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A maternally programmed intergenerational 
mechanism enables male offspring to make 
piRNAs from Y-linked precursor RNAs in 
Drosophila

Zsolt G. Venkei1,11, Ildar Gainetdinov    2,11, Ayca Bagci2, Margaret R. Starostik    3, 
Charlotte P. Choi3, Jaclyn M. Fingerhut    1,4, Peiwei Chen    5, Chiraag Balsara6, 
Troy W. Whitfield    1, George W. Bell1, Suhua Feng7,8, Steven E. Jacobsen    7,8,9, 
Alexei A. Aravin    5, John K. Kim3, Phillip D. Zamore    2,10  & 
Yukiko M. Yamashita    1,4 

In animals, PIWI-interacting RNAs (piRNAs) direct PIWI proteins to silence 
complementary targets such as transposons. In Drosophila and other 
species with a maternally specified germline, piRNAs deposited in the 
egg initiate piRNA biogenesis in the progeny. However, Y chromosome 
loci cannot participate in such a chain of intergenerational inheritance. 
How then can the biogenesis of Y-linked piRNAs be initiated? Here, using 
Suppressor of Stellate (Su(Ste)), a Y-linked Drosophila melanogaster piRNA 
locus as a model, we show that Su(Ste) piRNAs are made in the early male 
germline via 5′-to-3′ phased piRNA biogenesis initiated by maternally 
deposited 1360/Hoppel transposon piRNAs. Notably, deposition of Su(Ste) 
piRNAs from XXY mothers obviates the need for phased piRNA biogenesis 
in sons. Together, our study uncovers a developmentally p ro gr am med, 
i nt ergenerational mechanism that allows fly mothers to protect their sons 
using a Y-linked piRNA locus.

In animals, the PIWI-interacting RNA (piRNA) pathway generates small 
RNAs that direct silencing of transposable elements and other self-
ish genetic elements1. Loss of piRNAs derepresses transposons2–5, 
dysregulates gene expression6–8 and reduces fertility. At the core of 
piRNA-mediated silencing are 18–35-nucleotide (nt) piRNAs that bind 
to and guide PIWI proteins to their targets via nucleotide sequence 

complementarity2,9–12. The three D. melanogaster PIWI proteins have 
specialized functions in the germline: Piwi represses transposon tran-
scription in the nucleus, whereas Ago3 and Aubergine (Aub) cleave 
piRNA precursor and transposon transcripts in the cytoplasm4,12–22.

Animals often use pre-existing piRNAs to direct slicing of comple-
mentary transcripts and initiate piRNA biogenesis from the resulting 
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intergenerational transmission of piRNA-coded memory in the absence 
of direct homology and demonstrates that the phased piRNA pathway 
can protect offspring from selfish genetic elements not encountered 
by their mothers.

Results
Su(Ste) transcription starts days before Ste expression
To investigate Su(Ste) piRNA precursor expression and process-
ing into piRNAs during D. melanogaster spermatogenesis, we used 
single-molecule RNA fluorescent in situ hybridization (smRNA-FISH)60,61. 
By leveraging nucleotide polymorphisms between Ste and Su(Ste), we 
used a single in situ probe to detect Su(Ste) and a collection of Stella-
ris in situ probes to visualize Ste (Methods). smRNA-FISH can detect 
Ste mRNA and Su(Ste) precursor transcripts but not mature piRNAs, 
because small RNAs are not retained in formaldehyde-fixed tissues62 
(Methods).

In wild-type testes, Ste transcripts were first detected in the nuclei 
of spermatocytes (Fig. 1a,b). In contrast, in XO males, which lack Su(Ste), 
Ste transcripts were readily detected in the spermatocyte cytoplasm 
(Fig. 1c), leading to production of Ste protein crystals, a known cause of 
subfertility. Notably, in XO males, cytoplasmic Ste mRNA was observed 
only in spermatocytes (Fig. 1c), suggesting that Ste is transcriptionally 
silent in early germ cells (that is, GSCs and SGs).

Our smRNA-FISH experiments readily detected Su(Ste) expres-
sion in GSCs (Fig. 1b), earlier than previously reported50. Thus, Su(Ste) 
expression precedes that of Ste by ~2–3 days (Fig. 1a). In GSCs and SGs, 
Su(Ste) transcription was detectable only from the genomic strand that 
produces piRNA precursors antisense to Ste mRNA (Extended Data 
Fig. 1a). The steady-state abundance of nuclear antisense Su(Ste) tran-
scripts peaked in late SGs/early spermatocytes and was undetectable 
by the time Ste expression was first detected, in late spermatocytes 
(Fig. 1b).

Ping-pong amplification of Ste-targeting piRNAs should require 
the presence of both antisense Su(Ste) and sense Ste RNA in the same 
cells. Our data, however, show that antisense Su(Ste) piRNA precursors 
are transcribed and processed into Ste-targeting piRNAs before the 
first detectable accumulation of Ste mRNA. Supporting the idea that 
antisense Su(Ste) precursors and sense Ste mRNA are not present in the 
same germ cell types, we did not detect short interfering RNAs (siRNAs) 
production from Su(Ste) loci (Fig. 1d). (siRNAs are produced by Dicer 
proteins from double-stranded RNAs63). We conclude that ping-pong 
amplification is unlikely to explain the biogenesis of Su(Ste) piRNAs in 
GSCs and SGs (Extended Data Fig. 1b,c).

Su(Ste) transcripts are processed in early male germ cells
Consistent with earlier studies27,54, we found that processing of anti-
sense Su(Ste) precursors into mature piRNAs in GSCs/SGs depends 
on components of the phased piRNA biogenesis pathway. In wild-type 
GSCs/SGs, Su(Ste) transcripts were detected as a single nuclear focus, 
corresponding to nascent transcripts from the Su(Ste) loci (Fig. 2a). In 
contrast, in armi1/72.1 or zucEY11457/− loss-of-function mutants, the nuclear 
foci of Su(Ste) transcripts were enlarged, and multiple cytoplasmic 
foci appeared, probably representing accumulation of unprocessed 

5′-monophosphorylated cleavage products23. For example, in the  
D. melanogaster female germline, Ago3 and Aub are loaded with piR-
NAs derived from complementary transcripts (transposon messenger 
RNAs and piRNA precursors), and the 3′ cleavage product of Ago3 
slicing is used to make antisense Aub-loaded piRNAs and vice versa. 
This positive feedback loop—the ‘ping-pong’ cycle—amplifies the 
transposon-targeting population of piRNAs4,24. The ping-pong pathway 
also initiates 5′-to-3′ fragmentation of the remainder of the cleavage 
product into tail-to-head, phased piRNAs loaded in Piwi19,20,25,26. Phased 
piRNA biogenesis requires the endonuclease Zucchini (Zuc; PLD6 in 
mammals) and the RNA helicase Armitage (Armi; MOV10L1 in mam-
mals)27–30. The ping-pong pathway increases only piRNA abundance, 
whereas production of phased primary piRNAs adds sequence diversity 
to the piRNA19 pool.

The ping-pong cycle requires pre-existing piRNAs to initiate the 
amplification process. In D. melanogaster, maternally deposited piR-
NAs serve this purpose, providing a pool of piRNAs that can initiate the 
ping-pong cycle17,31–34. For example, the inability of naïve mothers to pro-
vide P-element-derived piRNAs when mated with P-element-infested 
fathers causes derepression of selfish elements and sterility in their 
offspring, a phenomenon called hybrid dysgenesis32,35–43.

Stellate (Ste) and Suppressor of Stellate (Su(Ste)) in D. melanogaster 
provided the founding paradigm of piRNA-directed repression44–48. Ste 
is a repetitive gene whose unchecked expression results in Ste protein 
crystals, amyloid-like protein aggregates that cause male sterility via 
unknown mechanisms49. To ensure male fertility, Ste genes on the X 
chromosome are normally repressed by Su(Ste) piRNAs that are anti-
sense to Ste and are produced from Y chromosome transcripts12,50–52. 
Su(Ste) locus comprises tandem repeats nearly identical (~90%) to Ste. 
Ste is the major silencing target of the piRNA pathway in the D. mela-
nogaster male germline7,51–55, requiring armi, zuc, krimp, spn-E, vas, aub 
and ago3, but not piwi or rhino (rhi), suggesting that Ste repression is 
primarily dependent on cytoplasmic cleavage of the Ste mRNA12,27,56–59. 
Because Su(Ste) is encoded on the Y chromosome, fly mothers—which 
lack a Y chromosome—cannot provide their sons with Su(Ste) piRNAs 
to initiate biogenesis. How the male germline produces Su(Ste) piRNAs 
in the absence of maternally deposited Su(Ste) piRNAs is unknown.

In this Article, we describe the mechanism by which the male 
germline represses Ste in the absence of maternally deposited Su(Ste) 
piRNAs. We show that Su(Ste) piRNAs are produced by Armi- and 
Zuc-dependent phased piRNA biogenesis in male germline stem cells 
(GSCs) and early spermatogonia (SGs), days before expression of Ste 
target RNAs in spermatocytes. Phased biogenesis of Su(Ste) piRNAs in 
GSCs/SGs is critical to repress Ste later in spermatocytes and thus for 
male fertility. Our data show that males from XX mothers use mater-
nally deposited 1360/Hoppel piRNAs to cleave Su(Ste) precursors and 
initiate 5′-to-3′ phased biogenesis of Su(Ste) piRNAs in the early ger-
mline (GSCs/SGs). We show that the requirement for Armi, a protein 
essential for phased piRNA biogenesis, in Su(Ste) piRNA production in 
males is relieved when XXY females provide maternal Su(Ste) piRNAs 
to their sons’ germline. These data explain how maternally depos-
ited piRNAs can direct production of non-homologous piRNA guides 
in the germline of the progeny. Our study reveals a mechanism for 

Fig. 1 | Su(Ste) transcription precedes that of Ste during germ cell 
differentiation. a, Early stages of D. melanogaster spermatogenesis. The stem 
cell niche is formed by the non-dividing somatic cells of the hub (asterisk). 
The GSCs are physically attached to the hub and divide asymmetrically. The 
gonialblasts (GBs), the differentiating daughters of GSCs, undergo four rounds 
of mitotic divisions with incomplete cytokinesis. Resultant 16-cell SGs then 
enter meiotic prophase as spermatocytes. The expression patterns of nos-gal4 
and bam-gal4 drivers in the adult male germ line are also indicated. GSCs and 
early SGs are indicated by a yellow dotted line; cyan lines indicate the zone of 
spermatocytes in this and all subsequent figures. b(i), c(i) Expression of Ste 
mRNA (red) and antisense Su(Ste) precursor (green) in the wild-type (b) and in 

XO (c) testes (smRNA-FISH). Magnified view of boxed areas is shown in b(ii), 
b(iii), c(ii) and c(iii). Arrow points to Su(Ste) transcripts in a GSC nucleus. b and c 
represent z-projections that cover the depth of the testes, whereas b(ii), b(iii) c(ii) 
and c(iii) only cover the depth of the cells presented. Dotted white lines indicate 
the nuclear periphery. Red, Ste RNA; green, antisense Su(Ste) RNA; blue, DAPI. 
Scale bars, 20 µm (b(i), c(i)) and 5 µm (b(ii), b(iii), c(ii) and c(iii)). d, Length profile 
of Ste-, Su(Ste)- (Supplementary Table 3) and flamenco-derived small RNAs in 
control (y1w1118/Y; nos-gal4:VP16/TM2) testis. flamenco produces 21-nt siRNAs79. 
The data are the mean from two independent biological samples. Source 
numerical data are available in source data.
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piRNA precursor transcripts (Fig. 2b,c). Similar Su(Ste) cytoplasmic 
foci were detected when armi or zuc mRNA was specifically depleted 
in germ cells by RNA interference (RNAi) using pVALIUM22 transgenes 
(armiTRIP.GL00254 and zucTRIP.GL00111; henceforth, armiRNAi and zucRNAi) driven 
by nanos(nos)-Gal4 (ref. 64; Figs. 1a and 2d,e). The appearance of Su(Ste) 

cytoplasmic foci in zuc and armi mutants (Fig. 2f) concurs with the 
increase in the steady-state abundance of Su(Ste) transcripts measured 
by quantitative reverse transcription polymerase chain reaction (qRT–
PCR) in zucEY11457/− mutant testis enriched for SGs by over-expressing dpp: 
Su(Ste) precursors increased 1.9 ± 0.7-fold in mutants versus control 
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Fig. 2 | Su(Ste) precursor transcripts accumulate in GSCs and SGs of armi and 
zuc mutant testes. a–e, smRNA-FISH for antisense Su(Ste) precursor transcript 
(green) in control y1w1118 testis (a) and in piRNA pathway mutant testes of the 
indicated genotypes: armi mutant (b); zuc mutant (c); armi RNAi (d); zuc RNAi 
(e)). The corresponding magnified regions of the niche marked by quadrates 
are shown in a(ii), b(ii), c(ii), d(ii) and e(ii) GSC and early SGs are indicated by 
yellow dotted lines; cyan lines indicate zone of spermatocytes. Arrowheads 
point to nuclear transcripts; arrows point to cytoplasmic RNA foci. The asterisks 
indicate the hub. Blue, DAPI. Scale bars, 5 µm. f, Quantification of cytoplasmic 
Su(Ste) RNA foci in GCSs and SG cells. Signal intensity was measured by maximum 

projection of z-stacks that encompass the entire cell. Box plots show the median 
and interquartile range (IQR); whiskers denote 1.5× IQR (n = 90 for control; n = 54 
for nos>armiTRIP.GL00254; n = 33 for armi1/72.1; n = 34 for nos>zucTRIP.GL00111; n = 31 for 
zucEY11457/−). P = 2.2 × 10−16 for Kruskal–Wallis test (one-way analysis of variance on 
ranks) comparing all genotypes and control; Benjamini–Hochberg-corrected 
P values for post hoc pairwise two-tailed Mann–Whitney tests: P = 2 × 10−16 for 
nos>armiTRIP.GL00254 versus control; P = 7.2 × 10−9 for armi1/72.1 versus control; 
P = 9.4 × 10−9 for nos>zucTRIP.GL00111 versus control; P = 2 × 10−16 for zucEY11457/− versus 
control. Source numerical data are available in source data.
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testis (two-tailed, one sample t-test, P = 0.025), while act5C transcripts 
changed 1.1 ± 0.7-fold (two-tailed, one sample t-test, P = 0.7; Extended 
Data Fig. 2 and Supplementary Table 1).

By contrast, Su(Ste) piRNA precursor transcripts did not accumu-
late when vas—the helicase required for ping-pong piRNA process-
ing19,65—was depleted by nos-driven RNAi (Extended Data Fig. 3a–d). 
Similarly, depletion of either of the endonucleases in the ping-pong 
pathway (Aub or Ago3) did not stabilize Su(Ste) precursor transcripts 
in GSCs/SGs (Extended Data Fig. 3a–d).

In the phased piRNA biogenesis pathway, the endonuclease Zuc 
fragments piRNA precursors into head-to-tail pre-piRNAs, and the 
overwhelming majority of phased pre-piRNAs bear a uridine as their 
5′-terminal nucleotide (pre-piRNAs become mature piRNAs after their 
3′ ends are trimmed and 2′-O-methylated). Conversely, piRNA guides 

produced by the ping-pong pathway frequently have an adenine at 
position 10, because endonucleases in the ping-pong pathway often 
have an intrinsic preference for targets with an adenine at the posi-
tion that then becomes the tenth nucleotide of a new mature piRNA66. 
Transposon-derived piRNAs in testis are made by both the ping-pong 
and the phased biogenesis pathways54, and thus exhibit both the enrich-
ment of uridines as the first nucleotide (67 ± 3%) and a higher fre-
quency of adenines as the tenth nucleotide (37.2 ± 0.3%; Extended Data  
Fig. 3e). Supporting the idea that processing of Su(Ste) precursors into 
piRNAs in GSCs/SGs is catalysed by Zuc19,20, we find that, although the 
majority of Su(Ste)-derived piRNAs begin with a uridine (77 ± 1% at posi-
tion 1 versus 28.4 ± 0.2% at all positions), they show no enrichment for 
adenine as the tenth nucleotide (21 ± 1% at position 10 versus 25.9 ± 0.3% 
at all positions; Extended Data Fig. 3e). Together, these results suggest 
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that, in GSC/SGs, the phased piRNA biogenesis pathway dominates the 
production of piRNAs from Su(Ste) transcripts.

Ste silencing requires zuc and armi in early male germ cells
Repression of Ste in late spermatocytes depends on zuc and armi 
expression during a short window in early spermatogenesis. When 
armi or zuc mRNA was depleted by nos-driven RNAi (nos>armiRNAi or 
nos>zucRNAi) throughout the germline (Fig. 1a), we observed dere-
pression of Ste RNA (Fig. 3a–c), Ste protein accumulation (Fig. 3i) 
and reduced fertility (Fig. 3j). In contrast, using bam-gal4 (Fig. 1a) to 
deplete armi or zuc in >4-cell SG stages (bam>armiRNAi or bam>zucRNAi) 
had no observable effect on Ste repression or fertility (Fig. 3d,e), sug-
gesting that armi and zuc are dispensable for Ste repression after the 
four-cell spermatogonial stage.

Consistent with the idea that Ste silencing requires Armitage in 
early germ cells, expression of an armi-gfp transgene under the con-
trol of nos-gal4 restored Ste repression in armi1/72.1 testes (Fig. 3f,g). In 
contrast, expression of the same rescue construct driven by bam-gal4 
failed to rescue the armi mutant phenotype (Fig. 3h). Collectively, these 
data suggest that Su(Ste) piRNAs are produced in early germ cells by the 
phased biogenesis pathway.

Ste silencing requires both Aub and Ago3
In the phased biogenesis pathway, the products of Zuc-catalysed frag-
mentation of piRNA precursors are loaded into PIWI Argonaute proteins 
and mature to become piRNAs20,23. In fly testis, >80% of Su(Ste)-derived 
piRNAs in Aub and Ago3 are derived from the antisense precursor tran-
script54, suggesting that both proteins are programmed with antisense 
Su(Ste) piRNAs during phased biogenesis in GSC/SGs. Both Aub and 
Ago3 are required for repression of Ste mRNA in spermatocytes54 
(Fig. 4a–e). Antisense Su(Ste)-piRNA-guided Aub and Ago3 are thus 
non-redundant in silencing Ste.

We find that efficient repression of Stellate occurs when expres-
sion of Aub and Ago3 begins no later than the spermatogonial four-cell 
stage, that is, before Su(Ste) precursor transcription reaches its peak 
(Fig. 1a,b). Expressing a gfp-aub rescue transgene using bam-gal4 

driver restored Ste repression in loss-of-function aubHN2/QC42 mutants 
(Fig. 4f,g). Ste was also silenced when a bam-driven FLAG-Myc-ago3 
rescue transgene was expressed in ago3T2/T3 mutant males (Fig. 4h,i). We 
conclude that both Aub and Ago3 programmed with antisense Su(Ste) 
piRNAs are required for efficient repression of Ste.

1360 piRNAs trigger phased biogenesis of Su(Ste) piRNAs
Efficient repression of Ste requires production of Su(Ste) piRNAs days 
before Ste is first expressed (Fig. 1). Production of Su(Ste) piRNAs in 
early male germ cells requires Zuc and Armi, components of the phased 
piRNA biogenesis pathway (Figs. 2 and 3). Typically, phased piRNA 
biogenesis is initiated by a PIWI protein-catalysed, piRNA-directed 
slicing event that generates a long 5′-monophosphorylated 3ʹ-cleavage 
product (pre-pre-piRNA). The pre-pre-piRNA is then fragmented by Zuc 
into phased, tail-to-head pre-piRNAs19,20,25,66. But Ste piRNAs that could 
trigger phased fragmentation of Su(Ste) precursors are not produced 
by mothers (see below).

We propose that maternally inherited 1360/Hoppel transposon- 
derived piRNAs initiate phased production of Su(Ste) piRNAs that 
direct cleavage of the 1360/Hoppel sequence residing at the 5′ end of 
Su(Ste) precursor RNAs (Fig. 5a). Several observations support this 
idea: (1) transcription of Su(Ste) starts inside a 1360/Hoppel trans-
poson insertion upstream of the sequence complementary to Ste  
(ref. 52); (2) ovaries contain abundant 1360/Hoppel transposon- 
derived piRNAs (~18,200 ± 400 per 10 pg total RNA); and (3) mothers 
deliver 1360/Hoppel piRNA to their male offspring via the oocyte32.

To test this model, we sequenced ≥ 200-nt long, 5′-monophos 
phorylated RNAs from adult testis to identify putative pre-pre-piRNAs. 
Like all Argonautes, PIWI proteins cleave their targets between nucleo-
tides t10 and t11, the target nucleotides complementary to piRNA 
nucleotides g10 and g11. In the piRNA producing loci 42AB and petrel, 
the 5′ ends of long RNAs most frequently lay between nucleotides 
g10 and g11 of an antisense piRNA, supporting the idea that these 
monophosphorylated RNAs are bona fide pre-pre-piRNAs (Z10 = 5.1, 
P = 6 × 10‒7 for 42AB; Z10 = 8.5, P = 2.3 × 10‒17 for petrel; Extended Data 
Fig. 4a). As expected, we detected no antisense piRNAs overlapping 
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programmed with antisense Su(Ste) piRNAs are required for efficient repression 
of Ste. Note that, in fly testes and ovaries, transposon-derived piRNAs partition 
between Aub and Ago3: most antisense, phased, 1U-enriched piRNAs are bound 
to Aub, while most sense, ping-pong produced, 10A-biased piRNAs are loaded 
in Ago3 (refs. 4,54). Yet antisense, phased, 1U-enriched Su(Ste) piRNA are loaded 
into both Aug and Ago3 (ref. 54). Our analyses also show that piRNAs produced 
from the cleavage products of slicing of Ste transcripts by Su(Ste) piRNAs (that 
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versus >7 ± 2% in Aub).
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with the 5′ ends of monophosphorylated RNAs from the genic loci 
nos, bam and bgcn, consistent with these RNAs being mRNA turnover 
intermediates (Extended Data Fig. 4a).

Among the Su(Ste)-derived, long, 5′-monophosphorylated RNAs 
overlapping the upstream 1360/Hoppel transposon insertion, their 
5′ ends most often corresponded to the scissile phosphate predicted 
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score (number of standard deviations from the mean) and the corresponding  
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5′-monophosphorylated long RNA datasets (n = 2 × 2 = 4). c, Change in 
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trial 3, 42 long RNAs). Source numerical data are available in source data.
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from a complementary antisense 1360/Hoppel piRNA (Z10 = 8, P = 10‒15; 
Fig. 5b). Our data therefore support the hypothesis that the majority 
of these monophosphorylated RNAs are pre-pre-piRNAs whose 5′ 
ends are made by 1360/Hoppel piRNA-directed cleavage. Consist-
ent with the idea that long RNAs from 42AB, petrel and Su(Ste) are 
pre-pre-piRNAs processed by the phased biogenesis pathway, their 
steady-state abundance increased 1.7–5.4-fold when phased biogenesis 
in males was blocked in zucEY11457/− mutants or using nos-driven armiRNAi 
(Fig. 5c and Extended Data Fig. 4b). By contrast, the abundance of 
5′-monophosphorylated RNAs from nos, bam and bgcn did not change 
in zucEY11457/− or nos>armiRNAi males (Extended Data Fig. 4b).

To examine Su(Ste) piRNA biogenesis in early male germ cells in 
more detail, we used nos>dpp males, in which SG overproliferate67–69. 
Among the ≥200-nt long, 5′-monophosphorylated RNAs from nos>dpp 
testis, we identified putative Su(Ste) pre-pre-piRNAs spanning both 
the 1360/Hoppel and Ste-derived sequences that could have been pro-
duced by 1360/Hoppel piRNA-guided slicing (Fig. 5d). The 5′ ends of 
Su(Ste) piRNAs concentrated in periodic peaks starting from Su(Ste) 
pre-pre-piRNA 5′ termini (Fig. 5d). Consistent with Zuc-catalysed 
fragmentation of pre-pre-piRNAs into tail-to-head pre-piRNAs, auto-
correlation analyses showed that most piRNA 5′ ends lay at regular 
intervals, ~25–26 nt apart from each other (Fig. 5d). For Su(Ste)-derived 
pre-pre-piRNAs whose 5′ ends were in the last 100 nt of the 1360/Hoppel 
sequence, most Su(Ste) piRNA 5′ ends occurred at ~25–27-nt intervals 
extending as far as ≥100 nt into the region of the Su(Ste) transcript that 
is antisense to Ste (Fig. 5d). Together, these data suggest that 1360/Hop-
pel piRNAs slice Su(Ste) precursors to initiate 5′-to-3′ phased production 
of Su(Ste) piRNAs capable of silencing Ste mRNA.

Su(Ste) piRNAs made in XXY females silence Ste in progeny
The remarkable stability of Argonaute-protected small RNAs70,71 proba-
bly underlies the intergenerational inheritance of transposon-targeting 
piRNAs in animals with maternally deposited germ plasm. Similarly, our 
model assumes that piRNA•PIWI complexes deposited by mothers can 
cleave complementary RNAs in the germline of their sons. To experi-
mentally test this assumption, we used XXY female flies to artificially 
deposit Su(Ste) piRNAs in oocytes. Y chromosome-encoded Su(Ste) 
piRNA precursors and Su(Ste) piRNAs were detected in XXY (2,700 ± 80 
piRNAs per 10 pg total RNA) but not XX ovaries (30 ± 30 piRNAs per 
10 pg total RNA; Fig. 6a, Extended Data Fig. 5 and Supplementary  
Table 2). These maternally produced Su(Ste) piRNAs were able to repress 
a gfp-Ste transgene in XXY females (Extended Data Fig. 6).

Strikingly, when Su(Ste) piRNA biogenesis was blocked in sons, 
maternal Su(Ste) piRNAs from XXY mother were sufficient to silence Ste 
in the testis: unlike nos>armiRNAi males from XX mothers, nos>armiRNAi 
sons derived from XXY females effectively repressed Ste (Fig. 6b–e and 
Extended Data Figs. 7 and 8). We conclude that maternal deposition 
of Su(Ste) piRNAs by XXY mothers suffices to silence Ste mRNA and 
bypasses the requirement for phased piRNA production pathway in 
early male germ cells.

Discussion
The piRNA pathway is required for production of functional germ 
cells in animals. In species like Drosophila, whose germline is speci-
fied by maternally inherited determinants, the oocyte germ plasm 
contains piRNA•PIWI complexes that instruct their progeny to silence 
transposons antisense to the inherited piRNAs. Intergenerational 
continuity of the piRNA pathway in these species therefore relies on 
the continued passage of information through the germline. Such 
maternal inheritance is not possible for Y chromosome-encoded 
piRNAs, as females lack a Y chromosome. How can mothers instruct 
their sons to make piRNAs from precursors on the Y chromosome? 
Our data suggest that the D. melanogaster male germline relies on 
maternally deposited, transposon-derived piRNAs to trigger produc-
tion of Su(Ste) piRNAs antisense to Ste (Fig. 6f). The production of such 

Ste-silencing piRNAs is possible because piRNA-directed cleavage of 
an RNA triggers the production of tail-to-head strings of piRNA via 
the phased piRNA biogenesis pathway. This model explains how fly 
males make piRNAs for which no homologous piRNA guides can be 
deposited by mothers. Our study also reveals that abundant Su(Ste) 
piRNAs are produced before the onset of transcription of their target, 
Ste. Such spatiotemporal separation may be required for effective 
repression of Ste mRNA.

In the fly germline, the proteins Rhino and Kipferl bind heterochro-
matic piRNA-producing loci and initiate transcription of precursor 
transcripts from both genomic strands57,72–74. Promoter-independent, 
RNA polymerase II transcription of these dual-strand piRNA clusters 
occurs throughout each locus, ignoring splice sites and polyadenyla-
tion sequences75–78. This atypical transcription strategy maximizes 
production of transposon-targeting piRNAs. Su(Ste) piRNA biogenesis 
in the male germline is unlikely to involve such non-canonical tran-
scription of Su(Ste). First, our smFISH experiments detected Su(Ste) 
transcripts from only one genomic strand. Second, loss of rhi in fly 
males has no effect on Ste silencing56.

Taken together, our data suggest that the fly male germline has 
evolved a strategy that uses maternally supplied, transposon-derived 
piRNAs to generate Y chromosome-derived, Su(Ste) piRNAs that silence 
the selfish genetic element Ste. This strategy allows fly females to 
instruct their sons to produce piRNAs from sequences absent from 
the maternal genome. We speculate that this same mechanism may be 
used by mothers to protect their sons from selfish DNA in other animal 
species that deposit germline determinants in oocytes.
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Methods
Statistics and reproducibility
No statistical method was used to determine the sample size. For all 
biological samples, the maximum possible sample size (n = 3–90) was 
chosen for each type of data ensuring that variability arising from all 
accountable sources was incorporated in the analyses (day of data col-
lection, reagent lots, and experimenter). No data were excluded from 
the analyses. The experiments were not randomized, because this study 
did not involve treatment or exposure of animals to any agent. Instead, 
the goal of this work was to compare untreated wild-type/control flies 
and untreated mutant flies: all wild-type animals were compared with all 
mutant animals. The Investigators were not blinded to allocation dur-
ing experiments and outcome assessment. Blinding was not performed 
during data collection, because methods used for data acquisition 
(smFISH, western blotting, qRT–PCR and high-throughput sequencing) 
are not influenced by the experimenter’s knowledge of the fly genotype. 
Blinding was not performed during data analyses, because analyses 
were performed with the same automated algorithms and program-
ming code. During analyses, wild-type control and mutant datasets are 
also easily identified and are directly compared with another.

Fly husbandry and strains used
Flies (D. melanogaster strain w1118; 0–7 days old) were raised in standard 
Bloomington medium at 25 °C. The following stocks were obtained 
from the Bloomington Stock Center: C(1)RM/C(X:Y)y1f1w1, armi1, armi72.1, 
aubHN2, aubQC42, zucEY11457, Df(2L)BSC323, nos-gal4:VP16, bam-gal4:VP16, 
UAS-flag3-myc6-ago3 (ref. 80), UAS-gfp-aub, UAS-armi-gfp, UAS-dpp, and 
RNAi lines for armi: TRIP.GL00254, aub: TRIP.GL00076, ago3: TRIP.
HMC02938, vasa: TRIP.HMS00373, zuc: TRIP.GL00111. To generate 
UAS-gfp-Ste (SteXh:CG42398), cDNAs was synthetized (Invitrogen, 
sequence is provided in Supplementary Table 4), and inserted into 
UAST-gfp vector, after the gfp cDNA cassette, between BglII and XbaI 
sites. Transgenic lines carrying these transgenes were generated at 
BestGene.

To assay male fertility, a single male of indicated genotype 
(0–1 days old) was crossed to three y1w1118 virgin females (0–2 days 
old) at room temperature. Flies were removed after 7 days, and the 
number of progeny was scored.

Western blots
Testes (20 pairs per sample) were dissected and rinsed twice with 
0.1 M phosphate buffer saline pH 7.2 (PBS), snap frozen and kept at 
−80 °C until use. Testes were homogenized in 100 µl (PBS), supplied 
with c0mplete protease inhibitor + ethylenediaminetetraacetic acid 
(Roche), and mixed with 100 µl of 2× Laemmli Sample Buffer (Bio-Rad). 
Cleared lysates were separated on a 12% Tris-glycine gel (Thermo 
Scientific) and transferred onto polyvinylidene fluoride membrane 
(Immobilon-P, Millipore). Mouse anti-α-Tubulin (clone 4.3; 1:3,000) 
(Walsh 1984) was obtained from the Developmental Studies Hybridoma 
Bank. The generation of polyclonal anti-Ste antibody (used at 1:10,000) 
was outsourced to Covance and was produced by immunizing guinea 
pigs with KLH-conjugated Ac-KPVIDSSSGLLYGDEKKWC (53–70 amino 
acids of Ste). Horseradish peroxidase-conjugated goat anti-mouse 
IgG (115-035-003; 1:10,000; Jackson ImmunoResearch Laboratories) 
and anti-guinea pig IgG (106-035-003; 1:10,000; Jackson ImmunoRe-
search Laboratories) secondary antibodies were used. The signals 
were detected by Pierce ECL Western Blotting Substrate enhanced 
chemiluminescence system (Thermo Scientific).

smRNA-FISH
smRNA-FISH was conducted as described61. Testes from 2–3-day-old 
flies were dissected in 1× PBS, fixed in 4% formaldehyde in 1× PBS 
for 30 min, washed in PBS and permeabilized in 70% ethanol over-
night at 4 °C. The following day, testes were rinsed with wash buffer  
(2× saline-sodium citrate and 10% formamide) and hybridized 

overnight at 37 °C in hybridization buffer (2× saline-sodium citrate, 
10% dextran sulfate (Sigma, D8906), 1 mg ml−1 Escherichia coli tRNA 
(Sigma, R8759), 2 mM vanadyl ribonucleoside complex (NEB, S142), 
0.5% bovine serum albumin (Ambion, AM2618) and 10% formamide). 
Following hybridization, samples were washed three times in wash 
buffer for 20 min each at 37 °C and mounted in VECTASHIELD with 
4′,6-diamidino-2-phenylindole (DAPI, Vector Labs). Fluorescently 
labelled probes were added to the hybridization buffer to a final con-
centration of 100 nM. DNA oligo probes to detect Ste and Su(Ste) RNA 
were conjugated with Quasar 570, Cy3 or Cy5 fluorophores (Biosearch 
Technologies and IDT; for probe information, see Supplementary 
Table 5). Images were acquired using an upright Leica TCS SP8 confo-
cal microscope with a 63× oil immersion objective lens (numerical 
aperture 1.4) and processed using ImageJ.

qRT–PCR
Total RNA was isolated by Direct-zol RNA miniprep kit (Zymo Research) 
from biological triplicates of XY (100 testes per sample), XX or XXY 
gonads (60 ovaries per sample). Complementary DNA was generated 
by SuperScript III Reverse Transcriptase (Invitrogen) with random 
hexamer primers. qPCR of technical triplicates was performed using 
Power SYBR Green reagent (Applied Biosystems) and the following 
primer pairs. Gapdh: TAA ATT CGA CTC GAC TCA CGG T and CTC CAC 
CAC ATA CTC GGC TC, act5C: AAG TTG CTG CTC TGG TTG TCG and GCC 
ACA CGC AGC TCA TTG AG, Su(Ste): TTC CGA AGT CAA GCG CTT CAA 
TG and GGA ATC TGT TTA ATT GCA ACA AC. Ct values were normalized  
to Gapdh by the 2−ΔΔCt  method81. When calculating ∆Ct and ∆∆Ct,  
standard deviations (σ) were propagated in Microsoft Excel 2013 using 
the formula σx = √σ2y + σ2z .

TaqMan small RNA analysis
The abundance of the following piRNAs were quantified by TaqMan 
small RNA custom assays (Thermo Fisher Scientific): Su(Ste)-4 piRNA 
(target sequence: UCU CAU CGU CGU AGA ACA AGC CCG A), the most 
abundant Su(Ste) piRNA54: piR-dme-1643 piRNA (piRBase nomencla-
ture), target sequence: (TAA AGC GTT GTT TTG TGC TAT ACC C), a 
piRNA we found to be highly abundant in the ovary based on analysis 
of earlier small RNA sequencing data, and 2S ribosomal RNA (rRNA) 
(target sequence: UGC UUG GAC UAC AUA UGG UUG AGG GUU GUA), 
which we utilized in this study as control. Total RNA was isolated from 
biological triplicates of XX and XXY ovaries (60 per sample) by 
Direct-zol miniprep kit (Zymo Research). Reverse transcription and 
qPCR were performed following the manufacturer’s protocol using 
TaqMan MicroRNA Reverse Transcription Kit, and TaqMan Universal 
PCR Master Mix II, No UNG (Thermo Fisher Scientific). qPCRs were 
performed in technical triplicates with the appropriate controls. Ct 
values were normalized to 2S rRNA levels by the 2−ΔΔCt method81. When 
calculating ∆Ct and ∆∆Ct, standard deviations (σ) were propagated in 
Microsoft Excel 2013 using the formula σx = √σ2y + σ2z .

Small RNA-seq library preparation and analyses
Total RNA from fly ovaries or testis was extracted using the mirVana 
miRNA isolation kit (Thermo Fisher, AM1560). Small RNA libraries 
were constructed as described82 with modifications. Briefly, before 
library preparation, a spike-in RNA mix, an equimolar mix of six syn-
thetic 5′-phosphorylated RNA oligonucleotides (/phos/UGC UAG UCU 
UAU CGA CCU CCU CAU AG, /phos/UGC UAG UCU UCG AUA CCU CCU 
CAU AG, /phos/UGC UAG UCU UGU CAC GAA CCU CAU AG, /phos/UGC 
UAG UUA UCG ACC UUC AUA G, /phos/UGC UAG UUC GAU ACC UUC 
AUA G, /phos/UGC UAG UUG UCA CGA AUC AUA G), was added to each 
RNA sample to enable absolute quantification of small RNAs (Sup-
plementary Table 6). To reduce ligation bias and eliminate PCR dupli-
cates, the 3′ and 5′ adaptors both contained nine random nucleotides 
at their 5′ or 3′ ends, respectively (see below) and 3′ adaptor ligation 
reactions contained 25% (w/v) PEG-8000 final concentration (f.c.). 
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Total RNA was run through a 15% denaturing urea–polyacrylamide 
gel (National Diagnostics) to isolate 15–29-nt small RNAs and remove 
the 30-nt 2S rRNA. After overnight elution in 0.4 M NaCl followed 
by ethanol precipitation, small RNAs were oxidized (to clone only 
2′-O-methylated siRNAs and piRNAs) in 40 µl 200 mM sodium perio-
date, 30 mM borax, 30 mM boric acid (pH 8.6) at 25 °C for 30 min. 
After ethanol precipitation, small RNAs were ligated to 25 pmol  
3′ DNA adapter with adenylated 5′ and dideoxycytosine-blocked 3′ 
ends (/rApp/NNN GTC NNN TAG NNN TGG AAT TCT CGG GTG CCA 
AGG/ddC/) in 30 µl 50 mM Tris–HCl (pH 7.5), 10 mM MgCl2, 10 mM 
dithiothreitol (DTT) and 25% (w/v) PEG-8000 (NEB) with 600 U home-
made T4 Rnl2tr K227Q at 16 °C overnight. After ethanol precipitation, 
the 50–90-nt (14–54-nt small RNA + 36-nt 3′ unique molecular identi-
fier adapter) 3′-ligated product was purified from a 15% denaturing 
urea–polyacrylamide gel (National Diagnostics). After overnight 
elution in 0.4 M NaCl followed by ethanol precipitation, the 3′-ligated 
product was denatured in 13 µl water at 90 °C for 60 s, 1 µl 10 µM 
anti-2S oligo (TAC AAC CCT CAA CCA TAT GTA GTC CAA GCA-/3′ C3 
Spacer/; to suppress the ligation of 2S rRNA) and 1 µl 50 µM RT primer 
(CCT TGG CAC CCG AGA ATT CCA; to suppress the formation of 
5′-adapter:3′-adapter dimers) were added and annealed at 65 °C for 
5 min. The resulting mix was then ligated to a mixed pool of equimo-
lar amount of two 5′ RNA adapters (to increase nucleotide diversity 
at the 5′ end of the sequencing read: GUU CAG AGU UCU ACA GUC 
CGA CGA UCN NNC GAN NNU CAN NN and GUU CAG AGU UCU ACA 
GUC CGA CGA UCN NNA UCN NNA GUN NN) in 20 µl 50 mM Tris–HCl  
(pH 7.8), 10 mM MgCl2, 10 mM DTT, 1 mM ATP with 20 U of T4 RNA 
ligase (Thermo Fisher, EL0021) at 25 °C for 2 h. The ligated product 
was precipitated with ethanol, and cDNA synthesis was performed in 
20 µl at 42 °C for 1 h using AMV reverse transcriptase (NEB, M0277) 
and 5 µl RT reaction was amplified in 25 µl using AccuPrime Pfx DNA 
polymerase (Thermo Fisher, 12344024; 95 °C for 2 min, 15 cycles 
of: 95 °C for 15 s, 65 °C for 30 s, 68 °C for 15 s; forward primer: AAT 
GAT ACG GCG ACC ACC GAG ATC TAC ACG TTC AGA GTT CTA CAG 
TCC GA; reverse primer: CAA GCA GAA GAC GGC ATA CGA GAT XXX 
XXX GTG ACT GGA GTT CCT TGG CAC CCG AGA ATT CCA, where 
XXXXXX represents the 6-nt sequencing barcode). Finally, the PCR 
product was purified in a 2% agarose gel. Small RNA-seq libraries 
samples were sequenced using a NextSeq 550 (Illumina) to obtain 
79 nt, single-end reads.

The 3′ adapter (TGG AAT TCT CGG GTG CCA AGG) was removed 
with fastx toolkit (v0.0.14), PCR duplicates were eliminated as 
described83, and rRNA matching reads were removed with bowtie 
(parameter -v 1; v1.0.0) against D. melanogaster set in SILVA database84. 
Deduplicated and filtered data were analysed with Tailor85 to account 
for non-templated tailing of small RNAs. Sequences of synthetic RNA 
spike-in oligonucleotides were identified allowing no mismatches with 
using bowtie (parameter -v 0; v1.0.0), and the absolute abundance 
of small RNAs calculated. The background for Z10 calculation was all 
displayed data except position 10.

RNA-seq library preparation and analyses
Total RNA from sorted germ cells was extracted using the mirVana 
miRNA isolation kit (ThermoFisher, AM1560). Before library prepara-
tion, to remove rRNA, 1 µg total RNA was hybridized in 10 µl to a pool 
of 186 rRNA antisense oligos (0.05 µm f.c. each) in 10 mM Tris–HCl (pH 
7.4), 20 mM NaCl by heating the mixture to 95 °C, cooling at −0.1 °C s−1 
to 22 °C, and incubating at 22 °C for 5 min. RNase H (10 U; Lucigen, 
H39500) was added and the mixture incubated at 45 °C for 30 min in 
20 µl containing 50 mM Tris–HCl (pH 7.4), 100 mM NaCl and 20 mM 
MgCl2. The reaction volume was adjusted to 50 µl with 1× TURBO DNase 
buffer (ThermoFisher, AM2238) and then incubated with 4 U TURBO 
DNase (ThermoFisher, AM2238) for 20 min at 37 °C. Next, RNA was 
purified using RNA Clean & Concentrator-5 (Zymo Research, R1016) to 
retain ≥200-nt RNAs, followed by the stranded, dUTP-based RNA-seq 

protocol described in ref. 86 using adapters with unique molecular 
identifiers from ref. 83. RNA-seq libraries were sequenced using a 
NextSeq 550 (Illumina) to obtain 79 + 79 nt, paired-end reads.

RNA-seq analysis was performed using piPipes for genomic align-
ment87. Briefly, before starting piPipes, sequences were reformatted to 
extract unique molecular identifiers83. The reformatted reads were then 
aligned to rRNA using bowtie2 (v2.2.0). Unaligned reads were mapped 
to the dm6 assembly using STAR (v2.3.1), and PCR duplicates removed83. 
Transcript abundance was calculated using StringTie (v1.3.4). Dif-
ferential expression analysis was performed using DESeq2 (v1.18.1).

Cloning and sequencing of 5′-monophosphorylated long 
RNAs
Total RNA from fly ovaries or testis was extracted using mirVana miRNA 
isolation kit (ThermoFisher, AM1560) and used to prepare a library of 
5′-monophosphorylated long RNAs as described82 with modifications. 
Briefly, to deplete rRNA, 1 µg total RNA was hybridized in 10 µl to a pool 
of rRNA antisense oligos (0.05 µm f.c. each) in 10 mM Tris–HCl (pH 7.4), 
20 mM NaCl by heating the mixture to 95 °C, cooling it at −0.1 °C s−1 
to 22 °C, and incubating at 22 °C for 5 min. RNase H (10 U; Lucigen, 
H39500) was added and the mixture incubated at 45 °C for 30 min in 
20 µl containing 50 mM Tris–HCl (pH 7.4), 100 mM NaCl and 20 mM 
MgCl2. The reaction volume was adjusted to 50 µl with 1× TURBO DNase 
buffer (ThermoFisher, AM2238) and then incubated with 4 U TURBO 
DNase (ThermoFisher, AM2238) for 20 min at 37 °C. Next, RNA was 
purified using RNA Clean & Concentrator-5 (Zymo Research, R1016) 
to retain ≥200-nt fragments. RNA was then ligated to a mixed pool of 
equimolar amounts of two 5′ RNA adapters (to increase nucleotide 
diversity at the 5′ end of the sequencing read: GUU CAG AGU UCU ACA 
GUC CGA CGA UCN NNC GAN NNU CAN NN and GUU CAG AGU UCU ACA 
GUC CGA CGA UCN NNA UCN NNA GUN NN) in 20 µl of 50 mM Tris–HCl 
(pH 7.8), 10 mM MgCl2, 10 mM DTT and 1 mM ATP with 60 U of High 
Concentration T4 RNA ligase (NEB, M0437M) at 16 °C overnight. The 
ligated product was isolated using RNA Clean & Concentrator-5 (Zymo 
Research, R1016) to retain ≥200-nt RNAs and reverse transcribed in 
25 µl with 50 pmol RT primer (GCA CCC GAG AAT TCC ANN NNN NNN) 
using SuperScript III (ThermoFisher, 18080093). After purification with 
50 µl Ampure XP beads (Beckman Coulter, A63880), cDNA was PCR 
amplified using NEBNext High-Fidelity (NEB, M0541; 98 °C for 30 s; four 
cycles of: 98 °C for 10 s, 59 °C for 30 s, 72 °C for 12 s; six cycles of: 98 °C 
for 10 s, 68 °C for 10 s, 72 °C for 12 s; 72 °C for 3 min; with the following 
primers: CTA CAC GTT CAG AGT TCT ACA GTC CGA and GCC TTG GCA 
CCC GAG AAT TCC A). PCR products between 200 bp and 400 bp were 
isolated with a 1% agarose gel, purified with QIAquick Gel Extraction Kit 
(Qiagen, 28706), and amplified again with NEBNext High-Fidelity (NEB, 
M0541; 98 °C for 30 s; 3 cycles of: 98 °C for 10 s, 68 °C for 30 s, 72 °C for 
14 s; six cycles of: 98 °C for 10 s, 72 °C for 14 s; 72 °C for 3 min; forward 
primer: AAT GAT ACG GCG ACC ACC GAG ATC TAC ACG TTC AGA GTT 
CTA CAG TCC GA; reverse primer: CAA GCA GAA GAC GGC ATA CGA GAT 
XXX XXX GTG ACT GGA GTT CCT TGG CAC CCG AGA ATT CCA, where 
XXXXXX represents the 6-nt sequencing barcode). The PCR product 
was purified in a 1% agarose gel and sequenced using a NextSeq 550 to 
obtain 79 + 79 nt, paired-end reads.

Sequencing data was aligned to the fly genome (dm6) with 
piPipes87. Briefly, before starting piPipes, sequences were reformat-
ted to remove the degenerate portion of the 5′ adapter (nucleotides 
1–15 of read 1). The reformatted reads were then aligned to fly rRNA 
using bowtie2 (v2.2.0). Unaligned reads were mapped to the fly genome 
(dm6) using STAR (v2.3.1), alignments with soft clipping of ends were 
removed with SAMtools (v1.0.0), and reads with the same 5′ end were 
merged to represent a single 5′-monophosphorylated RNA species.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.
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Data availability
Sequencing data generated in this study have been deposited in the 
National Center for Biotechnology Information Short Read Archive 
database under accession code PRJNA879723. Fly genome sequence 
and annotation (build dm6/BDGP6.22 release 98) used in this study 
were downloaded from Ensembl at ftp://ftp.ensembl.org/pub/
release-98/fasta/drosophila_melanogaster/ and ftp://ftp.ensembl.
org/pub/release-98/gtf/drosophila_melanogaster/; fly rRNA sequences 
were downloaded from SILVA rRNA database at https://www.arb-silva.
de/. Source data are provided with this paper. All other data supporting 
the findings of this study are available from the corresponding authors 
upon request.

Code availability
Code used in this work is deposited at https://github.com/ildargv/
Venkei_et_al_2023.
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Extended Data Fig. 1 | Expression of sense and anti-sense Su(Ste) precursor 
RNA in testis. a, b, smRNA-FISH for sense (red) and antisense (green) Su(Ste) 
precursor transcripts in the apical tip of the testis (a, lower magnification;  
b, higher magnification, not the same tissue). Hub (*), DAPI (blue). Bar: 20 µm  

in a, 5 µm in b. c, Metaplot of stranded RNA-seq coverage in Su(Ste) loci 
(Supplementary Table 1). The data are shown for three independent biological 
samples. Source numerical data are available in source data.
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Extended Data Fig. 2 | Su(Ste) piRNA precursor accumulates in zuc mutant 
testis. a, b, Representative images of smRNA-FISH for antisense Su(Ste) 
precursor RNAs (green) in adult testes of the indicated genotypes. Arrows point 

to cytoplasmic precursor RNAs; arrowheads point to nuclear transcripts. DAPI 
(blue), bars 20 µm (a and b) and 5 µm (a′ and b′). Experiments were repeated 
three times with similar results.
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Extended Data Fig. 3 | Su(Ste) piRNA precursor is not upregulated upon 
knockdown of aub, vasa, ago3, or piwi. a–d, Su(Ste) piRNA precursor transcript 
testes of the indicated genotypes. Magnified regions of the niche are shown in 
a′, b′, c′, d′. The region of GSCs/SGs is indicated by a yellow dotted line, SC region 
by cyan lines. Arrowheads point to nuclear transcripts. Hub (*), DAPI (blue), bars 

20 µm (a–d) and 5 µm (a′–d′). e, Bias in nucleotide composition (sequence logo) 
of transposon- and Su(Ste)-derived (Supplementary Table 1) piRNAs in control 
testis from 0–5-day-old y1w1118/Y; nos-gal4:VP16 males. The data are the mean 
of two independent biological samples. Source numerical data are available in 
source data.
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Extended Data Fig. 4 | Long 5′ monophosphorylated RNAs from piRNA 
producing loci 42AB and petrel and from nos, bam, bgcn genic loci.  
a, Frequency of 0–20-nt overlaps between 5′ monophosphorylated long RNAs 
and piRNAs on opposite genomic strands in control testis from 0–5-day-old 
y1w1118/Y; nos-gal4:VP16 males. The standard score (number of standard deviations 
from the mean) and the corresponding p value (two-sided Z-test) of the  

10-nt overlap (Z10) is shown. Data are for all possible permutations of two small 
RNA data sets and two 5′ monophosphorylated long RNA data sets (n = 2 × 2 = 4). 
b, Change in steady-state abundance of 5′ monophosphorylated long RNA data 
sets in nos>armiRNAi males (n = 2 for control; n = 2 for nos>armiRNAi) and in zucEY11457/− 
mutants (n = 3 for control; n = 3 for zucEY11457/−); p values are shown for the two-
sided Mann-Whitney test. Source numerical data are available in source data.
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Extended Data Fig. 5 | Su(Ste) precursor transcripts and piRNAs in XXY 
ovaries. a, b, Germaria and early egg chambers of XX (a) and XXY (b) females 
with magnified inserts of germaria shown in a′ and b′. Antisense Su(Ste) piRNA 
precursor transcript (green), DAPI (blue), bars 20 µm. c, Relative abundance of 

act5C mRNA and antisense Su(Ste) piRNA precursor transcript in XX and XXY 
ovaries, and in XY testis, determined by qRT-PCR, normalized to Gapdh (n = 3). 
Boxplots show the median and interquartile range (IQR). Source numerical data 
are available in source data.
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Extended Data Fig. 6 | gfp-Ste reporter is silenced in the ovary of XXY females. Representative images of GFP (green) in testis from XY males (a–c) or germaria from 
XX (d–f) or XXY (g–h) females. DAPI (blue), bars 20 µm. Asterisk indicates the hub in a–c. Experiments were repeated three times with similar results.
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Extended Data Fig. 7 | Repression of Ste protein in armiRNAi males from XXY mothers. Representative images of Anti-Ste and anti-Tubulin Western blotting of testes 
from the indicated genotypes. Source numerical data and unprocessed blots are available in source data. Experiments were repeated twice with indistinguishable 
results.
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Extended Data Fig. 8 | Su(Ste) piRNAs make Ste piRNAs in XXY ovaries.  
a, Nascent transcripts (GRO-seq) at a Ste locus in w1 XX ovaries. Data are from  
ref. 79 for all (uniquely and multiply mapping) reads without apportioning to 
other Ste loci. b, Length profile of Ste-derived small RNAs in XXY ovaries. The data 
are the mean of three independent biological samples. c, Ping-pong signature—

that is, frequent 10-nt overlap on opposite genomic strands—between Su(Ste) and 
Ste-derived piRNAs in XXY ovaries. The data are the mean of three independent 
biological samples. The standard score (number of standard deviations from the 
mean) and the corresponding p value (two-sided Z-test) of the 10-nt overlap (Z10) 
is shown. Source numerical data are available in source data.
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