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Abstract 

Background:  The microrchidia (MORC) proteins are a family of evolutionarily con‑
served GHKL-type ATPases involved in chromatin compaction and gene silencing. 
Arabidopsis MORC proteins act in the RNA-directed DNA methylation (RdDM) pathway, 
where they act as molecular tethers to ensure the efficient establishment of RdDM and 
de novo gene silencing. However, MORC proteins also have RdDM-independent func‑
tions although their underlying mechanisms are unknown.

Results:  In this study, we examine MORC binding regions where RdDM does not 
occur in order to shed light on the RdDM-independent functions of MORC proteins. We 
find that MORC proteins compact chromatin and reduce DNA accessibility to transcrip‑
tion factors, thereby repressing gene expression. We also find that MORC-mediated 
repression of gene expression is particularly important under conditions of stress. 
MORC-regulated transcription factors can in some cases regulate their own transcrip‑
tion, resulting in feedback loops.

Conclusions:  Our findings provide insights into the molecular mechanisms of MORC-
mediated chromatin compaction and transcription regulation.

Keywords:  Microrchidia, MORC, Chromatin compaction, TF binding, Transcription 
regulation

Background
The MORC proteins are a family of highly conserved GHKL-type ATPases involved 
in gene silencing and chromatin compaction [1]. In Caenorhabditis elegans, MORC-1 
can compact DNA through topological entrapment [2], while in humans, MORC2 is 
recruited by the human silencing hub (HUSH) complex for H3K9me3 deposition, chro-
matin compaction, and gene silencing [3]. In mice, MORC1 is involved in germline 
transposon silencing [4], and MORC3 is essential for transposon silencing in embryonic 
stem cells [5].
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The Arabidopsis genome encodes six MORC proteins: MORC1, 2, 4, 5, 6, and 7 
(MORC3 being a pseudogene) [6]. These six proteins are functionally redundant and 
colocalize with sites of RNA-directed DNA methylation (RdDM) genome-wide [7], 
where they are critical for establishing efficient RdDM and de novo gene silencing 
[7]. MORC7, when tethered to DNA using an artificial zinc finger, can target RdDM 
to ectopic sites. MORC7 is also required for the silencing of newly integrated FWA 
transgenes [7]. MORC proteins also act downstream of DNA methylation to suppress 
gene expression and are also involved in plant immunity — protecting plants against 
potential pathogens by interacting with plant resistance (R) proteins [8, 9]. However, 
the molecular mechanisms underlying these RdDM-independent functions remain 
unknown. We previously observed MORC binding sites where RdDM does not occur 
(MORC-unique sites) [7], and by studying these sites, we aim to shed light on the mech-
anisms underlying the RdDM-independent functions of MORC proteins.

TOPLESS (TPL) and LEUNIG (LUG) are both Grocho (Gro)/TLE-type transcrip-
tional co-repressors in plants. They are characterized by a conserved glutamine-rich 
C-terminal domain and an N-terminal WD-repeat domain [10]. The glutamine-rich 
domain participates in protein oligomerization, and the WD-repeat domain interacts 
with downstream transcriptional regulators [10]. The functional counterpart of the Gro/
TLE family of proteins in yeast, Tup1, was originally identified as a co-repressor that 
occupied the binding sites of transcriptional activators [11, 12]. However, evidence now 
shows that Tup1 can switch from a co-repressor to a co-activator in response to stress, 
and is required for the activation of certain genes related to the stress response [11, 12].

Here, we use MORC-unique sites to study the RdDM-independent functions of 
MORC proteins. We show that MORC proteins compact chromatin and reduce DNA 
accessibility to TFs, thereby repressing the transcription of stress-responsive genes.

Results
MORC proteins bind to active chromatin regions devoid of RdDM

We previously reported that approximately 80% of MORC7 binding regions overlap with 
sites of RdDM [7]. MORC7 is recruited to these sites by the RdDM machinery, where 
it then facilitates the efficiency of the RdDM pathway. However, the remaining 20% of 
MORC7 binding sites are devoid of RdDM, as evidenced by a lack of Pol V occupancy 
[7]. The mechanisms underlying the function of MORC7 within these RdDM-depleted 
regions remain unknown.

Mouse MORC3 recognizes and localizes to regions of H3K4me3-marked chroma-
tin through its CW domain [13]; however, Arabidopsis MORCs do not contain CW 
domains. To determine whether Arabidopsis MORCs co-localize with specific chro-
matin features, we used the ChromHMM method to investigate correlations between 
MORC7 and several well-characterized chromatin features (H3K9ac, H3K27ac, 
H4K16ac, H3K4me1, H3K4me3, H3K36me2, H3K36me3, H3K9me2, H3K27me3, Pol II, 
and Pol V). We analyzed chromatin states using a similar method as previously reported 
[14] but also included Pol V ChIP-seq data. We found 13 different chromatin states 
(Additional file  1: Fig. S1). MORC7 showed a strong correlation with Pol V (a known 
indicator of RdDM sites), which was consistent with our previous findings (State 11, 
Additional file 1: Fig. S1). Chromatin state 12 included sites enriched with MORC7 but 
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depleted of Pol V — indicative of MORC7-unique regions. We did not observe enrich-
ment of histone marks in these MORC7-unique regions (Additional file 1: Fig. S1).

Within these MORC7-unique regions, we identified two subgroups: MORC7A and 
MORC7B. The ChIP-seq data for MORC7, Pol V, ATAC-seq, transposable element (TE), 
and small RNA density indicated that MORC7A was within a region of high chromatin 
accessibility and low TE density (Fig. 1a, b, Additional file 1: Fig. S2). Consistent with the 
ChromHMM analysis, MORC7A displayed low levels of histone occupancy and histone 
modification, although its flanking regions were enriched for active histone modifica-
tions. This suggests that MORC7A is located within an active chromatin compartment 
between genes (Fig. 1b).

MORC7B contained a high density of TE with no apparent active histone marks, 
reflective of its heterochromatic localization (Fig.  1a, b). We found that MORC7A 
regions had low levels of DNA methylation, while MORC7B regions had high levels of 
methylation (Fig. 1c, d). These results suggest that MORC7 binds to active and deep het-
erochromatic regions of DNA, where RdDM does not occur, suggesting that it regulates 
gene expression at these sites through RdDM-independent mechanisms.

MORC7 preferentially binds to the promoters of TFs

The genomic distribution enrichment data showed enrichment of MORC7A peaks 
over promoters (Fig. 2a), but no enrichment of MORC7B peaks — consistent with their 
deep heterochromatic localization. The functional annotation of the genes proximal to 
MORC7A suggested that they were enriched in TF encoding genes (Table 1). The Arabi-
dopsis genome encodes approximately 1491 TF genes (5.5% of the genome) [15]. Of 

Fig. 1  MORC7 binds to regions devoid of RdDM. a Screenshots of ChIP-seq data for MORC7A-unique, 
MORC7B-unique, MORC7-Pol V Common, and Pol V-unique regions. b Metaplots of ChIP-seq data for 
MORC7, Pol V, H3K27ac, H3K4me3, ATAC-seq, transposable element (TE), and small RNA density over regions 
of MORC7A-unique, MORC7B-unique, MORC7-Pol V Common, and Pol V-unique. c Metaplot showing 
methylation levels of CG, CHG, and CHH, over regions of MORC7A-unique, MORC7B-B unique, MORC7-Pol 
V Common, and Pol V-unique. d Metaplot showing methylation levels of CG, CHG, and CHH methylation 
changes (morchex minus WT) over regions of MORC7A-unique, MORC7B-unique, MORC7-Pol V Common, and 
Pol V-unique
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the genes proximal to MORC7A, 23% were TFs (p-value = 3.12E − 36); these included 
PHYTOCHROME INTERACTING FACTOR (PIF), ethylene and auxin-responsive 
transcriptional factors, and Myb transcriptional factors (Additional file  2: Table  S1). 

Fig. 2  MORC7-unique regions preferentially localize to the promoter regions of TFs. a Genomic distribution 
enrichment data for MORC7A-unique, MORC7B-unique, MORC7-Pol V Common, and Pol V-unique regions. 
Gene ontology enrichment data for the proximal genes of MORC7A (b), MORC7-Pol V Common (c), and 
Pol V-unique regions (d). e MORC7 and Pol V binding on promoters of genes in the primary shoot apical 
meristem specification pathway

Table 1  Number of TFs among the proximal genes of MORC7A-unique, MORC7B-unique, MORC7-
Pol V Common, and Pol V-unique regions. P-values are estimated by hypergeometric test

Peak TF Non-TF Total Percentage p-value

MORC7A 99 326 425 23.29% 3.12E − 36

MORC7B 6 27 33 18.18% 0.002

MORC7-Common 114 1475 1589 7.17% 0.001

Pol V 98 1080 1178 8.32% 1.60E − 05

Whole genome 1491 25,681 27,172 5.49% NA
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This enrichment was more significant than enrichment for MORC7-Pol V common 
(p-value = 0.001) and Pol V-unique (p-value = 1.6E − 5).

Gene Ontology (GO) term analysis of genes proximal to MORC7A showed an enrich-
ment of negative regulation of auxin metabolic process (~ 80-fold), shade avoidance 
(~ 30 fold), and the primary shoot apical meristem specification pathway (~ 30-fold) 
(Fig. 2b, c, d). The primary shoot apical meristem specification pathway (GO0010072) 
is responsible for the growth of all post-embryonic, above-ground plant structures [16]. 
In Arabidopsis, this pathway includes several topless-related genes [16]. Interestingly, 
we found that MORC7 specifically bound to 12 of the 19 genes in this pathway (Fig. 2e, 
Additional file 1: Fig. S3), and co-localized with Pol V at an additional three. We show 
examples of MORC7 enrichment over the promoter regions for the four TOPLESS genes 
in Additional file 1: Fig. S3.

MORC7 closely co‑localizes with some TFs

To investigate the protein interaction network of MORC7 with chromatin, we re-ana-
lyzed previously published crosslinked IP-MS data of MORC7 [7]. We identified 494 
proteins (FDR < 0.05, FC > 2) that interacted with MORC7 (Fig. 3a), and found that many 
of these were involved in either chromatin-related pathways or development (Fig. 3b). 
We also identified 68 TFs from the MORC7 interacting proteins (68/494, p = 7.89E − 12) 

Fig. 3  MORC7 associates with some TFs. a Volcano plot showing proteins that have significant interactions 
with MORC7, as detected by crosslinked IP-MS. b Protein–protein interaction networks of MORC7. c A graph 
showing the degree of overlap between the DAP-seq peaks of approximately 200 TFs with MORC7A-unique, 
MORC1B-unique, MORC7-Pol V Common, and Pol V unique regions. d Metaplot of PIF4 ChIP-seq data [18] 
over MORC7A-unique, MORC7B-unique, MORC7-Pol V Common, and Pol V unique regions



Page 6 of 16Zhong et al. Genome Biology           (2023) 24:96 

(Additional file  3: Table  S2). To further test whether MORC7 co-localizes with TFs, 
we obtained binding site information for 200 TFs from the DNA Affinity Purification 
and sequencing (DAP-seq) database [17], and performed pairwise peak overlap analy-
sis with MORC7 peaks. We found that MORC7A showed stronger co-localization with 
TFs compared to MORC7B, MORC7-Pol V common, and Pol V-unique regions, and 
also showed strong co-localization with some TF binding sites but not others (Fig. 3c). 
For the TFs characterized with DAP-seq, we found 23 TFs pull downed by MORC7 
crosslinked IP-MS data (Additional file 3: Table S2). This indicates that MORC7A peaks 
are associated with TF binding sites. We also re-analyzed three transcription factors, 
PIF4 [18], ARF6 [19], and TPR1 [20], in particular, because published ChIP-seq data 
was available. Metaplot analysis with ChIP-seq data indicated that MORC7A-unique, 
MORC7B-unique, MORC7-Pol V Common, and Pol V-unique regions showed the 
strongest co-localization with MORC7A, but the random promoter controls didn’t show 
obvious enrichment (Fig. 3d, Additional file 1: Fig. S4).

MORC7 influences TF binding through chromatin compaction

To understand how MORC7 affects chromatin conformation, we performed an Assay 
for Transposase-Accessible Chromatin with high-throughput sequencing (ATAC-seq) 
in morc4 morc7, morc6, and morc hextuple (morchex, in which all functional MORCs 
are knocked out) mutants [6]. We plotted ATAC-seq data across the four groups and 
found that MORC7A, MORC7B, and MORC7-Pol V common showed greater chroma-
tin accessibility changes in the mutants, particularly over the MORC7A regions (Fig. 4a, 
b). This phenotype is consistently observed in morc4 morc7, morc6, and morchex — with 
morchex showing the most pronounced phenotype (Fig. 4a, Additional file 1: Fig. S5). 
Interestingly, for Pol V-unique sites, DNA compaction was not reduced, but actually 
became slightly increased (Fig. 4a). Consistently, we also observed an increase in DNA 
methylation for Pol V-unique sites in the mutants (Fig.  1d). This suggests that Pol V 
may be redistributed from the MORC7-Pol V common sites to Pol V-unique sites in the 
absence of MORC proteins. This is consistent with our previous findings that suggested 
MORC proteins function as molecular tethers to facilitate the recruitment of RdDM 
components [7].

To examine whether MORC-mediated DNA compaction affects TFs, we analyzed the 
ATAC-seq data for TF footprints. When a TF binds to DNA, it inhibits the integration 
of DNA by Tn5 transposes, causing the binding motif to exhibit lower DNA accessibil-
ity, and the flanking regions to exhibit higher DNA accessibility [21]. The footprints of 
572 TFs downloaded from JASPAR were analyzed in the morc4 morc7, morc6, and mor-
chex mutants [22]. Many TFs showed substantially stronger apparent binding within 
the MORC7A regions in the mutants. There were some increases in binding within the 
MORC7B regions (although to a lesser degree than in MORC7A regions) (Fig.  4c, d), 
while TF binding over RdDM sites was largely unaffected (Fig. 4e, f ). The metaplot of 
ATAC-seq signals over the TF binding sites for the MORC7A regions confirmed that 
these TFs have stronger apparent binding in morc4 morc7, morc6, and morchex mutants 
— with morchex showing the strongest binding changes, and the random control regions 
showing no differences (Fig. 4g–i).
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We previously showed that targeting either MORC7 or MORC6 ectopically in the 
fwa-4 epiallele background using ZF108 can trigger the silencing of FWA [7, 23]. In 
addition to the FWA locus, ZF108 can also bind thousands of off-target sites [23]. 
These off-target sites are preferentially localized to promoter regions and therefore 

Fig. 4  MORC proteins influence TF binding through chromatin compaction. a Metaplot and heatmap 
showing chromatin accessibility changes in MORC7A-unique, MORC7B-unique, MORC7-Pol V Common, 
and Pol V-unique regions profiled by ATAC-seq. b A representative screenshot showing higher chromatin 
accessibility at the promoter of SAUR6 in the morchex mutant. c Volcano plot showing changes in TF 
footprints in MORC7A regions, comparing morchex and wild type. d Volcano plot showing changes in TF 
footprints in MORC7B regions, comparing morchex and wild type. e Volcano plot showing changes in TF 
footprints in MORC7-Pol V Common regions, comparing morchex and wild type. f Volcano plot showing 
changes in TF footprints at Pol V-unique regions, comparing morchex and wild type. g Metaplot showing TF 
footprint changes for MORC7A-unique regions in the morc4morc7 mutant. h Metaplot showing TF footprint 
changes for MORC7A-unique regions in the morc6 mutant. i Metaplot showing TF footprint changes for 
MORC7A-unique regions in the morchex mutant. j Volcano plot showing TF changes for ZF off-target sites, 
comparing ZF-MORC6 and fwa-4 plants. P values were calculated by the two-sided Student’s t-test
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provide an excellent opportunity to test whether the presence of MORC proteins 
can affect TF binding. We compared TF footprints between ZF-MORC6 and fwa-4 
and found a substantial decrease for many of the TF footprints in ZF-MORC6 plants 
(Fig. 4j). We further divided ZF off-target sites into sites that gain of DNA methyla-
tion (n = 2186) or non-gain of DNA methylation (n = 8580), and observed a substan-
tial decrease of the TF footprints over both groups of sites in ZF-MORC6 plants 
(Additional file  1: Fig. S6). This supports the hypothesis that MORC proteins affect 
TF binding. Together, these results suggest that MORCs inhibit TF binding by alter-
ing chromatin accessibility.

MORC influences gene expression downstream of the TFs

To understand whether MORC proteins regulate gene expression, we performed RNA-seq 
with the morchex mutant. As MORC7A co-localizes strongly with PIF4 (Fig. 3d) — a cen-
tral regulator in temperature signaling [24] — we applied heat treatment to the morchex 
mutant. We first compared the expression of genes proximal to MORC7A peaks in wild 
type (WT) and morchex mutant without treatment. This showed that the genes proximal 
to MORC7A were slightly (p = 0.002) up-regulated in the morchex mutant without treat-
ment (Fig. 5a), including the TFs SEP3, PIF4, ARF6/8, TPR1, LUG, and SEU (Fig. 5b). After 
heat treatment, morchex displayed a stronger response compared to the WT, with signifi-
cantly more upregulated genes (Fig. 5c, d). Genes proximal to MORC7A were enriched 
in shoot apical meristem specification pathways, and consistently, we observed stronger 
upregulation of these genes in morchex after heat treatment (Additional file 1: Fig. S7).

To confirm that MORC proteins affect TF binding, and to understand how they affect 
downstream gene expression, we selected two TFs, TOPLESS (TPL) and LEUNIG 
(LUG), for ChIP-seq analysis, because they were present in the MORC7 IP-MS data [7]. 
We expressed TPL and LUG fused with a 3XFLAG-tag in both WT and morchex. Con-
sistent with the TF footprint analysis, both TPL and LUG displayed stronger binding at 
MORC7A regions, while only a slight increase in binding was noted for the MORC7-Pol 
V co-binding sites in morchex (Fig.  5e, f ) — consistent with an increase in chromatin 
accessibility in morchex (Fig. 5g). To test whether the binding strength of TPL and LUG 
might be higher in morchex, we ranked TPL and LUG binding sites based on the MORC 
ChIP-seq signals and divided them into three groups: high, middle and low (Fig.  5g). 
Overall, in the morchex mutant, we observed increased TPL and LUG binding, as well 
as increased chromatin accessibility across the regions with stronger MORC7 signals 
(Fig. 5g). We found that MORC7A-bound genes were downregulated (p = 5.7E − 13) in 
the lug mutant, suggesting that LUG may facilitate expression of these genes (Fig. 5a). 
Using ChIP-seq data together with RNA-seq data in the lug mutant, we identified 95 
genes that appeared to be directly regulated by LUG (Additional file  4: Table  S3). We 
found that these LUG-regulated genes were upregulated (p = 0.77) in morchex, particu-
larly after heat treatment (p = 7.5E − 9, Fig.  5h). Motif enrichment analysis indicated 
that most overrepresented motifs were largely similar between wild-type and morchex 
mutant (Additional file 1: Fig. S8). However, we identified some peaks by the peak call-
ing method MACS2 in morchex mutants that were not called as a peak in wild type. A 
metaplot of ChIP-seq signal over these regions showed a higher signal for TPL and LUG 
in morchex as compared to wild type (Additional file 1: Fig. S9).
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Discussion
We previously reported that MORC proteins are localized to sites of RdDM through-
out the genome, and function as molecular tethers to facilitate the efficient establish-
ment of RdDM [7]. We showed that this RdDM-related function of MORC proteins is 

Fig. 5  MORC proteins influence TF binding through chromatin compaction. a Violin plot showing expression 
levels of genes proximal to MORC7A with Col-0, morchex mutant, Ler (wild type background for lug mutant), 
and lug mutant. P values were estimated by the two-sided Wilcoxon rank-sum test. b Expression levels of 
transcriptional factors: SEP3, PIF4, ARF6/8, TPR1, LUG, and SEU (TFs with MORC7A peaks in their promoter 
regions), with Col-0 and morchex mutants following heat treatment. c Transcriptomic changes of morchex 
mutants under normal conditions. d Transcriptomic changes of morchex mutants after 30 min of heat 
treatment. e TPL and LUG binding over MORC7A-unique, MORC7B-unique, MORC7-Pol V Common, and Pol V 
unique regions. f A representative screenshot showing increased binding of TPL and LUG on MORC7A-unique 
regions in the morchex mutant. g Correlation of TPL/LUG binding and ATAC-seq alterations with MORC7 
binding intensity in morchex mutant. h Boxplot showing the expression levels of genes directly regulated 
by LUG in Col-0 and morchex mutants following heat treatment for 30 min (T30). P values were estimated by 
the two-sided Wilcoxon rank-sum test. i A proposed model of the RdDM-independent functions of MORC 
proteins
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critical for de novo transgene silencing [7, 23]; however, this model does not explain 
other functions of MORC proteins. For example, MORC1 and MORC6 were shown to 
work downstream of DNA methylation to repress the expression of both the endoge-
nous SDC gene and an SDC transgene, as well as other DNA-methylated targets in the 
genome [9]. In addition, morc mutants display various disease phenotypes; for exam-
ple, Kang et al. [8] reported that morc1 is susceptible to Turnip Crinkle Virus (TRV), 
while Harris et al. [6] reported that morchex is susceptible to the Hyaloperonospora 
arabidopsidis (Hpa) strain, Emwa1. However, the molecular mechanisms underlying 
the additional functions of the MORC proteins remain unknown.

Here, we investigated the function of MORC7 in regions where RdDM does not occur, 
particularly those near genes where no DNA methylation is present. We found that 
MORC proteins reduce chromatin accessibility within these regions. Previous in  vitro 
studies showed that C. elegans MORC1 homodimers can topologically entrap and con-
dense DNA through further oligomerization of MORC1 proteins [2]. In addition, Arabi-
dopsis morc mutants display pericentromeric heterochromatin decondensation [9], 
which takes place with minimal losses of DNA methylation throughout the genome. This 
indicates that MORC proteins contribute to chromatin compaction independently of 
DNA methylation [9]. We show here that MORC proteins reduce chromatin accessibil-
ity in methylation-free promoter regions of DNA, which may explain their mechanism 
for methylation-independent gene regulation. We suggest that Arabidopsis MORCs may 
use a similar mechanism of chromatin compaction to that of C. elegans MORC1 — com-
pacting chromatin by topological entrapment, thereby reducing its accessibility to TFs.

Plant MORCs have been implicated in plant pathogen responses. MORCs promote resist-
ance in some plant species and inhibit defense responses in others [8]. Upregulation of 
protein-coding genes was previously shown in morc4 morc7; although, the underlying mech-
anism of this was unknown [6]. Here, we report that MORC proteins regulate gene expres-
sion by compacting chromatin in promoter regions, thereby preventing access by TFs. In 
addition, MORCs preferentially bound to the promoter regions of TF genes, contributing to 
their regulation, and our crosslinked IP-MS data suggested that MORCs are in close prox-
imity to many TFs. A previous study suggested that the proteins SUVH2 and SUVH9 bind 
to methylated DNA and recruit MORC proteins to RdDM loci to facilitate the efficiency of 
RdDM and gene silencing [25]. However, the question of how MORC proteins are recruited 
to regions devoid of RdDM remains to be answered. Interestingly, we observed that many of 
TFs interacting with MORC7 bind to their own promoters suggesting regulation by a feed-
forward loop, which may amplify the effects of MORCs on transcriptional networks.

Finally, we showed that MORC proteins are important for the regulation of gene 
expression, particularly under stress conditions. We also found altered expression of 
heat-responsive genes in morchex. Like with its role in plant pathogen defense response, 
it seems likely that the role of MORCs in stress responses relates to its effects on chro-
matin compaction of promoter regions and TF networks.

Conclusions
MORC proteins have a broad binding spectrum in the genome and appear to participate 
in at least three separate processes. They co-localize to sites of RdDM, facilitating effi-
cient DNA methylation establishment [7], they are needed to repress DNA methylated 
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areas of pericentromeric heterochromatin in a DNA methylation-independent man-
ner [9], and they co-localize with TFs in unmethylated promoter regions, regulating TF 
binding and gene expression by altering chromatin accessibility (Fig.  5i). Although it 
seems likely that MORC act in each of these processes by topologically entrapping DNA, 
there are likely mechanistic differences that can explain the localization and function of 
MORCs in these three different epigenetic environments in the genome.

Methods
Plant materials and growth conditions

All plants in this study were grown in standard greenhouse conditions (22–25  °C, 
16  h light/8  h dark). The following plant materials were used in this study: mor-
chex consisting of morc1-2 (SAIL_893_B06), morc2-1 (SALK_072774C), morc4-1 
(SALK_051729), morc5-1 (SALK_049050C), morc6-3 (GABI_599B06), and morc7-1 
(SALK_051729). For heat treatments, plants were grown under 37 °C for 0.5 h and put 
back to normal temperature for 48 h for recovery.

Epitope‑tagged transgenic lines

Full-length genomic DNA fragments, including native promoter sequences, were 
cloned into pENTR/D vectors (Invitrogen), and then into modified destination vec-
tors carrying 3xFLAG with LR Clonase (Invitrogen). All primers used in this study are 
available in Additional file 5: Table S4.

Nuclei extraction and ATAC‑seq library preparation

The nuclei collection process from inflorescence and meristem tissues was performed 
in accordance with previously described methods [26, 27]. Freshly isolated nuclei 
were used for ATAC-seq, as described elsewhere [28]. Inflorescence tissues were col-
lected for extraction of nuclei as follows: 5 g (approximately) of inflorescence tissue 
was collected and immediately transferred into the ice-cold grinding buffer (300 mM 
sucrose, 20  mM Tris pH 8, 5  mM MgCl2, 5  mM KCl, 0.2% Triton X-100, 5  mM 
β-mercaptoethanol, and 35% glycerol); the samples were then ground with Omni 
International General Laboratory Homogenizer at 4  °C, and filtered through a two-
layer Miracloth using a 40-µm nylon mesh Cell Strainer (Fisher). Samples were spin 
filtered for 10 min at 3000 g, the supernatant was discarded, and the pellet was resus-
pended with 25 ml of grinding buffer using a Dounce homogenizer. The wash step was 
performed twice in total. Nuclei were then resuspended in 0.5 ml of freezing buffer 
(50 mM Tris pH 8, 5 mM MgCl2, 20% glycerol, and 5 mM β-mercaptoethanol). Nuclei 
were then subjected to a transposition reaction with Tn5 (Illumina). For the transpo-
sition reaction, 25  µl of 2 × DMF (66  mM Tris–acetate pH 7.8, 132  mM  K-Acetate, 
20 mM Mg-Acetate, and 32% DMF) was mixed with 2.5 µl Tn5 and 22.5 µl nuclei sus-
pension at 37 °C for 30 min. The transposed DNA fragments were then purified with 
ChIP DNA Clean & Concentrator Kit (Zymo). Libraries were prepared with Phusion 
High-Fidelity DNA Polymerase (NEB), in a system containing: 12.5  µl 2 × Phusion, 
1.25 µl 10 mM Ad1 primer, 1.25 µl 10 mM Ad2 primer, 4 µl ddH2O, and 6 µl purified 



Page 12 of 16Zhong et al. Genome Biology           (2023) 24:96 

transposed DNA fragments. The ATAC-seq libraries were sequenced on a NovaSeq 
6000 sequencer (Illumina).

RNA‑seq library preparation

Total RNAs were extracted from ~ 100 mg of flower buds using TRIzol and the Direct-
zol RNA Miniprep kit (Zymo, R2050). Sequencing libraries were prepared using the 
TruSeq Stranded mRNA Library Prep kit (Illumina), according to the manufacturer’s 
instructions, and sequenced on a NovaSeq 6000 sequencer (Illumina).

ChIP‑seq library preparation

10  g of inflorescence and meristem tissues were used for ChIP-seq. ChIP assays were 
performed as has been described previously [29]. Briefly, 2–4  g of flower tissue was 
collected from 4- to 5-week-old plants, and ground with liquid nitrogen. 1% formalde-
hyde containing a nuclei isolation buffer was used to fix the chromatin for ten minutes. 
Freshly prepared glycine was then used to terminate the crossing reaction. Shearing was 
performed via Bioruptor Plus (Diagenode), and immunoprecipitations with antibod-
ies were performed overnight at 4 °C. The anti-FLAG M2 (Sigma) antibody was used in 
this study. Magnetic Protein A and Protein G Dynabeads (Invitrogen) were added and 
incubated at 4 °C for 2 h. The reverse crosslink was performed overnight at 65 °C. The 
protein-DNA mix was then treated with Protease K (Invitrogen) at 45  °C for 4 h. The 
DNA was purified and precipitated with 3  M Sodium Acetate (Invitrogen), glycoBlue 
(Invitrogen), and ethanol overnight at − 20 °C. The precipitated DNA was then used for 
library preparation using the Ovation Ultra Low System V2 kit (NuGEN), which was 
then sequenced using an Illumina NovaSeq 6000 sequencer.

Small RNA‑seq analysis

Small RNA-seq reads were downloaded from a previous paper [30]. Adaptor sequence 
(TGG​AAT​TCT​CGG​) was trimmed with trim_galore, and trimmed reads were mapped 
to the reference genome TAIR10 using Bowtie2 with only one unique hit and zero mis-
matches [31].

ATAC‑seq analysis

ATAC-seq read adaptors were removed using trim_galore. The reads were then mapped 
to the Arabidopsis thaliana reference genome, TAIR10, using Bowtie2 (-X 2000 -m 1) 
[31]. Reads of chloroplast and mitochondrial DNA were filtered out and duplicate reads 
were removed using Samtools [32]. ATAC-Seq open chromatin peaks of each replicate 
were called using MACS2 with parameters of -p 0.01 –nomodel –shift -100 –extsize 200. 
Consensus sets of chromatin peaks for all samples were merged by bedtools (v2.26.0) 
intersect allowing a distance of 10 base pairs [33]. Following this, edgeR was used to 
define significant changes between peaks [fold change, (FC) > 2 and false discovery rate, 
(FDR) < 0.05] [34]. ATAC-seq peak distributions were annotated using ChIPseeker [35]. 
TF footprints were analyzed by TOBIAS [21] with 572 plant TF motifs downloaded from 
JASPAR (http://​jaspar.​gener​eg.​net/) [22].

http://jaspar.genereg.net/
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RNA‑seq analysis

Cleaned short reads were aligned to the reference genome, TAIR10, by Bowtie2 (v2.1.0) 
[31]. Expression abundance was then calculated by RSEM using the default parameters 
[36]. Heatmaps were visualized using the R package pheatmap. Differential expres-
sion analysis was conducted using edgeR [34]. A threshold of p-value < 0.05 and fold 
change > 2 were used to decide whether there were any significant differences in expres-
sion between samples.

ChIP‑seq analysis

ChIP-seq data was aligned to the TAIR10 reference genome with Bowtie2 (v2.1.0) [31], 
only including uniquely mapped reads without any mismatches. Duplicated reads were 
removed by Samtools. ChIP-seq peaks were called by MACS2 (v2.1.1) and annotated 
using ChIPseeker [35]. Differential peaks were called by the bdgdiff function in MACS2 
[37]. ChIP-seq data metaplots were plotted by deeptools (v2.5.1) [38]. Correlation of 
MORC7 with ChIP-seq data was conducted with ChromHMM [39]. H3K9ac, H3K27ac, 
H4K16ac, H3K4me1, H3K4me3, H3K36me2, H3K36me3, H3K9me2, H3K27me3, Pol 
II, and Pol V, as published previously, were included in this analysis (Additional file 6: 
Table S5). Motif enrichment analysis was performed with MEME (v5.0.5) [40].

Whole‑genome bisulfite sequencing (BS‑seq) analysis

Previously published whole-genome bisulfite sequencing data for morc mutants and 
wild type was reanalyzed [6]. Briefly, Trim_galore (http://​www.​bioin​forma​tics.​babra​
ham.​ac.​uk/​proje​cts/​trim_​galore/) was used to trim adapters. BS-seq reads were 
aligned to the TAIR10 reference genome by BSMAP (v2.90), allowing two mismatches 
and one best hit (-v 2 -w 1) [41]. Reads with three or more consecutive CHH sites 
were considered to be unconverted reads and were filtered out. DNA methylation lev-
els were defined as #C/ (#C + #T).
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