El-Shami et al. Supplementary Material

Supplementary Methods.

Methods in sequence analysis

Sequence alignments were carried out using either the BLASTN or PSI-BLAST programmes (Altschul et al. 1997).

Methylation detection assays

Genomic DNA was extracted from leaves using the Wizard Genomic kit (Promega) and was digested with the methylation-sensitive enzyme *HaeIII*. The *AtSN1* PCR-based methylation assay was performed as described (Pontier et al. 2005). The 5S rDNA Southern was performed on 0.2 μ g of genomic DNA digested by the methylation-sensitive enzyme *HaeIII* and separated on 0.9 % agarose gel. After blotting on Hybond N⁺ membranes (Amersham Pharmacia Biotech Inc.), hybridization was performed in PerfectHyb solution (Sigma-Aldrich) following the supplier's instructions, with the transcribed region of the 5S rDNA gene.

Supplementary Table.

Table 1. Primers

Name	Sequence
204	GGATCCCCGACTTCTGACGTTTGGGGG
205	GTCGACAGGCTGAGACTGTTCTTCCC
354	AAGCTTGGTATGATATCATCTGATACTTCATTTTGGAG
456	GTCGACATGGAGGAAGAATCTACATCAGAGATTCTTGAC

457	CCATGGGAGGCTGAGACTGTTCTTCCCC
458	CCATGGGCTGTCTCGTTGCTGTAAACATGGG
466	GGATCCGTCGACCCCTAACGAGCGAAAATCACACACCAGCG
518	GGATCCCCTAGGCCAGCTAGATCTGAG
543	GGATCCGTAAACAGAACTGACTTAGATCCACG
544	GTCGACGTTGTATTTGCTTGGATCTCCCCAAGC
545	GATCTTCGGACAAGAAGAATTCGGAAACTGAATCGGGTCCAGCTGCTTGGG
546	GATCCCCAAGCAGCTGGACCCGATTCAGTTTCCGAATTCTTCTTGTCCGAA
547	GATCTTCGGACAAGAAGAATTCGGAAACTGAATCGGGTCCAGCTGCTTTCG
548	GATCCGAAAGCAGCTGGACCCGATTCAGTTTCCGAATTCTTCTTGTCCGAA
557	GGATCCAGCTGGGATGCATTTCC
558	GTCGACTTGCAGTTTATCATTCCAGCC
579	GATCTTCGGACAAGAAGAATTCGGAAACTGAATCGGGTCCAGCTGCTTGGG
580	GATCCCCAAGCAGCTGGACCCGATTCAGTTTCCGAATTCTTCTTGTCCGAA
581	GGATCCCCATGGCTCGAGCCTAGGCCACCTAGATCTGAGG
582	ACATGTGAGGCTGAGACTGTTCTTCCCC
621	GGATCCCCATGGGTAAACAGAACTGACTTAGATCCACG
622	TCTAGGTGGCCTAGGGTTGTATTTGCTTGGATCTCCCCAAGC
623	CCAAGCAAATACAACCCTAGGCAACCTAGATCTGAGG
658	CCATGGTGTCGTGGATATGACCATTTGAAGG
661	GATCTAAGGACCAGGCTAATCCAGAAGACTCTTCTAAGACTGGAGGATGGTCTG
662	GATCCAGACCATCCTCCAGTCTTAGAAGAGTCTTCTGGATTAGCCTGGTCCTTA
663	GATCTAAGGACCAGGCTAATCCAGAAGACTCTTCTAAGACTGGAGGATTCTCTG
664	GATCCAGAGAATCCTCCAGTCTTAGAAGAGTCTTCTGGATTAGCCTGGTCCTTA

Supplementary Figures.

Figure S1. Functional and biochemical analysis of the truncated mutant NRPD1b/ Δ SD. (*A*) The amino acid sequence of the linker separating the CD from the evolutionary conserved box H is indicated for NRPD1a/b and NRPD1b/ Δ SD. (*B*) Transgene rescue of 5S rDNA methylation in *nrpd1b-11* mutant. Southern blot analysis of 5S rDNA digested with methylation-sensitive restriction enzyme *HaeIII* and hybridized to a 5S probe (DNA was extracted from pooled samples of the T1 transgenic lines shown in figure 1C). *Figure S2.* The SD of AtNRPD1b is highly divergent and has a WG/GW repeat signature sequence. (*A*) Schematic representation of the Arabidopsis and spinach NRPD1b proteins. AtNRPD1b shows low sequence identity to SoNRPD1b in the SD (red) but not in the N-terminal RPB1-like region (blue) and the C-terminal CD (green). (*B*) Alignment of AtNRPD1b and SoNRPD1b CTDs. The WG/GW repeats present in the homologuous region are highlighted in red. The color code is the same as in A.

Figure S3. A WG motif is located in a highly conserved region of the imperfect 16-aa repeats of the extended CTD of AtNRPD1b. The repeated motifs of the AtNRPD1b CTD were aligned and the conserved WG motif is highlighted in grey.

Figure S4. The SD of AtNRPD1b is highly divergent and has a WG/GW repeat signature sequence. (*A*) Schematic representation of the Arabidopsis and rice NRPD1b proteins. AtNRPD1b shows low sequence identity at an amino acid level to OsNRPD1b in the SD (red) but not in the N-terminal NRPB1-like region (blue) and the C-terminal CD (green). (*B*) Alignment of AtNRPD1b and OsNRPD1b CTDs. The WG/GW repeats present in the homologuous region are highlighted in black. The color code is the same as in A.

Figure S5. Amino acid composition of GW-rich regions from AtNRPD1b and HsGW182. Amino acid content, as a percentage of molecular mass, was calculated for the GW/WG-rich regions described in the manuscript. Global amino acid percentages were obtained from the Codon Usage Database (http://www.kazusa.or.jp/codon/). Column 4 shows the number of residues for each amino acid, column 5 the percentage of

molecular mass, column 6 the percentages for Arabidopsis or man from the Codon Usage Database (based on NCBI-GenBank Flat File Release 156.0 [October 15 2006]) and column 7 the ratio % in specific protein/global % of molecular mass. Amino acids are ordered by physico-chemical properties. Overrepresented residues in specific proteins are overlined in red, underrepresented residues in blue.

A

В

HaeIII

Α							=	CTD	=	
	AtNR	PD1b						SD	CD	
				6	51%			23%	50%	
	SoNR	PD1b						SD	CD	
_										
B	1215	CHCKBUDI	ICHCROPP	TTUNOV	POCT DD	VPPMDU	VOPT ON		TUCCI	CROUMPR
ACDID	1215	SWGKRV -	GTG++F+	LLW K	E + D	K TDV	Y+FL +V	7 S +	11 1 2 2 2 2	G D+
SODID	1015	-SWGKRVS1	IGTGAKFD	LLWETK	EIEMAD	K-PTDV	YNFLHL	SSANEEEV	/DSGGI	JGEDI
AtD1b	1275	EMAEWAES + +	PERDSAL + AL	GEPKFE	DSADFQI + A F+	NLHDEG + G	KPSGANV S	EKSSSWDN SSWD	IGCSGO S (;SE <u>WG</u> VSK G+ W +K
SoD1b	1071	ESFEKE	VYMEPAL	-SPEQE	NKAVFE	ETLEIG	VDSDITC	ADESSWDA	FPSSC	T <u>GW</u> NANK
AtD1b	1335	STGGEANI	ESNW	-EKTTN	VEKEDA-	W	SSWNTRP	DAQESSKS	DSGG-	<u>AWG</u> +WG
SoD1b	1128	IDTGSGS2	EGGWSSW	GSKKDQ	ANPEDS	SKTG <u>GW</u>	SSGGSK	KPQPEDSS	KSGG	DASKSWG
AtD1b	1381	IKTKDADA	DTTPNWE	TSPAPK	DSIVPE	NNEPTS	DV	GHKS	SDKS	DKKNWGT
SoD1b	1188	GSNQ0	DPSPVWG	QPVKAT	NDISIE	NDHGSG	SAEGGG	ANSGMKKI	DLSKQE	INSSTAGE
AtD1b	1434	ESAPAAW	STD	AAV <u>WG</u> S:	SDK	KN	SETESDA	AAWGSRDF	NNSD	/GSGAGVL
SoD1b	1245	A +W WDASKSWS	+ GSKPKDP	++ <u>WG</u> + SSA <u>WG</u> A	K GKKTDDI	K NN <u>GW</u> KK	S+++ D SDSKKDI	A+ D ASGSVEDO	S GCS <u>GV</u>	G +L IGPKKDLL
AtD1b	1483	GP	WNKKS	SETESN	GATWGS-			SDK1	KSGA	AAWNS
SoD1b	1305	P QPEDSAGE	W	S+++ SKSKEP:	+ <u>WG</u> SSAWGKI	PAQETD	NIGWKKN	+	G 4 ILEGTS	- WN SGWNDKLQ
AtD1b	1515	WDKKNIET	DSEPAA-	WGSO	G	-		~	-KKNS	SETESGPA
SoD1b	1365	+ K+	S+PA+		G	STOROU	FRONEKT	WOVASNUS	KK+4	+ ++G
AtD1b	1545	AWGAWDKE	KSETEPG	PAGWGM	GDKKNS	RTELG-	PAZ	MG		
Coplb	1405	+₩ ++	+ + +P	WG	K +	G	P 4	G		
SOUTE	1425	SWKKNEUL	EKUGDPQ	GLPWGK	SHKSSD	SWISGQ	GNQHPV2	QGVSERQU	TLSS	GOPRDSS
AtDID	1582			NI +1	WDKKKSI WD KK ·	91 ++	KSGI + G	AAWG + W		ST+
SoD1b	1485	QKNNNENG	VSSNFNR	QGAGKSI	WDSKKK	ESNVQS	SWAQQGI	STWKDSKE	ARSSV	/KANNSTN
AtD1b	1602		А +	AA <u>WG</u> SSI ++WGS	DKNNSE	PESDAA +S+	A <u>WG</u> SRNP + G N	KTSEIESC E C	AGAWO	<u>}</u>
SoD1b	1545	SGGWSTG	ALVDGVS	SSWGSQ	KEDRPQ	PKSNDR	SVGDGNE	DKDAKEEG	LSSWI	AKKVERK
AtD1b	1640	SWGQI	SPT				AEI	KDTNEDD-	-RNPW	IVSL
SoD1b	1605	TQSSWGQI	SESKNSA	QSSADH	WGSDKS1	QPGKS	SGWGSEI	TNAGKDSE	KQDS	KSNVST
AtD1b	1666	KETKSREP	DDKE	RSQWGN	PA	-KKFPS	SG-GWSN	GGGADWK	NRNHI	2P
SoD1b	1665	WKKESGEN	LHGSDDS	QSPWGQ	PGGS <u>GW</u>	NKKQPE	GGRGWGS	SNTGEWKS	RKNQN	QNQNQNQ
AtD1b	1711	-RPPRSEI	NLAPM	FTATRO	RLDSFT	SEEQEL	LSDVEPV	MRTLRKIN	HPSAY	PDGDPIS
SoD1b	1725	NRPPR 4	++ +P IDDSPRVA	TATR+1	RHDEFP	+SE+++	LSEVESI	MQSIRRIN	IH S (HQSGC	DG+P+ CVDGEPLL
AtD1b	1768	DDDKTFVI	EKILNFH	POKETK		FITVDK	HTIFSDS	RCFFVVS	DGAK	DFSYRKS-
SoD1b	1785	PDDQTYLI	DNILNYH	PDKAAK	IGAGVD	FITVKK	HSNFQES	RCFYVVS	DGKD	DFSYIKC-

AtNRPD1b repeats

1427-DKKNWGTESAPAA	WG	S-1442
1452-DKKNSETESDAAA	WG	S-1467
1486-NKKSSETESNGAT	WG	S-1501
1516-DKKNIETDSEPAA	WG	S-1531
1533-GKKNSETESGPAA	WG	A-1548
1550-DKKKSETEPGPAG	WG	M-1565
1567-DKKNSETELGPAA	Me	N-1582
1584-DKKKSDTKSGPAA	WG	S-1599
1609-DKNNSETESDAAA	WG	S-1624
1626-NKKTSEIESGAGA	WG	S-1641

Consensus DKKNSETESgPAAWGS

Α CTD = AtNRPD1b SD CD 50% 61% 23% CD OsNRPD1b SD в AtD1b 1188 -LIAPRKCFEKAAEKCHTDSLSTVVGSCSWGKRVDVGTGSQFELLMNQKETGLDDKEETDV LI PKCFEKAAEKCHHDSL VV SCSWKK GTGS 2++LNN+ + + + OsD1b 1199 -LITPHKCEFEKAAEKCHBDSLGCVVSSCSWKHAASGTGSSFQLIMNEBQLKENKERGODL AtD1b 1248 YSFLQMVISTTNADAFVSSPGFD-VTEEEMAEWAESPERDSALGEPKFEDSADFQNLH--Y +L +V + + D + EE A+ SPE D +G+P F+D+ + Q++ OsD1b 1259 YDYLALVRTDEEKARYTFFDDVDYLAEENEADVCLSPELDGTIGQPIFDDNLEEQDVQNN AtD1b 1305 ---DEGKPSGANWEKSSS-----WD--NGCSGGSEWOVSKSTGGEANPESNWEKTTNV D G + + + + S W N + G++G++K W+ Y OsD1b 319 SWIDSCTTINAMEKONSGANDEDIKKGOWTDAAGADTOUTKPNN---QCNSCWUVPATV Atdlb 1353 EKEDA-WSSWNTRKDAQESSKSDSGG---ANGIKTKDADADTTPNWETSPAPKDSIVPEN EK + W W T K ++ S+ AN ++ D +++ K S + Osdlb 1376 EKSSSDMGGWGTEKAKEKEKISEEPAQHDANSVQGPKRATDGGASNK-----KQSSTQND AtD1b 1409 NEPTSDVMGHKSVSDKSWDKKNMGTESAPAAMGSTDAAVMGSSDKKNEPTESDAA-----+ G S + SW+K N + 460 + +10 + 10 + 20 AA AtD1b 1464 ---AMGSRDKINSDVGSGAGVLGPWNKKSSETENGATWGSSDKTXSGAAAMNSMDKKNI +WG+ SD A N SS+T+++ G A N+ 0sD1b 1486 TEKSWGNVTASPSDNAWSAAPVSQGN-GSSDTKQSDSWOGKKSASVDKAINKDKESLGNV AtD1b 1521 ETDSEPANGC-----SQGKKNSETESGPAAMGAW------DKKKSE-----TEPGPAG 0aD1b 1545 PASPSGAMESPYSQGMESDARGS-SWOGKKSAGVDKAINKKKSLGKVPASPSPSA AtD1b 1563 <u>MGMGDKKNSETELGPAAMGNWDKKKS----</u> W L +WD KS D+ +MG+ A +AW ++ + OsD1b 1604 WNAAPVSQGNERLDAKQSDSWDGWKSAGVDDSVKDKESMGNVPASPSDSANNAAPVSQGN Atolb 1615 TESDAA------ANGSRNKKTSEIESGAGANGSNG-QPSPTAEDKOTNEDDRNPHVSLKE SDA W S +NG+ PS +A + W S + Obdlb 1664 ESSDAKQSDSWDGWKSAGVDAS-TNKDKESMCNVPASPSDSANNAAPVSQCDDVWNSAEA AtD1b 1668 TKSREKDDKERSOMGNPAKKFPSSOMSNGGADWKGNRNHTPRPRSEDNLA----PMF +SR KD K S GM GG 4H-G RN+ RPPR D P OsD1b 1723 MESNNCDVK------SOMGMARG--MPROCONNFGREPREPDCRGLPRRPDC AtD1b 1724 TATRORLDSFTSEEQELLSDVEPVMRTLRKIMHPSAYPDGDPISDD0XFFVLEKILNFHP +R T+EE+++1 +EP ++RXI S D +S +D+ F* E+ L+ HP OsD1b 1766 RGPPRAHFUDTAREEXILGETEFTVLSTRKTPRESI--DSLKDF0EPCHENKULEHHP

AtD1b 1784 QKETKLGSGVDFITVDKHTIFSDSRCFFVVSTDGAKQDFSYRKSLNNYLMKKYPDRAEEF +K++K* +b I UDKH +F DSRC FVVS+DG + DFSY K + N++ K YF+ + F OsD1b 1826 EKGSKVSGEUENHVDKRYFQRSDSRCLFVVSSDTSSFSYLKACHENFVRKTPFHCDSF
 AtD1b
 1844
 IDKYFTKPRPS-GNRDRNNQDATPPGEEQS-KYF + R
 D
 TF G
 QS

 OsD1b
 1886
 CKKYFKRRDQPFAADGGTAPGTPAGATQS

AtNRPD1b code aa

AtNRPD	1b					
code	aa	name	n	NRPD1b (%)	global (%)	D1b/global
м	met	methionine	2	0,5	2,45	0,2
1	ile	isoleucine	- 4	1,1	5,26	0,21
L	leu	leucine	3	0,8	9,35	0,09
v	val	valine	9	2,5	6,74	0,37
F	phe	phenylalanine	1	0,3	4,25	0,07
Y	tyr	tyrosine			2,83	0
W	trp	tryptophan	29	7,9	1,25	6,32
G	gly	glycine	39	10,7	6,58	1,63
A	ala	alanine	40	11	6,51	1,69
S	ser	serine	54	14,8	8,93	1,66
т	thr	threonine	26	7,1	5,12	1,39
С	cys	cysteine	-	-	1,77	0
Р	pro	proline	19	5,2	4,88	1,07
D	asp	aspartic acid	31	8,5	5,38	1,58
E	glu	glutamic acid	31	8,5	6,65	1,28
N	asn	asparagine	24	6,6	4,32	1,53
к	lys	lysine	42	11,5	6,35	1,81
R	arg	arginine	6	1,6	5,4	0,3
Q	gin	glutamine	4	1,1	3,46	0,32
н	his	histidine	1	0.3	2.25	0.13

HsGW182

code	aa	name	n	GW182 (%)	global (%)	GW182/global
М	met	methionine	5	0,9	2,21	0,41
1	ile	isoleucine	13	2,3	4,42	0,52
L	leu	leucine	15	2,7	10,02	0,27
v	val	valine	16	2,9	6,08	0,48
F. Contraction	phe	phenylalanine	3	0,5	3,79	0,13
Y	tyr	tyrosine	2	0,4	2,74	0,15
W	trp	tryptophan	35	6,3	1,32	4,77
G	gly	glycine	75	13,5	6,6	2,05
A	ala	alanine	30	5,4	6,97	0,77
S	ser	serine	84	15,1	8,1	1,86
т	thr	threonine	42	7,6	5,31	1,43
С	cys	cysteine	4	0,7	2,31	0,3
P	pro	proline	40	7,2	6,11	1,18
D	asp	aspartic acid	34	6,1	4,7	1,3
E	glu	glutamic acid	31	5,6	6,84	0,82
N	asn	asparagine	45	8,1	3,6	2,25
К	lys	lysine	34	6,1	5,62	1,09
R	arg	arginine	17	3,1	5,68	0,55
Q	gIn	glutamine	27	4,9	4,64	1,06