т	ND	Y	ND	ND	ND	ND
chr5	11347449	A	Т	ND	Y	Y	ND	ND	ND
chr5	12750772	G	А	ND	ND	ND	Y	ND	ND
chr5	13934573	GA	G	ND	ND	ND	ND	Y	ND
chr5	21062569	С	Т	ND	Y	ND	ND	ND	ND
chr5	23985255	ТА	Т	ND	ND	ND	ND	ND	Y
chr5	26879986	TTTAC	Т	ND	Y	ND	ND	ND	ND

* ND, not detected; Y, detected.

Table S5. Sequence of guide RNAs used.

Purpose	CasФ Guide RNA repeat sequence (common to all guides and on 5' of spacer sequence)			
For plasmid vectors	GTCGGAACGCTCAACGATTGCC	CCTCACGA	GGGGAC	
For RNPs	CAACGATTGCCCCTCAC	GAGGGGA	C	
Guide RNA name	Guide RNA spacer sequence (Denoted in DNA sequence) PAM Dire		Direction relative to target gene	
AtPDS3 gR8	TTGTTCCGCAAAATAGCCCA	TCG	reverse	
AtPDS3 gR10 (20bp)	CAGTTGACAATCCAGCCAAT	TTG	reverse	
AtPDS3 gR10 (30bp)	CAGTTGACAATCCAGCCAATCCTGCAATTA	TTG	reverse	
scramble control	GCGACACGACUCAUUAUA	none	not applicable	
FWA gR1	TCCCATTCAACATTCATACG	TTA	forward	
FWA gR2	TCGAAGCCCATACATCTTTC	TTA	forward	
FWA gR3	TGGGCCGAAGCCCATACATC	TTA	forward	
<i>FWA</i> gR4	TGGTTCTATACTAATATCAA	TTA	forward	
FWA gR5	ATATTAGTATAGAACCATAA	TTG	reverse	
<i>FWA</i> gR6	GTATAGAACCATAACAAAAG	TTA	reverse	
FWA gR7	CTAAATTTAGTAAAGAATCA	TTA	forward	
<i>FWA</i> gR8	GTAATCAATGGTTATTGTGA	TTA	reverse	
<i>FWA</i> gR9	TGAAATGAAATTTAACTTTT	TTG	reverse	
FWA gR10	GTTATCTAAATAAAACTAGG	TTA	forward	
<i>Lc</i> gR1	TGGACAGAGCTCCAAGTGAC	TTA	reverse	
Lc gR2	CTCGGTCACTTGGAGCTCTG	TTG	forward	
<i>Lc</i> gR3	GAGCTCTGTCCATAAATTAA	TTG	forward	
<i>Lc</i> gR4	TTGCCAACATAGAGTGTACG	TTA	forward	
<i>Lc</i> gR5	CCAACATAGAGTGTACGTGG	TTG	forward	
<i>Lc</i> gR6	CAGAAGCTAAACTCAACCAG	TTA	forward	
<i>Lc</i> gR7	GCTTCTGTAACACTACTGCT	TTA	reverse	
<i>Lc</i> gR8	TCTTTGGTGGAGCTCTGGTT	TTG	reverse	
Lc gR9	CTTGCAAATTGCATGCACGA	TTA	forward	
<i>Lc</i> gR10	CAAATTGCATGCACGAGCTA	TTG	forward	
<i>Lc</i> gR11	CATGCACGAGCTAGAATTAT	TTG	forward	

Table S6. Plasmids generated in this study.

Plasmid name	Detailed information
HBT_pcoCASphi_version1	cloning vector for sequence of FLAG-SV40NLS-CASphi- withIV2intron-nucleoplasminNLS (Version 1 arrangment)
HBT_pcoCASphi_version2	cloning vector for sequence of CASphi-withIV2intron- 2xSV40NLS-2xFLAG (Version 2 arrangment)
pC1300_pUB10_pcoCASphi_E9t_MCS_version1	Binary vector with Arabidopsis codon optimized Casphi driven by UBQ10 promoter and RbcsE9 terminator. Design of NLS and Flag tag is indicated in Figure 1a version 1 plasmid.
pC1300_pUB10_pcoCASphi_E9t_MCS_version2	Binary vector with Arabidopsis codon optimized Casphi driven by UBQ10 promoter and RbcsE9 terminator. Design of NLS and Flag tag is indicated in Figure 1a version 2 plasmid.
pC1300_pUB10_pcoCASphi_E9t_version1_U6_AtPDS 3_gRNA10	AtPDS3 guide RNA10 driven by AtU6-26 promoter was cloned into pC1300_pUB10_pcoCASphi_E9t_MCS_version1 plasmid
pC1300_pUB10_pcoCASphi_E9t_version2_U6_AtPDS 3_gRNA10	AtPDS3 guide RNA10 driven by AtU6-26 promoter was cloned into pC1300_pUB10_pcoCASphi_E9t_MCS_version2 plasmid
pC1300_pUB10_pcoCASphi_E9t_V2_CmYLCVp_35sT _A_form_AtPDS3_gRNA10	single AtPDS3 gRNA10 driven by CmYLCV promoter and 35S terminator
pC1300_pUB10_pcoCASphi_E9t_V2_CmYLCVp_35sT B_form_AtPDS3_gRNA10	single AtPDS3 gRNA10 with an extra Casphi repeat sequence at the 3' end driven by CmYLCV promoter and 35S terminator
pC1300_pUB10_pcoCASphi_E9t_V2_CmYLCVp_35sT _C_form_AtPDS3_gRNA10	triple AtPDS3 gRNA10 array driven by CmYLCV promoter and 35S termnator
pC1300_pUB10_pcoCASphi_E9t_V2_2x35Sp_HSP18t _A_form_AtPDS3_gRNA10	single AtPDS3 gRNA10 driven by 2x35S promoter and HSP18 terminator
pC1300_pUB10_pcoCASphi_E9t_V2_2x35Sp_HSP18t _B_form_AtPDS3_gRNA10	single AtPDS3 gRNA10 with an extra Casphi repeat sequence at the 3' end driven by 2x35S promoter and HSP18 terminator
pC1300_pUB10_pcoCASphi_E9t_V2_2x35Sp_HSP18t _C_form_AtPDS3_gRNA10	triple AtPDS3 gRNA10 driven by 2x35S promoter and HSP18 terminator
pC1300_pUB10_pcoCASphi_E9t_V2_pUB10_E9t_A_f orm_AtPDS3_gRNA10	single AtPDS3 gRNA10 driven by UBQ10 promoter and Rbcs E9 terminator
pC1300_pUB10_pcoCASphi_E9t_V2_pUB10_E9t_B_f orm_AtPDS3_gRNA10	single AtPDS3 gRNA10 with an extra Casphi repeat sequence at the 3' end driven by UBQ10 promoter and Rbcs E9 terminator
pC1300_pUB10_pcoCASphi_E9t_V2_pUB10_E9t_C_f orm_AtPDS3_gRNA10	triple AtPDS3 gRNA10 driven by UBQ10 promoter and Rbcs E9 terminator
pC1300_pUB10_pcoCASphi_E9t_V2_CmYLCVp_35sT _A_form_AtPDS3_gRNA10_30bp_spacer	single AtPDS3 gRNA10 with 30bp spacer sequence driven by CmYLCV promoter and 35S terminator
pC1300_pUB10_pcoCASphi_E9t_V2_CmYLCVp_35sT _C_form_AtPDS3_gRNA10_30bp_spacer	triple AtPDS3 gRNA10 with 30bp spacer sequence array driven by CmYLCV promoter and 35S termnator
pC1300_pUB10_pcoCASphi_E9t_V2_2x35Sp_HSP18t _C_form_AtPDS3_gRNA10_30bp_spacer	triple AtPDS3 gRNA10 with 30bp spacer sequence driven by 2x35S promoter and HSP18 terminator
pC1300_pUB10_pcoCASphi_E9t_V2_pUB10_E9t_C_f orm_AtPDS3_gRNA10_30bp_spacer	triple AtPDS3 gRNA10 with 30bp spacer sequence driven by UBQ10 promoter and Rbcs E9 terminator
pC1300_pUB10_pcoCASphi_E9t_V2_CmYLCVp_35sT _ribozyme_AtPDS3_gRNA10	single AtPDS3 gRNA10 flanked by ribozymes driven by CmYLCV promoter and 35S terminator
pC1300_pUB10_pcoCASphi_E9t_V2_2x35Sp_HSP18t _ribozyme_AtPDS3_gRNA10	single AtPDS3 gRNA10 flanked by ribozymes driven by 2x35S promoter and HSP18 terminator
pC1300_pUB10_pcoCASphi_E9t_V2_pUB10_E9t_ribo zyme_AtPDS3_gRNA10	single AtPDS3 gRNA10 flanked by ribozymes driven by UBQ10 promoter and Rbcs E9 terminator

nC1300 nUB10 nco-vCASnhi E9t MCS version2	Binary vector with Arabidopsis codon optimized vCasphi driven by UBQ10 promoter and RbcsE9 terminator. Design of NLS and Flag tag is same to the pC1300_pUB10_pcoCASphi_E9t_MCS_version2 plasmid
	Binary vector with Arabidopsis codon optimized nCasphi driven by UBQ10 promoter and RbcsE9 terminator. Design of NLS and Flag tag is same to the pC1300_pUB10_pcoCASphi_E9t_MCS_version2
pC1300_pUB10_pco-nCASphi_E9t_MCS_version2	plasmid.
pC1300_pUB10_pcoCASphi_E9t_V2_U6_AtPDS3_gR NA8	AtPDS3 guide RNA8 driven by AtU6-26 promoter was cloned into pC1300_pUB10_pcoCASphi_E9t_MCS_version2 plasmid
pC1300_pUB10_pcoCASphi_E9t_V2_U6_FWA_gRNA 1	FWA guide RNA1 driven by AtU6-26 promoter was cloned into pC1300_pUB10_pcoCASphi_E9t_MCS_version2 plasmid
pC1300_pUB10_pcoCASphi_E9t_V2_U6_FWA_gRNA 4	FWA guide RNA4 driven by AtU6-26 promoter was cloned into pC1300_pUB10_pcoCASphi_E9t_MCS_version2 plasmid
pC1300_pUB10_pcoCASphi_E9t_V2_U6_FWA_gRNA 5	FWA guide RNA5 driven by AtU6-26 promoter was cloned into pC1300_pUB10_pcoCASphi_E9t_MCS_version2 plasmid
pC1300_pUB10_pcoCASphi_E9t_V2_U6_FWA_gRNA 6	FWA guide RNA6 driven by AtU6-26 promoter was cloned into pC1300_pUB10_pcoCASphi_E9t_MCS_version2 plasmid
pC1300_pUB10_pco- vCASphi_E9t_V2_U6_AtPDS3_gRNA8	AtPDS3 guide RNA8 driven by AtU6-26 promoter was cloned into pC1300_pUB10_pco- vCASphi_E9t_MCS_version2 plasmid
pC1300_pUB10_pco- vCASphi_E9t_V2_U6_AtPDS3_gRNA10	AtPDS3 guide RNA10 driven by AtU6-26 promoter was cloned into pC1300_pUB10_pco- vCASphi_E9t_MCS_version2 plasmid
pC1300_pUB10_pco- vCASphi_E9t_V2_U6_FWA_gRNA1	FWA guide RNA1 driven by AtU6-26 promoter was cloned into pC1300_pUB10_pco-vCASphi_E9t_MCS_version2 plasmid
pC1300_pUB10_pco- vCASphi_E9t_V2_U6_FWA_gRNA4	FWA guide RNA4 driven by AtU6-26 promoter was cloned into pC1300_pUB10_pco-vCASphi_E9t_MCS_version2 plasmid
pC1300_pUB10_pco- vCASphi_E9t_V2_U6_FWA_gRNA5	FWA guide RNA5 driven by AtU6-26 promoter was cloned into pC1300_pUB10_pco-vCASphi_E9t_MCS_version2 plasmid
pC1300_pUB10_pco- vCASphi_E9t_V2_U6_FWA_gRNA6	FWA guide RNA6 driven by AtU6-26 promoter was cloned into pC1300_pUB10_pco-vCASphi_E9t_MCS_version2 plasmid
pC1300_pUB10_pco- nCASphi_E9t_V2_U6_AtPDS3_gRNA8	AtPDS3 guide RNA8 driven by AtU6-26 promoter was cloned into pC1300_pUB10_pco- nCASphi_E9t_MCS_version2 plasmid
pC1300_pUB10_pco- nCASphi_E9t_V2_U6_AtPDS3_gRNA10	AtPDS3 guide RNA10 driven by AtU6-26 promoter was cloned into pC1300_pUB10_pco- nCASphi_E9t_MCS_version2 plasmid
pC1300_pUB10_pco- _nCASphi_E9t_V2_U6_FWA_gRNA1	FWA guide RNA1 driven by AtU6-26 promoter was cloned into pC1300_pUB10_pco-nCASphi_E9t_MCS_version2 plasmid
pC1300_pUB10_pco- nCASphi_E9t_V2_U6_FWA_gRNA4	FWA guide RNA4 driven by AtU6-26 promoter was cloned into pC1300_pUB10_pco-nCASphi_E9t_MCS_version2 plasmid
pC1300_pUB10_pco- nCASphi_E9t_V2_U6_FWA_gRNA5	FWA guide RNA5 driven by AtU6-26 promoter was cloned into pC1300_pUB10_pco-nCASphi_E9t_MCS_version2 plasmid
pC1300_pUB10_pco- nCASphi_E9t_V2_U6_FWA_gRNA6	FWA guide RNA6 driven by AtU6-26 promoter was cloned into pC1300_pUB10_pco-nCASphi_E9t_MCS_version2 plasmid

pC1300_pUB10_pco- vCASphi_E9t_V2_CmYLCVp_35sT_ribozyme_AtPDS3 _gRNA10	the cassette of single AtPDS3 guide RNA10 flanded by ribozymes driven by the CmYLCV promoter and 35S terminator was cloned into the pC1300_pUB10_pco- vCASphi_E9t_MCS_version2 vector
pC1300_pUB10_pco- vCASphi_E9t_V2_pUB10_E9t_ribozyme_AtPDS3_gRN A10	the cassette of single AtPDS3 guide RNA10 flanded by ribozymes driven by the UBQ10 promoter and Rbcs E9 terminator was cloned into the pC1300_pUB10_pco- vCASphi_E9t_MCS_version2 vector
pC1300_pUB10_pco- nCASphi_E9t_V2_CmYLCVp_35sT_ribozyme_AtPDS3 _gRNA10	the cassette of single AtPDS3 guide RNA10 flanded by ribozymes driven by the CmYLCV promoter and 35S terminator was cloned into the pC1300_pUB10_pco- nCASphi_E9t_MCS_version2 vector
pC1300_pUB10_pco- nCASphi_E9t_V2_pUB10_E9t_ribozyme_AtPDS3_gRN A10	the cassette of single AtPDS3 guide RNA10 flanded by ribozymes driven by the UBQ10 promoter and Rbcs E9 terminator was cloned into the pC1300_pUB10_pco- nCASphi_E9t_MCS_version2 vector

For amplic	on sequencing:	
Oligo		
name	Oligo sequence	Purpose and details
	ACACTCTTTCCCTACACGACGCTCTTCCGATCTCATG	
20685	GCTGGCAAAAGTCCAATAGCA	AtPDS3 gR8 amplicon step1 FW
	GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTAC	
20686	TGGTCAAGGCAAGACGATATAACT	AtPDS3 gR8 amplicon step1 RV
	ACACTCTTTCCCTACACGACGCTCTTCCGATCTGTAC	
20681	CTTTCCACCAAGAACATCTCT	AtPDS3 gR10 amplicon step1 FW
	GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTTC	
20682	CTCGTCCTGCTAAGCCTTTGA	AtPDS3 gR10 amplicon step1 RV
	ACACTCTTTCCCTACACGACGCTCTTCCGATCTTTCG	EW/A aB10 amplican stan1 EW/
21405	TTCTTGTGTCATGTAATAGATTACT	FWA gRT0 amplicon step1 FW
	GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGC	EW/A gB10 amplican stan1 BV
21406	CCATAACTCTTTGATATTAGTATAGA	FWA gRT0 amplicon step1 RV
	ACACTCTTTCCCTACACGACGCTCTTCCGATCTAGGC	FWA gR7, gR8, gR9 amplicon
21407	CATCCATGGATGGTTTCA	step1 FW
	GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGA	FWA gR7, gR8, gR9 amplicon
21408	ATATATGAGATTCTCGACGGAAAGA	step1 RV
	ACACTCTTTCCCTACACGACGCTCTTCCGATCTGAAT	FWA gR4, gR5, gR6 amplicon
21409	ATATGAGATTCTCGACGGAAAGA	step1 FW
	GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTAG	FWA gR4, gR5, gR6 amplicon
21410	GCCATCCATGGATGGTTTCA	step1 RV
		FWA gR3 amplicom step1 C12J
21411		FW, pair with primer 21410 for PCR
		FWA gR1 amplicon step1 FW/ pair
21412	CACTTGGACCAATGGCGAA	with primer 21414 for PCR reaction
21112		EWA gR2 amplicon step1 EW pair
21413	TGAATGTTGAATGGGATAAGGT	with primer 21414 for PCR reaction
	GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTAG	
21414	AATCAATTGGGTTTAGTGTTTACTTGT	FWA gR1, gR2 amplicon step1 RV
	ACACTCTTTCCCTACACGACGCTCTTCCGATCTGACG	casphi lc gR1.gR2.gR3 amplicon
23997	GGGTAGATGCCTACAGA	step1 FW
	GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTTA	casphi lc gR1,gR2,gR3 ,gR6,gR7,gR8
23998	TAGCGTCAGAGAACTTAGATCTGA	amplicon step1 RV
	ACACTCTTTCCCTACACGACGCTCTTCCGATCTAGTG	casphi lc gR6,gR7,gR8 amplicon
23999	ACCGAGCAAGACGGTGA	step1 FW
	ACACTCTTTCCCTACACGACGCTCTTCCGATCTGCTC	casphi lc gR4,gR5 amplicon step1
24000	CTCACTAGCTACCAAGAG	FW
	GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTCT	casphi lc gR4,gR5 amplicon step1
ZL21	ACTGATCATCAGACGATGCCT	RV
	ACACTCTTTCCCTACACGACGCTCTTCCGATCTCACA	casphi lc gR9,gR10,gR11 amplicon
ZL22	CAGTATCAGCTGGCACA	step1 FW
	GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTCT	casphi lc gR9,gR10,gR11 amplicon
ZL23	GGTTGAGTGTCTGAAATGGAC	step1 RV

Table S7. Sequence of primers and synthesized double stranded DNA.

For cloning	and genotyping:	
Oligo		
name	Oligo sequence	Purpose and details
		FW primer to amplify HBT
		backbone for HBT_pcoCASphi
20478	AGCAGCTGGAACTCCGTGGA	version1
		RV primer to amplify HBT backbone
20479	AAGAGACCAGCTGCTACCAAGA	for HBT_pcoCASphi version1
		FW primer to amplify HBT
		backbone for HBT_pcoCASphi
20497	GGATCCACGGAGCAAGGGGA	version2
		RV primer to amplify HBT backbone
20498	TGACTGCAGATCGTTCAAACATTTGGCA	for HBT_pcoCASphi version2
		FW primer to amplify pcoCASphi
		1st fragment for in-fusion reaction
	TCCACGGAGTTCCAGCTGCTATGCCGAAGCCCGCCG	to generate
20501	TCGA	HBT_pcoCASphi_version1
		FW primer to amplify pcoCASphi
		1st fragment for in-fusion reaction
		to generate
20507	CTTGCTCCGTGGATCCATGCCGA	HBT_pcoCASphi_version2
		RV primer to amplify pcoCASphi 1st
		fragment for in-fusion reaction to
		generate HBT_pcoCASphi_version1
20502	CTGGCGTTTCTTAGTAATCCTCTTACGT	and HBT_pcoCASphi_version2
		FW primer to amplify IV2 intron for
		in-fusion reaction to generate
	GGATTACTAAGAAACGCCAGGTAAGTTTCTGCTTCT	HBT_pcoCASphi_version1 and
20503	ACCTTTGA	HBT_pcoCASphi_version2
		RV primer to amplify IV2 intron for
		in-fusion reaction to generate
	TGGGAGCAATAGTCCTCCACCTGCACATCAACAAAT	HBT_pcoCASphi_version1 and
20504	TTTGGTCA	HBT_pcoCASphi_version2
		FW primer to amplify pcoCASphi
		2nd fragment for in-fusion
		reaction to generate
		HBT_pcoCASphi_version1 and
20505	GTGGAGGACTATTGCTCCCAAGGA	HBT_pcoCASphi_version2
		RV primer to amplify pcoCASphi
		2nd fragment for in-fusion
	TTGGTAGCAGCTGGTCTCTTGGACGTTTGGGACGGC	reaction to generate
20506	TCTTGA	HBT_pcoCASphi_version1
		RV primer to amplify pcoCASphi
		2nd fragment for in-fusion
		reaction to generate
20508	GCCAAATGTTTGAACGATCTGCAGTCACT	HBT_pcoCASphi_version2

		FW primer to amplify pUBQ10 for
		in-fusion reaction to generate
		pC1300_pUB10_pcoCASphi_E9t_M
		CS_version1 and
	ATCACTAGTATCCTAGGAAGGTACCAGTCTAGCTCA	pC1300_pUB10_pcoCASphi_E9t_M
20544	ACAGAGCTTTTAACCCA	CS_version2 plasmids
		RV primer to amplify pUBQ10 for
		in-fusion reaction to generate
20545		pC1300_pUB10_pcoCASphi_E9t_M
20545		CS_version1
		RV primer to amplify pUBQ10 for
	TOCACCOCCCCTTCCCCATCTCTTAATCACAAAAA	In-tusion reaction to generate
20552		pc1300_p0B10_pcoCASpni_E9t_M
20552		CS_version2
		FW primer to amplify 2xFLAG-
		SV40-Caspni-2-IV2Intron-
		reaction to generate
	TEACTITITETEATTAACACATECATTACAACCATE	nc1200 nUB10 ncoCASphi E0t M
20548		C version1
20348		EW primer to amplify Casphi-2-
		IV2intron-2xSV40-2xELAG for in-
		fusion reaction to generate
	TGAGTTTTTCTGATTAACAGATGCCGAAGCCCGCCG	nC1300 nUB10 ncoCASnhi F9t M
20550	TCGAATCA	CS version2
20000		BV primer to amplify 2xELAG-SV40-
		Casphi-2-IV2intron-
		nucleoplasminNLS for in-fusion
		reaction to generate
	ATGATACGAACGAAAGCTCTTCACTTCTTCTTAG	pC1300 pUB10 pcoCASphi E9t M
20549	ССТБТССА	CS version1
		 RV primer to amplify Casphi-2-
		IV2intron-2xSV40-2xFLAG for in-
		fusion reaction to generate
	ATGATACGAACGAAAGCTCTTCACTTGTCGTCGTCA	pC1300_pUB10_pcoCASphi_E9t_M
20551	TCCTTATAGT	CS_version2
		FW primer to amplify RbcS E9
		terminator for in-fusion reaction to
		generate
	AGGCTAAGAAGAAGAAGTGAAGAGCTTTCGTTCGT	pC1300_pUB10_pcoCASphi_E9t_M
20546	ATCATCGGT	CS_version1
		FW primer to amplify RbcS E9
		terminator for in-fusion reaction to
		generate
	AGGATGACGACGACAAGTGAAGAGCTTTCGTTCGT	pC1300_pUB10_pcoCASphi_E9t_M
20553	ATCATCGGTTTCGA	CS_version2

		RV primer to amplify RbcS E9
		terminator for in-fusion reaction to
		generate
		pC1300_pUB10_pcoCASphi_E9t_M
		CS_version1 and
	CAGCTATGACCATGATTACGAATTCGTTGTCAATCA	pC1300_pUB10_pcoCASphi_E9t_M
20547	ATTGGCAAGTCATAAAATGCA	CS_version2 plasmids.
		FW primer to amplify AtU6-26
		gRNA cassette for in-fusion
14444	TTCCTAGGATACTAGAAGCTTCGTTGAACAACGGA	reaction
	TGCAGGTCGACTCTAGATCACTAGTGATCAGATGCA	RV primer to amplify AtU6-26 gRNA
20665	GAGAGACT	cassette for in-fusion reaction
	TTGTTCCGCAAAATAGCCCATTTTTTTGCCATTCTTT	
20730	TCAAGCTCCA	AtPDS3 gRNA8 FW
	TGGGCTATTTTGCGGAACAAGTCCCCTCGTGAGGG	
20731	GCAATCGTTGA	AtPDS3 gRNA8 RV
	CAGTTGACAATCCAGCCAATTTTTTTTGCCATTCTTT	
20734	TCAAGCTCCA	AtPDS3 gRNA10 FW
	ATTGGCTGGATTGTCAACTGGTCCCCTCGTGAGGGG	
20735	CAATCGTTGA	AtPDS3 gRNA10 RV
	TCCCATTCAACATTCATACGTTTTTTTTGCCATTCTTT	
21950	TCAAGCTCCATTGTCA	FWA gRNA1 FW
	CGTATGAATGTTGAATGGGAGTCCCCTCGTGAGGG	
21949	GCAATCGTTGAGCGTTCCGA	FWA gRNA1 RV
	TGGTTCTATACTAATATCAATTTTTTTGCCATTCTTT	
21952	TCAAGCTCCATTGTCA	FWA gRNA4 FW
	TTGATATTAGTATAGAACCAGTCCCCTCGTGAGGGG	
21951	CAATCGTTGAGCGTTCCGA	FWA gRNA4 RV
	ATATTAGTATAGAACCATAATTTTTTTGCCATTCTTT	
21954	TCAAGCTCCATTGTCA	FWA gRNA5 FW
	TTATGGTTCTATACTAATATGTCCCCTCGTGAGGGG	
21953	CAATCGTTGAGCGTTCCGA	FWA gRNA5 RV
	GTATAGAACCATAACAAAAGTTTTTTTGCCATTCTT	
21956	TTCAAGCTCCATTGTCA	FWA gRNA6 FW
	CTTTTGTTATGGTTCTATACGTCCCCTCGTGAGGGGC	
21955	AATCGTTGAGCGTTCCGA	FWA gRNA6 RV
	GACTGGTACCTTCCTAGGATACTAGTGGCAGACATA	
21276	CTGTCCCACA	CmYLCV promoter FW
	GACTTTGATAGCTTGCTGAGGCAAGCTTAGCTCTTA	
21277	CCTGTTTTCGT	CmYLCV promoter RV
	TTCGATAATTCCTTAATTAACTCGAGTTTCTCCATAA	
21278	TAATGTGTGA	35S terminator FW
	CTGCAGGTCGACTCTAGATCACTAGTTAATTCGGGG	
21386	GATCTGGATTTTAGTACT	35S terminator RV
	CTGTTGAGCTAGACTGGTACCTTCCTAGGATACTAG	
21440	GCCAGTGCCAAGCTTG	2x35S promoter FW

	GACTTTGATAGCTTGCTGAGGCGGGATCCTCTAGAG	
21388	TCGAGGT	2x35S promoter RV
	TTCGATAATTCCTTAATTAAATATGAAGATGAAGAT	
21389	GAAATATTTGGTGTGT	HSP18.2 terminator FW
	CTGCAGGTCGACTCTAGATCACTAGTCTTATCTTTAA	
21390	TCATATTCCATAGTCCATACCA	HSP18.2 terminator RV
	TTGAGCTAGACTGGTACCTTCCTAGGATACTAGAAG	
21451	TTGTAATGAGTTGCTGGCCTCTCT	TBSinsulator-UBQ10 promoter FW
	GACTTTGATAGCTTGCTGAGGCCTGTTAATCAGAAA	
21392	AACTCAGATTAATCGACA	UBQ10 promoter RV
	TTCGATAATTCCTTAATTAAAGAGCTTTCGTTCGTAT	
21393	CATCGGT	Rbcs E9 terminator FW
	CTGCAGGTCGACTCTAGATCACTAGTGTTGTCAATC	
21394	AATTGGCAAGTCATAAAATGCA	Rbcs E9 terminator RV
single		
PDS3		
gRNA10	GCCTCAGCAAGCTATCAAAGTCGGAACGCTCAACGA	single PDS3 gRNA10 FW to clone
FW	TTGCCCCTCACGAGGGGACCAGTT	into PollI promoter gRNA cassette
single		
PDS3		
gRNA10	TTAATTAAGGAATTATCGAAATTGGCTGGATTGTCA	single PDS3 gRNA10 RV to clone
RV	ACTGGTCCCCTCGTGAGG	into PollI promoter gRNA cassette
single		
PDS3	GCCTCAGCAAGCTATCAAAGTCGGAACGCTCAACGA	single PDS3 gR10 + repeat FW to
gR10 +	TTGCCCCTCACGAGGGGACCAGTTGACAATCCAGCC	clone into PolII promoter gRNA
repeat FW	AAT	cassette
single		
PDS3	TTAATTAAGGAATTATCGAAGTCCCCTCGTGAGGGG	single PDS3 gR10 + repeat RV to
gR10 +	CAATCGTTGAGCGTTCCGACATTGGCTGGATTGTCA	clone into PollI promoter gRNA
repeat RV	ACTG	cassette
	GCCTCAGCAAGCTATCAAAGTCGGAACGCTCAACGA	
	TTGCCCCTCACGAGGGGACCAGTTGACAATCCAGCC	
	AATGTCGGAACGCTCAACGATTGCCCCTCACGAGG	
triple	GGACCAGTTGACAATCCAGCCAATGTCGGAACGCTC	
PDS3	AACGATTGCCCCTCACGAGGGGACCAGTTGACAATC	triple PDS3 gR10 FW to clone into
gR10 FW	CAGCCAAT	PollI promoter gRNA cassette
	TTAATTAAGGAATTATCGAAGTCCCCTCGTGAGGGG	
	CAATCGTTGAGCGTTCCGACATTGGCTGGATTGTCA	
	ACTGGTCCCCTCGTGAGGGGGCAATCGTTGAGCGTTC	
triple	CGACATTGGCTGGATTGTCAACTGGTCCCCTCGTGA	
PDS3	GGGGCAATCGTTGAGCGTTCCGACATTGGCTGGATT	triple PDS3 gR10 RV to clone into
gR10 RV	GTCAACTG	PollI promoter gRNA cassette
		PollI gRNA cassette fw (to clone
21757		the gRNA of 30bp spacer into the
21/3/		
21760		RNA10 30bp RV
21/00	IDDITAATIOICAALIOU	grantin oup ite

21763	TGCCTCAGCAAGCTATCAAAGTCGGAACGCTCAACG ATTGCCCCTCACGAGGGGACCAGTTGACAATCCAGC CAATCCTGCAATTAGTCGGAACGCTCAACGATTGCC CCTCACGAGGGGACCAGTTGACAATCCAGCCAATCC TGCAATTAGTCGGAACGCTCAACGATTGCCCCTCAC GAGGGGACCAGTTGACAATC	30bp spacer PDS3 triple gR10 array fw
21764	AGTTAATTAAGGAATTATCGAAGTCCCCTCGTGAGG GGCAATCGTTGAGCGTTCCGACTAATTGCAGGATTG GCTGGATTGTCAACTGGTCCCCTCGTGAGGGGGCAAT CGTTGAGCGTTCCGACTAATTGCAGGATTGGCTGGA TTGTCAACTGGTCCCCTCGTGAGGGGGCAATCGTTGA GCGTTCCGACTAATTGCAGG	30bp spacer PDS3 triple gR10 array rv
21732	TAAGAGCTAAGCTTGCCTCAGCTCCGACCTGATGAG TCCGTGAGGACGAAACGAGTAAGCTCGTCGTCGGA ACGCTCAACGATTGCCCCTCACGAGGGGACCAGTTG ACAATCCAGCCAATG	PDS3 gR10 + ribozyme fw
21733	TGGAGAAACTCGAGTTAATTAAGTCCCATTCGCCAT GCCGAAGCATGTTGCCCAGCCGGCGCCAGCGAGGA GGCTGGGACCATGCCGGCCATTGGCTGGATTGTCA ACTGGT	PDS3 gRNA10 + ribozyme rv
21847	TCCTCCTCACCTGAAGATCCGGCCTTCTCATTTCGAA	vCasphi mutation RV
21848	GGCCGGATCTTCAGGTGAGGAGGAGGTAGCTACAA ATGA	vCasphi mutation FW
21849	TCTTACGTCTATGACTACCCAATCGGT	vCasphi and nCasphi Fragment2
21851	AGCTGCAGCTCGAGCGGCGTTTATTGCAGCCAATCT AGCTCGGGCCTTCTCA	nCasphi mutation RV
21852	GCTGCAATAAACGCCGCTCGAGCTGCAGCTGGATT GCCGGAAATCAAGGCCGAGGA	nCasphi mutation FW
20505	GTGGAGGACTATTGCTCCCAAGGA	Casphi genotyping FW
20639	TCCAGAGCTCTGACCTCTGCT	Casphi genotyping RV
21403	AAGGAGTCATTTTTCACTAAGCATATAGA	FWA fragment amplification FW for in vitro RNP cleavage substrate
21404	CATTTCTAGTGTCTCGACAACGAACA	FWA fragment amplification RV for in vitro RNP cleavage substrate
Four wool die		
For real-tin	ne quantitătive PCK:	
name	Oligo sequence	Purpose and details
11859	GTATGAGTTGCTTCTCCAGCAAAG	IPP2 QPCR FW
11860	GAGGATGGCTGCAACAAGTGT	IPP2 QPCR RV
21056	GGTCGGAACGCTCAACGATTG	CASphi gRNA QPCR FW
21059	ATTGGCTGGATTGTCAACTGGTC	CASphi AtPDS3gR10 QPCR RV
DNA synthe	esized:	•

DNA		
name	sequence	
	CTTGCTCCGTGGATCCATGCCGAAGCCCGCCGTCGA	
	ATCAGAGTTTTCCAAAGTCCTCAAGAAACACTTTCCT	
	GGGGAGCGTTTTAGGTCTAGCTATATGAAGAGGGG	
	GGGTAAAATTCTGGCAGCACAAGGCGAGGAAGCTG	
	TAGTGGCGTACTTGCAGGGAAAGAGTGAGGAGGA	
	ACCGCCGAATTTTCAGCCGCCGGCGAAGTGCCACGT	
	GGTCACCAAAAGCAGGGATTTCGCAGAATGGCCCA	
	TAATGAAAGCCTCTGAAGCCATACAGAGGTACATCT	
	ATGCGCTCAGCACTACAGAGCGAGCTGCCTGCAAA	
	CCGGGTAAGAGCTCAGAAAGTCACGCGGCCTGGTT	
	CGCGGCTACAGGGGTGAGCAATCACGGCTATTCTC	
	ATGTACAAGGTCTTAACCTGATCTTTGACCACACGCT	
	AGGACGATACGATGGCGTTTTAAAGAAAGTACAGC	
	TTCGAAATGAGAAGGCCCGAGCTAGATTGGAAAGC	
	ATAAACGCCTCACGAGCTGATGAAGGATTGCCGGA	
	AATCAAGGCCGAGGAGGAGGAGGAGGTAGCTACAAAT	
	GAAACAGGTCATCTACTACAGCCGCCAGGCATAAAC	
	CCATCATTCTACGTCTACCAGACCATATCTCCGCAGG	
	CTTACCGACCAAGGGACGAAATAGTGTTACCACCCG	
	AGTACGCCGGTTACGTCAGGGATCCGAACGCTCCG	
	ATTCCACTGGGCGTGGTCAGGAACCGTTGTGACATA	
	CAGAAGGGTTGCCCGGGATATATACCCGAGTGGCA	
	GAGGGAAGCTGGTACGGCAATTAGTCCCAAGACAG	
	GAAAAGCAGTGACGGTTCCAGGACTTAGCCCGAAG	
	AAGAATAAACGTATGCGTAGGTACTGGAGGTCAGA	
	AAAGGAGAAGGCTCAAGATGCACTTCTCGTAACTGT	
	AAGGATAGGTACCGATTGGGTAGTCATAGACGTAA	
	GAGGATTACTAAGAAACGCCAGGTGGAGGACTATT	
	GCTCCCAAGGACATAAGTTTAAATGCACTTCTAGAT	
	TTATTTACCGGTGATCCAGTCATCGATGTCAGACGA	
	AACATCGTGACCTTCACCTATACCTTGGACGCTTGC	
	GGAACTTATGCTAGAAAATGGACTCTCAAGGGAAA	
	ACAGACAAAAGCAACCTTAGATAAACTGACAGCGA	
	CACAAACTGTGGCCTTAGTTGCTATAGATCTGGGAC	
	AAACAAACCCAATTAGCGCGGGTATCAGTCGTGTCA	
	CACAGGAGAACGGGGCCCTCCAGTGCGAACCGCTT	
	GATCGTTTTACATTGCCTGATGACCTTTTGAAAGATA	
	TTTCTGCGTACCGAATTGCATGGGACCGTAACGAGG	
	AGGAACTCAGGGCCAGATCCGTTGAGGCACTCCCA	
	GAGGCACAACAAGCAGAGGTCAGAGCTCTGGACGG	
	GGTCTCCAAAGAGACCGCGCGTACACAGTTGTGCG	
	CGGACTTCGGTCTGGACCCAAAGCGACTACCGTGG	
	GATAAAATGAGTAGCAATACCACGTTCATAAGCGA	
CASphi-2-	GGCGCTCCTTTCCAACAGCGTATCCCGTGACCAAGT	
2xSV40NL	ATTCTTTACCCCGGCCCCAAAGAAAGGAGCCAAGAA	
S-2xFLAG	GAAAGCACCGGTGGAAGTGATGCGAAAAGACAGG	

ACATGGGCGCGAGCGTACAAACCACGACTCTCAGT
AGAAGCACAAAAGTTGAAAAATGAGGCTCTTTGGG
CTTTGAAGCGTACCTCTCCAGAATATCTAAAGTTGTC
ACGACGTAAAGAAGAATTGTGTAGGAGGTCCATTA
ATTACGTGATAGAAAAAACTAGAAGGCGAACCCAA
TGCCAAATTGTGATCCCCGTTATAGAAGATCTAAAT
GTCCGATTTTTCCACGGGTCTGGCAAACGACTCCCG
GGCTGGGATAACTTCTTCACGGCAAAGAAGGAAAA
CCGATGGTTTATCCAAGGGCTACATAAGGCGTTTTC
TGACTTAAGGACCCACCGATCCTTCTACGTGTTCGA
GGTGCGTCCAGAGAGAACATCAATCACCTGTCCGA
AATGCGGGCACTGTGAAGTGGGGAACAGGGATGG
AGAAGCCTTTCAGTGTCTCAGTTGCGGTAAGACATG
CAACGCAGATCTGGACGTAGCGACACATAACTTGAC
TCAAGTGGCGCTCACCGGCAAAACAATGCCGAAGA
GAGAGGAGCCTAGAGATGCACAAGGGACAGCCCCC
GCGAGAAAGACGAAGAAAGCTAGCAAGTCAAAGG
CACCCCCGGCTGAACGTGAGGATCAGACTCCCGCTC
AAGAGCCGTCCCAAACGTCCGGATCCGGACCGAAG
AAAAAGCGAAAGGTAGAGGATCCTAAAAAGAAGC
GTAAAGTCTCCTTGGGTTCTGGCTCCGACTATAAGG
ATGACGATGACAAAGACTATAAGGATGACGACGAC
AAGTGACTGCAGATCGTTCAAACATTTGGC