El-Shami et al. Supplementary Material

Supplementary Methods.

Methods in sequence analysis

Sequence alignments were carried out using either the BLASTN or PSI-BLAST programmes (Altschul et al. 1997).

Methylation detection assays

Genomic DNA was extracted from leaves using the Wizard Genomic kit (Promega) and was digested with the methylation-sensitive enzyme *HaeIII*. The *AtSN1* PCR-based methylation assay was performed as described (Pontier et al. 2005). The 5S rDNA Southern was performed on 0.2 μ g of genomic DNA digested by the methylation-sensitive enzyme *HaeIII* and separated on 0.9 % agarose gel. After blotting on Hybond N⁺ membranes (Amersham Pharmacia Biotech Inc.), hybridization was performed in PerfectHyb solution (Sigma-Aldrich) following the supplier's instructions, with the transcribed region of the 5S rDNA gene.

Supplementary Table.

Table 1. Primers

Name	Sequence
204	GGATCCCCGACTTCTGACGTTTGGGG
205	GTCGACAGGCTGAGACTGTTCTTCCC
354	AAGCTTGGTATGATATCATCTGATACTTCATTTTGGAG
456	GTCGACATGGAGGAAGAATCTACATCAGAGATTCTTGAC

457	CCATGGGAGGCTGAGACTGTTCTTCCCC
458	CCATGGGCTGTCTCGTTGCTGTAAACATGGG
466	GGATCCGTCGACCCCTAACGAGCGAAAATCACACACCAGCG
518	GGATCCCCTAGGCCAGCTAGATCTGAG
543	GGATCCGTAAACAGAACTGACTTAGATCCACG
544	GTCGACGTTGTATTTGCTTGGATCTCCCCAAGC
545	GATCTTCGGACAAGAAGAATTCGGAAACTGAATCGGGTCCAGCTGCTTGGG
546	GATCCCCAAGCAGCTGGACCCGATTCAGTTTCCGAATTCTTCTTGTCCGAA
547	GATCTTCGGACAAGAAGAATTCGGAAACTGAATCGGGTCCAGCTGCTTTCG
548	GATCCGAAAGCAGCTGGACCCGATTCAGTTTCCGAATTCTTCTTGTCCGAA
557	GGATCCAGCTGGGATGCATTTCC
558	GTCGACTTGCAGTTTATCATTCCAGCC
579	GATCTTCGGACAAGAAGAATTCGGAAACTGAATCGGGTCCAGCTGCTTGGG
580	GATCCCCAAGCAGCTGGACCCGATTCAGTTTCCGAATTCTTCTTGTCCGAA
581	GGATCCCCATGGCTCGAGCCTAGGCCACCTAGATCTGAGG
582	ACATGTGAGGCTGAGACTGTTCTTCCCC
621	GGATCCCCATGGGTAAACAGAACTGACTTAGATCCACG
622	TCTAGGTGGCCTAGGGTTGTATTTGCTTGGATCTCCCCAAGC
623	CCAAGCAAATACAACCCTAGGCAACCTAGATCTGAGG
658	CCATGGTGTCGTGGATATGACCATTTGAAGG
661	GATCTAAGGACCAGGCTAATCCAGAAGACTCTTCTAAGACTGGAGGATGGTCTG
662	GATCCAGACCATCCTCCAGTCTTAGAAGAGTCTTCTGGATTAGCCTGGTCCTTA
663	GATCTAAGGACCAGGCTAATCCAGAAGACTCTTCTAAGACTGGAGGATTCTCTG
664	GATCCAGAGAATCCTCCAGTCTTAGAAGAGTCTTCTGGATTAGCCTGGTCCTTA

Supplementary Figures.

Figure S1. Functional and biochemical analysis of the truncated mutant NRPD1b/ Δ SD. (*A*) The amino acid sequence of the linker separating the CD from the evolutionary conserved box H is indicated for NRPD1a/b and NRPD1b/ Δ SD. (*B*) Transgene rescue of 5S rDNA methylation in *nrpd1b-11* mutant. Southern blot analysis of 5S rDNA digested with methylation-sensitive restriction enzyme *HaeIII* and hybridized to a 5S probe (DNA was extracted from pooled samples of the T1 transgenic lines shown in figure 1C). *Figure S2.* The SD of AtNRPD1b is highly divergent and has a WG/GW repeat signature sequence. (*A*) Schematic representation of the Arabidopsis and spinach NRPD1b proteins. AtNRPD1b shows low sequence identity to SoNRPD1b in the SD (red) but not in the N-terminal RPB1-like region (blue) and the C-terminal CD (green). (*B*) Alignment of AtNRPD1b and SoNRPD1b CTDs. The WG/GW repeats present in the homologuous region are highlighted in red. The color code is the same as in A.

Figure S3. A WG motif is located in a highly conserved region of the imperfect 16-aa repeats of the extended CTD of AtNRPD1b. The repeated motifs of the AtNRPD1b CTD were aligned and the conserved WG motif is highlighted in grey.

Figure S4. The SD of AtNRPD1b is highly divergent and has a WG/GW repeat signature sequence. (*A*) Schematic representation of the Arabidopsis and rice NRPD1b proteins. AtNRPD1b shows low sequence identity at an amino acid level to OsNRPD1b in the SD (red) but not in the N-terminal NRPB1-like region (blue) and the C-terminal CD (green). (*B*) Alignment of AtNRPD1b and OsNRPD1b CTDs. The WG/GW repeats present in the homologuous region are highlighted in black. The color code is the same as in A.

Figure S5. Amino acid composition of GW-rich regions from AtNRPD1b and HsGW182. Amino acid content, as a percentage of molecular mass, was calculated for the GW/WG-rich regions described in the manuscript. Global amino acid percentages were obtained from the Codon Usage Database (http://www.kazusa.or.jp/codon/). Column 4 shows the number of residues for each amino acid, column 5 the percentage of

molecular mass, column 6 the percentages for Arabidopsis or man from the Codon Usage Database (based on NCBI-GenBank Flat File Release 156.0 [October 15 2006]) and column 7 the ratio % in specific protein/global % of molecular mass. Amino acids are ordered by physico-chemical properties. Overrepresented residues in specific proteins are overlined in red, underrepresented residues in blue.

A

В

HaeIII

•										
Α							=	CTD	-	
	AtNR	PD1b						SD	CD	
				619	%			23%	50%	
	SoNRPD1b							SD	CD	
D										
AtD1b	1215	-SWGKRVDV								
SoD1b	1015	SWGKRV + -SWGKRVSI								
AtD1b	1275	EMAEWAES	PERDSAL	GEPKFEDS	ADFQNL	HDEGKP	SGANWI	KSSSWD	NGCSG	GSEWGVSK
SoD1b	1071	+ + ESFEKD								G+W+K GTGWNANK
AtD1b	1335	STGGEANP	ESNW	-EKTTNVE	KEDA	WSS	WNTRKI	AQESSK	SDSGG	AWG
SoD1b	1128	G +								+WG
AtD1b	1381	IKTKDADA							_	
SoD1b	1188	+ GSNOG	D +P W							+ G
AtD1b		ESAPAAWG		-					_	_
SoD1b	1245	A +W WDASKSWS								G +L
AtD1b		GP							_	
SoD1b		P QPEDSAGE	W	S+++ +	WG			+	G -	+ WN
AtD1b		WDKKNIET								SETESGPA
SoD1b		+ K+ KENKSFSK	S+PA+	WSG					KK+-	+ ++G
AtD1b		AWGAWDKK								I MOQIOON
SoD1b			+ + +P	WG	к +	G	P +	G		
AtD1b		SWARNEQD	-			-	-			STD
				+WD) KK ++		+ G -	F W		ST+
SoD1b		QKNNNENG								
AtD1b			+	++WGS +	+ + +	S+ + (G N	E	G +W	
SoD1b		SG <u>GW</u> STGK								
AtD1b		SWGQP SWGQP	s +				+ED	+ +D	++ 1	N VS
SoD1b		TQSSWGQP								
AtD1b	1666		D	+S WG P	K	KP G	GW +	+WK	+N	
SoD1b	1665	WKKESGEK	LHGSDDS	QSP <u>WG</u> QPG	GS <u>GW</u> NK	KQPEGG	RGWGSS	SNTGEWK	SRKNQI	QNQNQNQNQ
AtD1b	1711	-RPPRSED RPPR +		FTATRORI TATR+R+						
SoD1b	1725	NRPPRGPN	DDSPRVA	LTATRKRM	IDEFPTE	EKDVLS	EVESL	QSIRRI	MHQSG	CVDGEPLL
AtD1b	1768			PQKETKLO P K K+O						DFSYRKS- DFSY K
SoD1b	1785	PDDQTYLI	DNILNYH	PDKAAKIG	AGVDFI	TVKKHS	NFQESI	RCFYVVS	TDGKD	TDFSYIKC-

AtNRPD1b repeats

1427-DKKNWGTESAPAAMGS-1442
1452-DKKNSETESDAAAWGS-1467
1486-NKKSSETESNGATWGS-1501
1516-DKKNIETDSEPAAWGS-1531
1533-GKKNSETESGPAAWGA-1548
1550-DKKKSETEPGPAGWGM-1565
1567-DKKNSETELGPAAMGN-1582
1584-DKKKSDTKSGPAAWGS-1599
1609-DKNNSETESDAAAWGS-1624
1626-NKKTSEIESGAGAWGS-1641

Consensus DKKNSETESgPAAWGS

Α CTD = AtNRPD1b SD CD 50% 61% 23% CD OsNRPD1b SD в AtD1b 1188 -LIAPRKCFEKAAEKCHTDSLSTVVGSCSWGKRVDVGTGSQFELLMNQKETGLDDKEETDV LI PKCFEKAAEKCHHDSL VV SCSWKK GTGS 2++LNN+ + + + OsD1b 1199 -LITPHKCEFEKAAEKCHBDSLGCVVSSCSWKHAASGTGSSFQLIMNEBQLKENKERGODL AtD1b 1248 YSFLQMVISTTNADAFVSSPGFD-VTEEEMAEWAESPERDSALGEPKFEDSADFQNLH--Y +L +V + + D + EE A+ SPE D +G+P F+D+ + Q++ OsD1b 1259 YDYLALVRTDEEKARYTFFDDVDYLAEENEADVCLSPELDGTIGQPIFDDNLEEQDVQNN AtD1b 1305 ----DEGKPSGANWEKSSS-----WD--NGCSGGSEWGVSKSTGGEANPESNWEKTTNV D G + λ +HE++ S W N + G++ GV+K S W+ V OsD1b 1319 SKMDKGTTNAKSMEKONSGANDEDKIKGGWENAAGADTOTKFNN---QCNSGKWVPATV Atdlb 1353 EKEDA-WSSWNTRKDAQESSKSDSGG---ANGIKTKDADADTTPNWETSPAPKDSIVPEN EK + W W T K ++ S+ AN ++ D +++ K S + Osdlb 1376 EKSSSDMGGWGTEKAKEKEKISEEPAQHDANSVQGPKRATDGGASNK-----KQSSTQND AtD1b 1409 NEPTSDVMGHKSVSDKSWDKKNMGTESAPAAMGSTDAAVMGSSDKKNEPTESDAA-----+ G S + SW+K N + 460 + +10 + 10 + 20 AADAHAS OsD1b 1431 GNMFERKGRGS-NGGSWEKN----AQKGSMGRGRDEAENNNVVKNEMETVAADAHAS AtD1b 1464 ---AMGSRDKINSDVGSGAGVLGPWNKKSSETENGATWGSSDKTXSGAAAMNSMDKKNI +WG+ SD A N SS+T+++ G A N+ 0sD1b 1486 TEKSWGNVTASPSDNAWSAAPVSQGN-GSSDTKQSDSWOGKKSASVDKAINKDKESLGNV AtD1b 1521 ETDSEPANG-----SQGKKNSETESGPAAMGAW------DKKKSE-----TEPGPAG 0aD1b 1545 PASPSGAMESPYSQGMESDARGS-SWOGKKSAGVDKAINKKKSLGKVPASPSPSA AtD1b 1563 <u>MGMGDKKNSETELGPAAMGNWDKKKS----</u> W L +WD KS D+ +MG+ A +AW ++ + OsD1b 1604 WNAAPVSQGNERLDAKQSDSWDGWKSAGVDDSVKDKESMGNVPASPSDSANNAAPVSQGN Atolb 1615 TESDAA------ANGSRNKKTSEIESGAGANGSNG-QPSPTAEDKOTNEDDRNPHVSLKE SDA W S +NG+ PS +A + W S + ObDlb 1664 ESSDAKQSDSWDGWKSAGVDAS-TNKDKESMCNVPASPSDSANNAAPVSQCDDVWNSAEA AtD1b 1668 TKSREKDDKERSOMGNPAKKFPSSOMSNGGADWKGNRNHTPRPRSEDNLA----PMF +SR KD K S GM GG 4H-G RN+ RPPR D P OsD1b 1723 MESNNCDVK------SDGWGRGG-MWRGORNFGRAPRKPDGRGLPRRPDG

AtD1b 1784 QKETKLGSGVDFITVDKHTIFSDSRCFFVVSTDGAKQDFSYRKSLNNYLMKKYPDRAEEF +K++K* +b I UDKH +F DSRC FVVS+DG + DFSY K + N++ K YF+ + F OsD1b 1826 EKGSKVSGEUENHVDKRYFQRSDSRCLFVVSSDTSSFSYLKACHENFVRKTPFHCDSF AtD1b 1844 IDKYFTKPRPS-GNRDRNNQDATPPGEEQS-KYF + R D TF G QS OsD1b 1886 CKKYFKRRDQPFAADGGTAPGTPAGATQS-

AtNRPD1b code aa

AtNRPD1b							
code	aa	name	n	NRPD1b (%)	global (%)	D1b/global	
м	met	methionine	2	0,5	2,45	0,2	
	ile	isoleucine	4	1,1	5,26	0,21	
L	leu	leucine	3	0,8	9,35	0,09	
V	val	valine	9	2,5	6,74	0,37	
e i	phe	phenylalanine	1	0,3	4,25	0,07	
ł –	tyr	tyrosine			2,83	0	
W	trp	tryptophan	29	7,9	1,25	6,32	
G	gly	glycine	39	10,7	6,58	1,63	
A	ala	alanine	40	11	6,51	1,69	
s	ser	serine	54	14,8	8,93	1,66	
т	thr	threonine	26	7,1	5,12	1,39	
С	cys	cysteine			1,77	0	
р	pro	proline	19	5,2	4,88	1,07	
D	asp	aspartic acid	31	8,5	5,38	1,58	
E	glu	glutamic acid	31	8,5	6,65	1,28	
N	asn	asparagine	24	6,6	4,32	1,53	
< .	lys	lysine	42	11,5	6,35	1,81	
R	arg	arginine	6	1,6	5,4	0,3	
Q	gln	glutamine	4	1,1	3,46	0,32	
Ĥ	his	histidine	1	0,3	2,25	0,13	

HsGW182

code	aa	name	n	GW182 (%)	global (%)	GW182/global
м	met	methionine	5	0,9	2,21	0,41
1	ile	isoleucine	13	2,3	4,42	0,52
L	leu	leucine	15	2,7	10,02	0,27
v	val	valine	16	2,9	6,08	0,48
F	phe	phenylalanine	3	0,5	3,79	0,13
Y	tyr	tyrosine	2	0,4	2,74	0,15
W	trp	tryptophan	35	6,3	1,32	4,77
G	gly	glycine	75	13,5	6,6	2,05
A	ala	alanine	30	5,4	6,97	0,77
S	ser	serine	84	15,1	8,1	1,86
Т	thr	threonine	42	7,6	5,31	1,43
С	cys	cysteine	- 4	0,7	2,31	0,3
P	pro	proline	40	7,2	6,11	1,18
D	asp	aspartic acid	34	6,1	4,7	1,3
E	glu	glutamic acid	31	5,6	6,84	0,82
N	asn	asparagine	45	8,1	3,6	2,25
К	lys	lysine	34	6,1	5,62	1,09
R	arg	arginine	17	3,1	5,68	0,55
Q	gln	glutamine	27	4,9	4,64	1,06
11	1.1.1	La seconda de la companya de la comp		0.7	0.50	0.07