
0

10

20

30

CG CHG CHH
0

10

20

70

10 20 30 40 50 60 70 80 90 100

0

10

80

90

10 20 30 40 50 60 70 80 90 100
0

10

90

100

10 20 30 40 50 60 70 80 90 100

chr1-5

chr1-5

chr1-5

chrCchrCchrC

CG

CHHCHG

A
ve

ra
ge

 m
et

hy
la

tio
n

le
ve

l (
%

)
Pe

rc
en

t o
f c

ou
nt

s
(%

)

Pe
rc

en
t o

f c
ou

nt
s

(%
)

Pe
rc

en
t

of
 c

ou
nt

s
(%

)

Methylation level (%)

Methylation level (%)Methylation level (%)

ba

c d

Supplementary Figure 1 | General patterns of methylation in the
Arabidopsis genome. a, Genome average levels of methylation of the
Arabidopsis nuclear genome (chromosome 1, 2, 3, 4, and 5) and the
chloroplast genome (chromosome C). b-d, Distribution of methylation
percentage of CG (b), CHG (c), and CHH (d). The x-axis is divided into
10 individual bins that correspond to methylation levels. The y-axis is
the percent of total counts for each respective bin.

SUPPLEMENTARY INFORMATION

doi: 10.1038/nature06745

www.nature.com/nature 1

Arabidopsis thaliana chloroplast Chromosome Plus Strand:3,334-3,423 (90 bp)
3340 3345 3350 3355 3360 3365 3370 3375 3380 3385 3390 3395 3400 3405 3410 3415 3420

A G T G G G A A T A A T C A A A C G A T T C T G T T C A T A C A T T C G C A A A A T T A A G C G T T T C G T A A T T A G T G A A C T A T A T T T T T T G T C A T A A T C C G C A T T

Supplementary Figure 2 | The chloroplast genome is unmethylated as shown by
BS-Seq. BS-Seq data corresponding to nucleotides 3334 to 3423 of the chloroplast
chromosome is displayed in detail. Cytosines in CG context are marked in green, in
CHG context are marked in blue, and in CHH context are marked in red. BS-Seq reads
that map to the plus strand are shown. Each read is represented by a thin green line
that is aligned to its genomic location. Two green boxes mark the ends of each read
and do not correspond to any sequence. A blue box in the middle of the reads (shown
with red arrows) indicates a cytosine is detected in that position. Since the chloroplast
genome is unmethylated, the occurrence of unconverted cytosines in the chloroplast
genome reflects the background noise level of BS-Seq data.

doi: 10.1038/nature06745 SUPPLEMENTARY INFORMATION

www.nature.com/nature 2

Supplementary Figure 3 | BS-Seq data from two selected regions within the FWA locus.
BS-Seq reads mapped to a region (a) located within the known methylated FWA tandem
repeats and to a known unmethylated region (b) upstream of the FWA tandem repeats (Zhang
et al., Cell 126, 1189-1201) are shown. Genomic sequence of either plus strand (b) or
minus strand (a) is displayed, with coordinates labeled on the top. Cytosines in CG context are
marked in green, in CHG context are marked in blue, and in CHH context are marked in red.
Each read is represented by a thin green line that is aligned to its genomic location. Two green
boxes mark the ends of each read and do not correspond to any sequence. A blue box in the
middle of a read indicates a cytosine is detected in that position.

Window Position
chr4:

<---

A. thaliana Jan. 2004 chr4:13,038,523-13,038,634 (112 bp)
13038540 13038550 13038560 13038570 13038580 13038590 13038600 13038610 13038620 13038630

AAGG T CGG T T T A T AG T C T A GAA CGCGG C GAGAAA T AG G G T AAG T T G T AAG T A T GC T CG T GGCGAA A T GC C AAAA A CGAAAAGC T G T AA C C AGC T T C A CGA T A A A C C AA C AA A
Bisulfite Minus Strand Reads

a

Window Position
chr4:

--->

A. thaliana Jan. 2004 chr4:13,036,630-13,036,741 (112 bp)
13036640 13036650 13036660 13036670 13036680 13036690 13036700 13036710 13036720 13036730 13036740

AA CGA C A C C G A C A CG T GC T GA T G T C T T A G T AGA T C T C G T AA T AGAA G T GGGA C C A T AG T T A CG T G G C A C C A T A T G AA T CG T T C G A T C AGA T GC A AA T C T C C T A C C A C AAAG A
Bisulfite Plus Strand Reads

b

doi: 10.1038/nature06745 SUPPLEMENTARY INFORMATION

www.nature.com/nature 3

0

20

40

60

80

100

13041270 13041272 13041275 13041291 13041302 13041446chr4:

M
et

hy
la

tio
n

le
ve

l (
%

)

Supplementary Figure 4 | Comparison of BS-Seq data with
traditional bisulfite sequencing data for selected CG sites at the
FWA locus. We validated BS-Seq data (blue bars) by traditional bisulfite
sequencing (green bars) at five consecutive CG sites (in red) and one
lone CG site (in purple). Genomic coordinates of the cytosines in the CG
sites are labeled on the bottom. PCR primers used are listed in
Supplementary Table 7. Our previous microarray-based genomic
methylation profiling study (Zhang et al., Cell 126, 1189-1201) did not
detect methylation from any of the probes covering these CG sites. In
another whole genome microarray-based genomic methylation profiling
study (Zilberman et al., Nat Genet 39, 61-69), the single probe that
overlaps directly with these CG sites has a log2(IP/input) value of
–0.280, below the 0.34 cutoff value from that study for unmethylated
probes. Similarly, in an McrBC-microarray study (Vaughn et al., PLOS
Biol 5, e174), signal from a region containing these CG sites was also
defined as unmethylated.

doi: 10.1038/nature06745 SUPPLEMENTARY INFORMATION

www.nature.com/nature 4

CG CHG CHH

Supplementary Figure 5 | Detection of methylation by BS-Seq in
genes previously classified as unmethylated. BS-Seq data
mapping to genes previously classified as unmethylated by microarray
studies (a: Zhang et al., Cell 126, 1189-1201; b: Zilberman et al., Nat
Genet 39, 61-69) is plotted across gene bodies and upstream and
downstream regions in 500 nucleotide sliding windows moving 5' to 3'
(from left to right). The brown lines mark the boundaries between the
upstream regions and gene bodies and between gene bodies and
downstream regions. The purple line indicates zero percent
methylation.

0

2

4

6

8

10

12
M

et
hy

la
tio

n
le

ve
l (

%
)

upstream transcribed region downstream

a

b

transcribed region downstreamupstream

M
et

hy
la

tio
n

le
ve

l (
%

)

0

2

4

6

8

10

12

doi: 10.1038/nature06745 SUPPLEMENTARY INFORMATION

www.nature.com/nature 5

M
et

hy
la

tio
n

le
ve

l (
%

)

Supplementary Figure 6 | Validation of BS-Seq data in gene promoters by traditional bisulfite
sequencing. Methylation status of a 235 bp region from the promoter of At5g43500, a 266 bp region
from the promoter of At5g40820, a 295 bp region from the promoter of At4g11280, a 112 bp region
from the promoter of At2g13540, a 320 bp region from the promoter of At3g44300, a 233 bp region
from the promoter of At4g10920, a 258 bp region from the promoter of At5g26270, and a 153 bp
region from the promoter of At2g05440 were examined by both traditional bisulfite sequencing (a) and
BS-Seq (b). The asterisks indicate that there is no cytosine in the corresponding sequence context
within the respective region. PCR primers used are listed in Supplementary Table 7. Among these
genes, At4g11280, At3g44300, At4g10920, At5g26270, and At2g05440 are upregulated in met1
and/or drm1 drm2 cmt3 mutants, while others do not show altered expression in these
methyltransferase mutants (Zhang et al., Cell 126, 1189-1201). At5g43500 and At2g13540 were
previously classified as promoter methylated genes in our microarray-based methylation profiling
study (Zhang et al., Cell 126, 1189-1201), whereas the other genes were not. We also checked the
results from two other microarray-based methylation profiling studies (Zilberman et al., Nat Genet 39,
61-69; Vaughn et al., PLOS Biol 5, e174). In the Zilberman study, the regions of interest in At2g13540,
At4g10920, and At2g05440 were not covered by any probes. One probe covered each of the regions
of interest in At5g43500, At5g40820, At4g11280, At3g44300, and At5g26270, with log2(IP/input)
values of 1.86, 1.89, 1.13, 1.37, and 1.62, respectively. The cutoff used for calling methylation in the
Zilberman study was 1.28, so three of these regions would be classified as methylated, one would be
close to the cutoff value, and one would be below the cutoff value. In the Vaughn study, only
At4g10920 and At4g11280 were covered by the array. The 389 bp probe that covered the validated
region of At4g10920 showed a robust methylation signal, while the 960 bp probe spanning At4g11280
showed a very weak methylation signal. Thus, the BS-Seq method detects methylation in regions that
are otherwise variably detected in microarray studies and also provides quantitative data about
methylation in different sequence contexts, e.g., CG, CHG, and CHH.

**

CG
CHG
CHH

a b

* *0

20

40

60

80

100

At5g43500 At5g40820 At4g11280 At2g13540 At3g44300 At4g10920 At5g26270 At2g05440 At5g43500 At5g40820 At4g11280 At2g13540 At3g44300 At4g10920 At5g26270 At2g05440

doi: 10.1038/nature06745 SUPPLEMENTARY INFORMATION

www.nature.com/nature 6

Supplementary Figure 7 | Detection of methylation in rDNA by BS-Seq.
Methylation level in rDNA is determined based on the BS-Seq reads that map to a
canonical copy of the 45S rDNA. The purple line indicates zero percent methylation.
Wild-type Arabidopsis and various methyltransferase mutants are analyzed as
indicated. An illustration of 45S rDNA is shown at the top of each panel. The orange
boxes indicate three Sal boxes. The black boxes indicate two spacer promoters (on
the left) and the minimal promoter (on the right). Yellow boxes indicate 18S, 5.8S, and
25S loci (from left to right). Vertical brown lines mark the boundaries of the
above-mentioned elements. The sequences and annotations of 45S rDNA were
obtained from GenBank and several previous reports (GenBank Accession X15550
and AC006837; Gruendler et al., Nucleic Acids Res 17, 6395-6396; Doelling et al.,
Proc Natl Acad Sci USA 90, 7528-7532; Doelling and Pikaard, Plant J 8, 683-692).

0 2000 4000 6000 8000 10000
0

20

40

60

80

100

0 2000 4000 6000 8000 10000
0

20

40

60

80

100

0 2000 4000 6000 8000 10000
0

20

40

60

80

100

0 2000 4000 6000 8000 10000
0

20

40

60

80

100

0 2000 4000 6000 8000 10000
0

20

40

60

80

100

M
et

hy
la

tio
n

le
ve

l (
%

)

0 2000 4000 6000 8000 10000
0

20

40

60

80

100

M
et

hy
la

tio
n

le
ve

l (
%

)

0 2000 4000 6000 8000 10000
0

20

40

60

80

100

M
et

hy
la

tio
n

le
ve

l (
%

)

WT met1 met1 cmt3

drm1 drm2 met1 drm1 drm2

cmt3 drm1 drm2 cmt3

bp

bp

bp

CG methylation

CHG methylation

CHH methylation

doi: 10.1038/nature06745 SUPPLEMENTARY INFORMATION

www.nature.com/nature 7

a

b

0

1

2

0

1

2

0

1

2

0

1

2

B
its

B
its

B
its

B
its

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

Sequence position

high
methylation

low
methylation

high
methylation

low
methylation

Supplementary Figure 8 | Sequence preferences for methylation in CG, CHG,
and CHH contexts. Logos of sequence contexts that are preferentially methylated
at the highest or lowest levels for 7-mer sequences in which the methylated cytosine
is in the first position. In a, all genomic 7-mers in chromosome 1 were analyzed,
while the sequences analyzed in b were restricted to previously-defined methylated
sequences (Zhang et al., Cell 126, 1189-1201). The logo graphically displays the
sequence enrichment at a particular position in the alignment of 7-mers in each
class, measured in bits. The maximum sequence conservation per site is 2 bits (i.e.,
1 base) when a site is perfectly conserved, and 0 if there is no preference for a
nucleotide.

CG CHG CHH

doi: 10.1038/nature06745 SUPPLEMENTARY INFORMATION

www.nature.com/nature 8

Supplementary Figure 9 | Sequence preferences for CG methylation within
body methylated genes. Logos of sequence contexts that are preferentially
methylated at the highest or lowest levels for 7-mer sequences in which the
methylated cytosine is either in the fifth position or the first position. The sequences
analyzed were restricted to previously-defined body methylated genes in the
Arabidopsis genome (Zhang et al., Cell 126, 1189-1201). The logo graphically
displays the sequence enrichment at a particular position in the alignment of 7-mers
in each class, measured in bits. The maximum sequence conservation per site is 2
bits (i.e., 1 base) when a site is perfectly conserved, and 0 if there is no preference
for a nucleotide.

0

1

2

0

1

2

B
its

B
its

1 2 3 4 5 6 7 1 2 3 4 5 6 7

Sequence position

C in 5th
position

C in 1st
position

high methylation low methylation

doi: 10.1038/nature06745 SUPPLEMENTARY INFORMATION

www.nature.com/nature 9

Supplementary Figure 10 | CG sites located in regions that contain a high local
density of CG dinucleotides are more frequently methylated. Red bars (high CG)
represent the methylation levels of CG sites at the center of 1,000 nucleotide windows
that have more than 50 CG dinucleotides, and blue bars (low CG) represent CG sites at
the center of 1,000 nucleotide windows that have fewer than 20 CG dinucleotides. The
x-axis is divided into 10 bins that correspond to methylation levels. The y-axis is the
percent of counts within each bin.

Methylation level (%)

Pe
rc

en
t o

f c
ou

nt
s

(%
)

0

10

20

30

40

50

60

70

10 20 30 40 50 60 70 80 90 100

low CG
high CG

doi: 10.1038/nature06745 SUPPLEMENTARY INFORMATION

www.nature.com/nature 10

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 1000 2000 3000 4000 5000 6000 7000 8000 9000

p-
va

lu
e

(lo
g 10

)

Distance

CHG vs. CHG
(same strand)

CG vs. CG
(same strand)

CHH vs. CHH
(same strand)

Supplementary Figure 11 | Autocorrelation of methylation between cytosines located
within 10,000 nucleotides of each other. The x-axis indicates the distance between two
cytosines. The y-axis in top panels indicates level of autocorrelation, and the y-axis in bottom
panels indicates corresponding p-values (see Supplementary Table 5 for details).

C
or

re
la

tio
n

Distance Distance

nt

nt
-50

-40

-30

-20

-10

0

10

1 1000 2000 3000 4000 5000 6000 7000 8000 9000
-50

-40

-30

-20

-10

0

10

1 1000 2000 3000 4000 5000 6000 7000 8000 9000

CG vs. CG
(same strand)

CHG vs. CHG
(same strand)

-50

-40

-30

-20

-10

0

10

1 1000 2000 3000 4000 5000 6000 7000 8000 9000

CHH vs. CHH
(same strand)

doi: 10.1038/nature06745 SUPPLEMENTARY INFORMATION

www.nature.com/nature 11

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

1.2

0

0.1

0.2

0.3

0.4

0.5

0.6

0

0.1

0.2

0.3

0.4

0.5

0.1

0.15

0.2

0.25

0.3

0.35

0.75

0.8

0.85

0.9

0.95

1

0.64

0.68

0.72

0.76

0.8

0.84

3 13 23 33 43 53 63 73 83 932 12 22 32 42 52 62 72 82 922 12 22 32 42 52 62 72 82 92

1 11 21 31 41 51 61 71 81 913 13 23 33 43 53 63 73 83 932 12 22 32 42 52 62 72 82 92

3 13 23 33 43 53 63 73 83 931 11 21 31 41 51 61 71 81 911 11 21 31 41 51 61 71 81 91

C
or

re
la

tio
n

C
or

re
la

tio
n

Distance Distance Distance

CHG vs. CHG
(same strand)

CG vs. CG
(same strand)

CHH vs. CHH
(same strand)

CG vs. CHH
(same strand)

CHG vs. CHH
(same strand)

CG vs. CHG
(same strand)

CG vs. CG
(opposite strand)

CHG vs. CHG
(opposite strand)

CHH vs. CHH
(opposite strand)

Supplementary Figure 12 | Autocorrelation of methylation between cytosines located
within 100 nucleotides of each other. The x-axis indicates the distance between two cyto-
sines. The y-axis indicates level of autocorrelation (see Supplementary Table 5 for details).

C
or

re
la

tio
n

nt

nt

nt

doi: 10.1038/nature06745 SUPPLEMENTARY INFORMATION

www.nature.com/nature 12

Supplementary Figure 13 | Detection of the periodic pattern of CHH methylation in various
analyses. a, c, Autocorrelation of the methylation status of cytosines in a CHH context. The x-axis
indicates the distance between the two cytosines. The y-axis indicates the level of autocorrelation
in methylation. The red line is a running average of windows that are ±2 bases around a single
base. b, d, Fourier transform analysis of CHH methylation correlation. The x-axis indicates the
number of cycles per 100 bases. The y-axis is the amplitude of the corresponding frequency. The
peak at position 10 represents a periodicity of ten nucleotides for high CHH methylation. The
p-values for observing the peak Fourier transform values at position 10 by chance in random
permutations of the genome sequence are below 10–106 (b) and 10–300 (d), respectively. In a and b,
BS-Seq reads analyzed were restricted to those mapping to previously-defined methylated
sequences (Zhang et al., Cell 126, 1189-1201). In c and d, BS-Seq reads, which otherwise would
have been discarded by the non-conversion filter (see Methods: those with three consecutive
methylated CHH sites), were included in the analyses. In a-d, Monte Carlo sampling of three
datasets consisting of half the data was used to compute the mean and standard deviations of the
autocorrelations and Fourier transforms. The mean values are shown. Error bars represent
standard deviations. We also analyzed the autocorrelation of CHH sites thoughout the genome,
regardless of methylation state, and found very low autocorrelation values and did not observe a 10
nucleotide periodicity.

0.2

0.24

0.28

0.32

0.36

0.4

1 10 20 30 40 50 60 70

C
or

re
la

tio
n

nt

a

CHH vs. CHH

Distance

0.16

Po
w

er

b

Cycles per 100 bases

CHH vs. CHH

0.25

0.3

0.35

0.4

0.45

0.5

1 10 20 30 40 50 60 70

C
or

re
la

tio
n

nt

c

CHH vs. CHH

Distance

0.2

Po
w

er

d

Cycles per 100 bases

CHH vs. CHH

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

0

0.1

0.2

0.3

0.4

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

0.8

0.9

doi: 10.1038/nature06745 SUPPLEMENTARY INFORMATION

www.nature.com/nature 13

20100

0.1

0.15

0.2

0.25

0.3

0.35

nt
Distance

Pr
ob

ab
ili

ty
 o

f m
et

hy
la

tio
n

Supplementary Figure 14 | Within-read probability of additional
methylation of CHH sites within a given distance from a methylated
CHH site. Data were derived from individual BS-Seq reads. The x-axis
indicates the distance between the two cytosines. The y-axis indicates the
probability of methylation of CHH sites within the given distance from
another methylated CHH site. Each point is the mean value from averaging
the probability from each of the five Arabidopsis chromosomes, and the blue
line is a running average of these mean values. Error bars represent 95%
confidence intervals via critical values of Student t distributions.

doi: 10.1038/nature06745 SUPPLEMENTARY INFORMATION

www.nature.com/nature 14

Cycles per 1,000 bases

CHG vs. CHG

C
or

re
la

tio
n

a

CG vs. CG

Distance

C
or

re
la

tio
n

CHG vs. CHG

C
or

re
la

tio
n

CHH vs. CHH

nt

nt

nt

Po
w

er

CG vs. CG

CHH vs. CHH

Po
w

er
Po

w
er

Supplementary Figure 15 (continued on next page)

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 180 360 540 720 900
0

2

4

6

8

10

12

14

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

0

1

2

3

4

5

6

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

1 180 360 540 720 900

0

0.5

1

1.5

2

2.5

3

3.5

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
0.21

0.23

0.25

0.27

0.29

0.31

0.33

0.35

1 180 360 540 720 900

doi: 10.1038/nature06745 SUPPLEMENTARY INFORMATION

www.nature.com/nature 15

Supplementary Figure 15 | Periodic pattern of CG, CHG, and CHH methylation. Panels on the
left show autocorrelation of the methylation status of cytosines in CG, CHG, and CHH context. The
x-axis indicates the distance between the two cytosines. The y-axis indicates the level of
autocorrelation in methylation. The red line is a running average of windows that are ±2 bases
around a single base. Panels on the right are Fourier transform analyses of the correlation of CG,
CHG, and CHH methylation. The x-axis indicates the number of cycles per 1,000 bases. The y-axis
is the amplitude of the corresponding frequency. The peak at position 6 suggests a periodicity of
approximately 167 nucleotides. The p-values for observing the peak Fourier transform values at
position 6 by chance in random permutations of the genome sequence are below 10–66 (a, CG),
10–300 (a, CHG), 10–212 (a, CHH), 10–40 (b, CG), 10–251 (b, CHG), and 10–35 (b, CHH). In a and b,
Monte Carlo sampling of three datasets consisting of half the data is used to compute the mean
and standard deviations of the autocorrelations and Fourier transforms. The mean values are
shown. Error bars in Fourier transform analysis graphs represent standard deviations. In a,
methylation from the whole genome was analyzed, while in b the analysis was restricted to
previously-defined methylated sequences (Zhang et al., Cell 126, 1189-1201).

Cycles per 1,000 bases

CHG vs. CHG

C
or

re
la

tio
n

b

CG vs. CG

Distance

C
or

re
la

tio
n

CHG vs. CHG

C
or

re
la

tio
n

CHH vs. CHH

nt

nt

nt

Po
w

er

CG vs. CG

CHH vs. CHH

Po
w

er
Po

w
er

0.8

0.85

0.9

0.95

1

1 180 360 540 720 900
0

0.5

1

1.5

2

2.5

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

0.65

0.7

0.75

0.8

0.85

1 180 360 540 720 900
0

1

2

3

4

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

0.26

0.28

0.3

0.32

0.34

0.36

1 180 360 540 720 900
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

doi: 10.1038/nature06745 SUPPLEMENTARY INFORMATION

www.nature.com/nature 16

0

2

4

6

8

10

12

14

16

18

20

WT met1 drm1 drm2 cmt3 met1 cmt3 met1 drm1
drm2

drm1 drm2
cmt3

1st C
2nd C
3rd C

M
et

hy
la

tio
n

le
ve

l (
%

)

Supplementary Figure 16 | Detection of telomere methylation by BS-Seq in
wild type and methyltransferase mutants. Methylation levels of the three
consecutive cytosines in the (CCCTAAA)n telomeric repeat are calculated in wild
type and various Arabidopsis methyltransferase mutants.

doi: 10.1038/nature06745 SUPPLEMENTARY INFORMATION

www.nature.com/nature 17

Supplementary Figure 17 (continued on next page)

a
Window Position

chr3:
--->

A. thaliana Jan. 2004 chr3:15,993,509-15,993,620 (112 bp)
15993520 15993530 15993540 15993550 15993560 15993570 15993580 15993590 15993600 15993610

C A C T AAA CG G G T T T AGA T G G T AGGA CG G GA T T GAG T C G A C AG T AA T A CGAGA CGG T A T A C C AAAG G T GAAA T C C A T T AGA T A T G T T T AG T T T T A C T T AA CGG G A T T AGA T G G

Bisulfite Plus Strand Reads

b
Window Position

chr5:
<---

A. thaliana Jan. 2004 chr5:16,371,223-16,371,328 (106 bp)
16371240 16371250 16371260 16371270 16371280 16371290 16371300 16371310 16371320

GG C G A T T G C GA C G T A A A C G C C C A C T A A C G T C AA C G A T T G C A A T A T A G G T T A A T G T C T T T T A C AA A A G T T A G C G AG G C C T G G C A T GA T G T G G C G A G C T T T A G C G C T T
Bisulfite Minus Strand Reads

c
Window Position

chr4:
--->

A. thaliana Jan. 2004 chr4:6,863,496-6,863,550 (55 bp)
6863500 6863505 6863510 6863515 6863520 6863525 6863530 6863535 6863540 6863545

C C G C A T T A T T A T G G A T T A T A A C T T A T C A A T G G T A A C C A A A A A G C A A C T C A A G C C G
Bisulfite Plus Strand Reads

d
Window Position

chr4:
<---

A. thaliana Jan. 2004 chr4:6,699,196-6,699,295 (100 bp)
6699210 6699220 6699230 6699240 6699250 6699260 6699270 6699280 6699290

C C A C C A T T A G G T A G C G A G T A A A G A T A A A T A T T T T T A C C T A T T A C G A A T A C A A A T A G A T A A T A T A A A A G A A A T T T T A A C T T A T T T A T A C C T A C A T T A A T A G

Bisulfite Minus Strand Reads

e
Window Position

chr4:
<---

A. thaliana Jan. 2004 chr4:6,699,312-6,699,408 (97 bp)
6699320 6699330 6699340 6699350 6699360 6699370 6699380 6699390 6699400

C C A C C A T T A G G T A G C G A G T A A A A A T A G A T A T T T T A T A C C T A T T A C A A A T A A A A A T A G A T A A T A A A A G A G G A A T T T T A A G C T A T T C A T A C C T A C A C T A
Bisulfite Minus Strand Reads

doi: 10.1038/nature06745 SUPPLEMENTARY INFORMATION

www.nature.com/nature 18

Supplementary Figure 17 | Examples of applying non-conversion filtration to BS-Seq
reads. BS-Seq data of ten selected regions is shown. Genomic sequence of either plus strand
or minus strand is displayed, with coordinates labeled on the top. Cytosines in CG context are
marked in green, in CHG context are marked in blue, and in CHH context are marked in red.
Each read is represented by a thin green line that is aligned to its genomic location. Two green
boxes mark the ends of each read and do not correspond to any sequence. A blue or red box in
the middle of a read indicates a cytosine is detected in that position. Reads with red boxes are
discarded by the non-conversion filter, which eliminates any read containing three or more
consecutive methylated CHH sites. Regions in a-f were part of the traditional bisulfite
sequencing validation regions of Supplementary Fig. 6, and regions in g-j were validated by
traditional bisulfite sequencing to be unmethylated. (PCR primers used are listed in
Supplementary Table 7.) These examples demonstrate that the non-conversion filter effectively
reduces false positive methylation signals generated from DNA fragments that are not properly
bisulfite converted (g-j), and also reduces to some extent the estimate of the overall level of
CHH methylation in regions containing heavy CHH methylation (c-f).

g
Window Position

chr3:
<---

A. thaliana Jan. 2004 chr3:4,794,442-4,794,539 (98 bp)
4794450 4794460 4794470 4794480 4794490 4794500 4794510 4794520 4794530

A C T A C T T C C T C T T C T C C T A A A C T T C T C A T A T A T A T A T C T T C T T T T T C T T C T T T C T C C A C A G C A T T T A T T A T T C C T T C A T T T T A T T C T C C T C T A C T T G T
Bisulfite Minus Strand Reads

h
Window Position

chr2:
<---

A. thaliana Jan. 2004 chr2:11,180,213-11,180,265 (53 bp)
11180220 11180225 11180230 11180235 11180240 11180245 11180250 11180255 11180260

C A C A A C C G T T T T T T A C A T T T A T A C T T A T A C A C A T C A A T A T A C T C T C A T T A C C A
Bisulfite Minus Strand Reads

i
Window Position

chr2:
--->

A. thaliana Jan. 2004 chr2:16,137,389-16,137,487 (99 bp)
16137400 16137410 16137420 16137430 16137440 16137450 16137460 16137470 16137480

T A C G T A C C T A C T C T A T A T A A C A C T C A C T C C C C A A A C T C T C T T C A T C A T C C A T C A C T A C A C A C A T C T C C T A T T G C A A A C G A A C A T A A A A C A C T A C C T A A G
Bisulfite Plus Strand Reads

f
Window Position

chr5:
<---

A. thaliana Jan. 2004 chr5:9,206,385-9,206,442 (58 bp)
9206390 9206395 9206400 9206405 9206410 9206415 9206420 9206425 9206430 9206435 9206440

T A C A T G T A A A C A T A T G A T T T A C A C A A C A T A C T G A G A A T C A T A T G T T T T G T T G T G T T T T
Bisulfite Minus Strand Reads

Window Position
chr2:

--->

A. thaliana Jan. 2004 chr2:6,525,895-6,525,956 (62 bp)
6525900 6525905 6525910 6525915 6525920 6525925 6525930 6525935 6525940 6525945 6525950 6525955

T A A A A C A C T C A C T C C A C A A C T C T C T T C A T C A C C C A T C T C C T T T T G G A A A C C A T T T A C T G G A A
Bisulfite Plus Strand Reads

j

doi: 10.1038/nature06745 SUPPLEMENTARY INFORMATION

www.nature.com/nature 19

Supplementary Figure 18 | Analyzing the effect of non-conversion filtration at selected loci.
BS-Seq data before (a) and after (b) applying the non-conversion filter are shown for the regions
analyzed in Supplementary Fig. 6. The asterisks indicate that there is no cytosine in the
corresponding sequence context within the respective region.

M
et

hy
la

tio
n

le
ve

l (
%

)

**

CG
CHG
CHH

a b

* *0

20

40

60

80

100

At5g43500 At5g40820 At4g11280 At2g13540 At3g44300 At4g10920 At5g26270 At2g05440At5g43500 At5g40820 At4g11280 At2g13540 At3g44300 At4g10920 At5g26270 At2g05440

doi: 10.1038/nature06745 SUPPLEMENTARY INFORMATION

www.nature.com/nature 20

SUPPLEMENTARY METHODS

DNA Sample Preparation

Wild type Arabidopsis plants used in this study are of the Columbia-0 ecotype. Methyltrans-
ferase mutants met1, cmt3, drm1 drm2, met1 cmt3, met1 drm1 drm2, and drm1 drm2 cmt3 were
previously described [Zhang, X. and Jacobsen, S. E. Cold Spring Harb. Symp. Quant. Biol. 71,
439–47 (2006)]. Five–week–old continuous light–grown plants were utilized for this study.

For nuclear DNA isolation, 1 g plant tissues were ground into a fine powder in liquid
nitrogen, homogenized in 10 ml HBM buffer (25 mM Tris-Cl [pH 7.6], 0.44 M sucrose, 10 mM
MgCl2, 0.1% Triton X-100, 10 mM beta-mercaptoethanol, 2 mM spermine, 1 mM PMSF,
1 µg/ml pepstatin, 1X EDTA–free protease inhibitors [Roche]). After filtering through Miracloth
(Calbiochem) twice, the homogenate was centrifuged, and the pellet was resuspended in 5 ml
HBB buffer (25 mM Tris-Cl [pH 7.6], 0.44 M sucrose, 10 mM MgCl2, 0.1% Triton X-100,
10 mM beta-mercaptoethanol). Subsequently, the sample was loaded onto 30 ml 40%/60%
percoll gradient (made by mixing percoll and HBB buffer) and centrifuged to pellet nuclei.
The nuclei were then washed twice by 10 ml HBB buffer, resuspended in 500 µl 50 mM
Tris-Cl (pH 7.5) containing 20 µl Proteinase K (Roche) and incubated at room temperature
for 30 minutes. Next, 1 ml 50 mM Tris-Cl (pH 7.5) containing 15 mM EDTA and 1.5% SDS
was added to lyse the nuclei. Finally, DNA was purified by phenol/chloroform extraction and
ethanol precipitation.

To obtain fragmented DNA of the desired size range, 5 µg of DNA was sonicated by
Biorupter (Diagenode) for 60 minutes (four times at 15 minutes each). The ends of the DNA
fragments were modified by sequential treatment with T4 DNA polymerase, Klenow DNA
polymerases, T4 polynucleotide kinase, and Klenow DNA polymerase (3'→5' exo–) to generate
blunt–ended DNA with 5' phosphorylation and single “A” base 3' overhang. The mouse libraries
described in Figure 4c and Supplementary Table 1 were made from 5 µg of DNA extracted from
either embryonic stem cells of different genotypes or male premeiotic germ cells of 13–14 day
old pups.

Bisulfite Treatment

Double–stranded DNA adaptors containing the DpnI restriction site were ligated to the
end–modified DNA fragments. After purifying away free adaptors by gel electrophoresis,
DNA fragments were subjected to bisulfite treatment by a CpGenome DNA modification
kit (Chemicon) in the presence of urea. The resulting DNA was used as template in PCR
amplification to obtain double–stranded DNA, following conditions from a previous study
[Meissner, A. et al. Nucleic Acids Res. 33, 5868–77 (2005)], except that extension temperature
was set to 60°C instead of 72°C. To ensure selectivity, PCR primers were designed to only
amplify DNA with bisulfite–converted adaptor sequences at both ends. Following PCR,
adaptors were digested away by DpnI restriction enzyme leaving five basepairs of adaptor
sequence on each end.

Library Generation and Illumina/Solexa Sequencing

DpnI digested DNA was incubated with Klenow polymerase (3'→5' exo–) to extend a single
“A” base at 3' ends. Double–stranded DNA adaptors (Illumina) were ligated to the DNA

doi: 10.1038/nature06745 SUPPLEMENTARY INFORMATION

www.nature.com/nature 21

fragments. Ligation products were run on 2% agarose gel and DNA of the size between 120
and 170 bp was recovered from the gel. The adaptor–ligated DNA was amplified using PCR
primers 1.1 and 2.1 (Illumina). The PCR reaction was carried out per manufacturer instructions
(Illumina), except that Pfu Turbo Cx Hotstart DNA polymerase (Stratagene) was used and
annealing and extension temperatures were both set to 60°C. Purified PCR products were
directly sequenced using an Illumina 1G Genome Analyzer following manufacturer protocols,
generally yielding 36 nucleotides of sequence per cluster, generally resulting in 31 nucleotides
of genomic sequence per cluster after the analysis pipeline trims the five initial non–genomic
bases resulting from the library construction procedure.

Detection of Methylation Levels at Individual Loci

Bisulfite sequencing of selected regions was performed as previously described [Cao, X. and
Jacobsen, S. E. Proc. Natl. Acad. Sci. USA 99 Suppl. 4, 16491–8 (2002)], except that CpGenome
DNA modification kit (Chemicon) was used. The primers used for amplification of converted
DNA after bisulfite treatment are listed in Supplementary Table 7.

Mathematical Abstraction of Sequencing Data

The abstraction used here for sequencing data is as follows. Sequencing experiments produce
non-empty finite unordered lists (i.e., non-empty finite multisets) of reads. Each read of integer
length n ≥ 0 nucleotides (for Solexa, n is typically a few dozen) is given as a 4–by–n matrix pi,j
of non-negative (and, in the present application, all positive) real numbers with every column
sum equal to 1. For every j in 1..n, the column (p1,j, p2,j, p3,j, p4,j) is interpreted as an independent
distribution (probability “A”, probability “C”, probability “G”, probability “T”) for the jth base
starting at the 5' end of the putative DNA fragment of interest corresponding to the read.
In other words, each read is viewed as a position–weight matrix. Ideally, each column would
contain a single 1 and three zeros, but there is uncertainty due to sequencing being a physical
measurement process.

Reads of length n can also be viewed naturally as certain probability distributions on the
set Σn of strings of length n over the alphabet {A, C, G, T}. If s := s1s2…sn is such a string
(e.g., 5'–GATTACA–3') with the encoding A=1, C=2, G=3, and T=4 (e.g., s1 = 3, …, s7 = 1),
then the probability of s is

€

Pr(s | read) = psj , j
j=1

n

∏ ∈ [0, 1].

The entropy of this probability distribution provides a natural measure of read “fuzziness”
(basecall imprecision). This entropy, in bases, is

€

H(read) = f Pr(s | read)()
s∈Σn
∑ ∈ [0, n]

where

€

f (x) := −x log4 x ≥ 0 for x in (0, 1] is extended by continuity to x in [0, 1]. The number of
effective sequenced bases is then

doi: 10.1038/nature06745 SUPPLEMENTARY INFORMATION

www.nature.com/nature 22

€

ESB(read) := n −H(read) = n − f (pi, j)
i=1

4

∑
j=1

n

∑ ,

which varies between zero (when every base is completely unknown: probability “A” =
probability “C” = probability “G” = probability “T” = 1/4) and n (when every base is known
with certainty: every column of the matrix for the read has a single 1 and three zeros).

Depending on whether a read sequences a molecule whose history involves an even or odd
number of DNA replication–based amplification steps from some reference DNA fragment,
it may be necessary to reverse complement a read, an operation which preserves read length.
In such cases, the matrix for the reverse complement is given by qi,j := p5–i, n–j+1 for i in 1..4
and j in 1..n.

Mathematical Abstraction of Genomes

Sets of genomic windows are abstracted in a similar manner as reads. Here, a genome is
considered to be a non-empty finite list of genomic sequences. These are non-empty finite
strings over the IUPAC nucleotide alphabet {A, B, C, D, G, H, K, M, N, R, S, T, V, W, Y}
that enumerate the + and – strand 5' to 3' sequences of the chromosomes (and mitochondrion,
chloroplast, …) that comprise the genome, generally as best as they are currently known.

Each IUPAC nucleotide letter is taken to represent a probability distribution on “A”, “C”,
“G”, and “T” as to the true nucleotide for that genomic position. From the original papers
describing the sequences for the Arabidopsis chromosomes [Theologis et al., Nature, 2000
Dec. 14;408(6814):816–20; Lin et al., Nature, 1999 Dec. 16;402(6763):731–2; Salanoubat et al.,
Nature, 2000 Dec. 14;408(6814):820–2; Mayer et al., Nature, 1999 Dec. 16;402(6763):769–77;
Tabata et al., Nature, 2000 Dec. 14;408(6814):823–6], estimates for accuracy of sequence
deemed “finished” varies between 1 error in 10,000 basepairs and 1 in 300,000. For both
Arabidopsis ATH1 chr1–5/C/M and NCBI 37.1 assembled mouse chr1–19/X/Y genomes,
a uniform 0.9999 probability distributed equally among the members of the subset of {A, C,
G, T} consistent with the stated discrete IUPAC basecall was adopted, with the remaining 0.0001
distributed equally among the members of the remaining subset of {A, C, G, T} (except for “N”,
for which (1/4, 1/4, 1/4, 1/4) was the adopted probability distribution).

Given n ≥ 1, an n–mer window into a given genome is any sequence of n contiguous
positions ordered 5' to 3' from any single one of the genome’s genomic sequences.
(Generally, n is much, much shorter than the lengths of whole genomic sequences —
typically there are hundreds of millions or billions of windows; it is assumed there is at
least one.) The sequence of each window is considered to be in the same format as a read,
that is, as a position–weight matrix, a probability distribution on Σn, etc.

Comparison of Matrices

Given two position–weight matrices p and q of the same length n (typically with p being from
a genomic window and q being a read), the probability that the sequence s from the first is the
same as the sequence t from the second is

doi: 10.1038/nature06745 SUPPLEMENTARY INFORMATION

www.nature.com/nature 23

€

S∗(p, q) = Pr s j = t j()
j=1

n

∏ =
Pr(s j = t j = “A”) + Pr(s j = t j = “C”) +

Pr(s j = t j = “G”) + Pr(s j = t j = “T”)











j=1

n

∏

=
Pr(s j = “A”)Pr(t j = “A”) + Pr(s j = “C”)Pr(t j = “C”) +

Pr(s j = “G”)Pr(t j = “G”) + Pr(s j = “T”)Pr(t j = “T”)











j=1

n

∏

= (p1, jq1, j + p2, jq2, j + p3, jq3, j + p4, jq4, j)
j=1

n

∏ ∈ [0, 1].

In some experiments, certain bases (e.g., all bases from one or more Solexa cycles) may be
manually suppressed due to quality control. If, in a given read, a subset J ⊆ 1..n of bases has
been suppressed for such a reason, then the factors of the product in S* for j in J are omitted
(or, equivalently, each is replaced with 1).

Bisulfite Alignment Scores

Conversion by sodium bisulfite of unmethylated “C”s to “T”s complicates matrix comparison.
The following was used for the data presented here. Assume two position–weight matrices p
and q of the same length n are given, with p being from a genomic window and q being
a BS–read (that is, a read putatively of genomic DNA processed by sodium bisulfite).
A possible bisulfite product (PBP) of s in Σn is any of the 2m ≥ 1 strings t in Σn obtained by
independently replacing each “C” in s by either “C” or “T”, where m in 0..n is the number of
“C”s in s. As q induces a probability distribution on Σn, there is a certain probability that the
sequence of q is any particular such t. The expected maximum such probability over PBPs
under the distribution on Σn induced by p is taken as the bisulfite alignment score, this being

€

SBS
∗ (p, q) = Pr(s | p) ⋅ max

′ s ∈Σn such that
′ s is a PBP of s

Pr(sequence of q is ′ s)
s∈Σn

∑

= ps j , j
j=1

n

∏



 




  ⋅ max

′ s ∈Σn such that
′ s is a PBP of s

q ′ s j , j
j=1

n

∏



 




 

s∈Σn

∑

= 

s1 =1

4

∑ ps1 ,1… psn , n

qs1 ,1 if s1 ≠ “C”
max(q2,1, q4,1) if s1 = “C”








 …

qsn , n if sn ≠ “C”
max(q2, n, q4, n) if sn = “C”










sn =1

4

∑

= ps1 ,1 ⋅
qs1 ,1 if s1 ≠ 2
max(q2,1, q4,1) if s1 = 2










s1 =1

4

∑



 




  … psn ,1 ⋅

qsn , n if sn ≠ 2
max(q2, n, q4, n) if sn = 2










sn =1

4

∑



 




 

= p1, jq1, j + p2, j max(q2, j , q4, j) + p3, jq3, j + p4, jq4, j()
j=1

n

∏ ∈ [0, 1].

Bisulfite scoring by expanding p and independently q into their probability distributions on Σn,
further expanding each sequence from p into a uniform distribution on its PBPs, and asking for
the probability of a match would have resulted in use of

€

p1, jq1, j + p2, j
q2, j +q4, j

2 + p3, jq3, j + p4, jq4, j()
j=1

n

∏

doi: 10.1038/nature06745 SUPPLEMENTARY INFORMATION

www.nature.com/nature 24

as a scoring formula. This formulation and others like it (e.g., without the division by 2) were
rejected due to their unequal weight on letters “A”, “C”, “G”, and “T” (e.g., scoring factors not
all the same for a perfect “A”, “C”, “G”, or “T” read basecall matching the genome perfectly)
or, all else being equal, their potential for bias (favoring windows with genomic “C”s rather
than “T”s, essentially due to the subset of PBPs increasing under inclusion as genomic “T”s
are changed to genomic “C”s).

Statistically–Founded Mapping of Reads to Genomes

Fix a genome of interest and base length n ≥ 1 not longer than a longest genomic sequence.
Given a read q of length n (whose sequence is presumably that of a window from the genome),
likelihoods — a Bayesian approach with a uniform prior on the set Wn ≠ ∅ of all genomic
windows of length n — are used to identify likely windows that are the origin of the sequenced
portion of the fragment corresponding to the read. As w varies over Wn, Pr(w | q) is proportional
to Pr(q | w) = S*(pw, q), where pw is the position–weight matrix for w. Hence, the posterior
distribution over w in Wn for the genomic location of q is given by

€

Lq (w) =
S∗(pw, q)

S∗(p ′ w , q)
′ w ∈Wn

∑
∈ [0,1] (the denominator never vanishing in our applications),

while M(q) := max{ S*(pw, q) | w in Wn } in [0, 1] is a measure of how strongly it appears that
q comes from the genome (whereas max{ Lq(w) | w in Wn } in [0, 1], on the other hand, is one
measure of how uniquely the read is localized to the genome). Note that Lq is the same for
genomic windows with identical IUPAC discrete basecalls; posterior probability mass for a
given window sequence independent of genomic location is uniformly distributed among
genomic locations sharing that sequence.

Much effort (detailed later in this document) was expended in designing and implementing
data structures and algorithms that, when given a read q, efficiently but precisely and accurately
compute rigorous key information about Lq and M(q). (Brute force evaluation of S*(pw, q) for all
pairs of hundreds of millions of q with hundreds of millions [for Arabidopsis] — or even billions
[for mouse and other large genomes] — of w is presently prohibitively computationally
expensive, even with SIMD vector–optimized code or exotic techniques such as GPGPU.)
While a variety of information types were developed (as what is needed depends on sequencing
application), in the present work reads q with ESB(q) < 20 (taking probability “A” = “C” =
“G” = “T” = 1/4 for each suppressed cycle, if any) or M(q) < 0.01 were rejected as inferior
quality and it was determined for each read q that was not rejected all w at least 1/100 as likely
as a maximum likelihood genomic location (i.e., all windows w with S*(pw, q) ≥ 0.01M(q)).
Read q was considered to map uniquely if and only if exactly one window resulted.

Probabilistically–Founded Mapping of BS–Reads to Genomes

With a fixed genome of interest and base length n ≥ 1, mapping of a BS–read q of length n
to the genome is generally performed similarly as to the non–bisulfite case, except with matrix
comparison

€

S∗ replaced by

€

SBS
∗ . There are, however, some additional complications.

Conversion by sodium bisulfite generally breaks A–T, C–G basepairing (as some “C”s —

paired with “G”s — are replaced with “T”s that normally basepair with “A”s) and, hence, after

doi: 10.1038/nature06745 SUPPLEMENTARY INFORMATION

www.nature.com/nature 25

further rounds of amplification via DNA replication there are generally four strands of concern:
converted genomic +, converted genomic –, reverse complement to converted genomic +,
and reverse complement to converted genomic –. Referring to the former two as FW and the
latter two as RC, one speaks of FW BS–reads and RC BS–reads. Various strategies to deal
with this ambiguity were researched; here, when working with Lq and M(q) for a given read q,
each window actually participated in two applications of

€

SBS
∗ , once with the unmodified read

(to consider it as FW) and once with its reverse complement (to consider it as RC).

Assume, as is generally done in this work, that one is only concerned with reads mapping
uniquely. Suppose a read q maps uniquely to window w. It is generally possible that methylation
states of w other than that evidenced in q give rise to BS–reads that do not map uniquely to w,
which can introduce methylation state bias in interpretations of datasets consisting of uniquely
mapped reads. If there exists at least one window w' in Wn \ {w} such that w and w' share
at least one PBP, then w is potentially bisulfite confusable (PBC). As part of the offensive
against methylation state bias, in the bisulfite case it was additionally required of a uniquely–
mapping read that the unique window to which it maps not be PBC; such reads are said to map
BS–uniquely. Typically, ≈1.4 million BS–unique reads were obtained per lane.

Initial Stages of Raw Image Analysis via a Subset of the Solexa Software Pipeline

Each n–cycle (here, n = 36 or 33) Illumina 1G Genome Analyzer run produces 1,004–by–1,002
pixel 16–bit grayscale raw images in TIFF format over ≈3 days, one image for each of 8 lanes,
200 tiles (a purely technical subdivision of lanes), 4 colors from which “A”, “C”, “G”, and “T”
basecall information is eventually derived, and n cycles (bases) for a total of 6,400 n images
(here, 230,400 or 211,200). As each image is 2,012,138 bytes, each run of 8 lanes produces
~395 to 432 GiB of raw data. Each lane can be loaded with a DNA library independently of
other lanes and flow cells containing lanes used in this study contained lanes loaded with other
libraries as well.

A subset of version 0.2.2.4 of the Solexa software pipeline was used to perform the initial
stages of raw image analysis described in this and the next paragraph. Images of different colors
are registered (offsets are computed and effectively applied) so that afterwards a given (x, y)
pixel location for a given tile in a given lane ideally corresponds to the same physical flow cell
location across colors and cycles. Spot calling is performed, grouping pixel locations per tile per
lane so that ideally the pixels in each group correspond to a solid–phase–amplified DNA cluster
of molecules on the flow cell and groups enumerate such clusters; each called spot becomes
one read. Signal intensity relative to background for each color for each cycle for each spot is
integrated to obtain a four–tuple I := (IA, IC, IG, IT) of real intensities (_int intensities) per cycle
per spot. The number of clusters is related to the concentration of prepared DNA fragments
loaded onto the flow cell and is also affected by inherent variation across flow cells and the
preparation and sequencing processes. Owing to the random placement of clusters, flow cell
surface area is wasted (but intensities are cleaner) when there are few clusters, but clusters tend
to overlap if there are too many. It was found that ≈17,000 called spots per tile via loading
prepared DNA at 1 to 2 picomolar concentration was an effective compromise, with many
runs of the present work being in the vicinity of this density. Rather than using some threshold
(e.g., 0.6) on the Solexa software pipeline’s “chastity” measure (as computed by its QUAHOG
component and recorded in the _qhg files) to remove spots it believes to be contaminated by
overlap, all spots are allowed to proceed to the more stringent and presumably less biased (by the
statistics of the mapping process in regard to an approximate model of reads, overlaps of them,
and observations of chastity behavior) selection process of mapping to a genome.

doi: 10.1038/nature06745 SUPPLEMENTARY INFORMATION

www.nature.com/nature 26

Due to the overall system response of the cleavable–fluorophore–containing reversible–

terminating nucleotides, lasers, optical filters, light path components, and camera of the
Solexa instrument as well as the kinetics of the chemistry of the Solexa sequencing process,
the components of intensity vectors I are not responsive to purely one distinct base each. Hence,
a color crosstalk matrix is estimated and its inverse applied so that ideally the ith component
of corrected intensity vectors responds purely to “A”, “C”, “G”, or “T” for i = 1, 2, 3, and 4,
respectively. Also at this time, a phasing correction is estimated and applied in an attempt to
account for temporal de–synchronization of the population of molecules forming each cluster
(with some molecules running fast due to, e.g., incorporation of more than one base per cycle,
while others run slow due to, e.g., failure of removal of one or more terminators). The result is
a four–dimensional S(r, j) := (SA(r, j), SC(r, j), SG(r, j), ST(r, j)) signal vector (_sig2 signals)
for each cycle j in 1..n of every read r. These signal vectors are the primary input data used
to perform basecalling, which is understood here to be the formation of a position–weight matrix
for each read. Note that due to use in this work of fitted Gaussian mixture models for basecalling
(see below), in the context of the entire analysis the corrections at this stage are only initial
corrections to which further finely–tuned corrections are effectively applied to each individual
cycle of each individual lane.

Certain components of version 0.2.2.4 of the Solexa software pipeline require a roughly
balanced mixture of “A”s, “C”s, “G”s, and “T”s for the autocalibration (as it is known) of
the color crosstalk matrix and phasing. As genomic “C”s tend to be rather unmethylated at
the level of the whole Arabidopsis genome and the genome starts as being poor in C and G
(ATH1 is ~36% C + G), the percentage of “C”s after bisulfite treatment is very low, although
this is ameliorated somewhat by the presence of RC BS–reads. Hence, each flow cell contained
a non–bisulfite (e.g., an untreated whole genome) library used for autocalibration (and possibly
other non–bisulfite libraries as well).

In some runs, weak signals were observed for one or more colors in the first cycles of a run.
As version 0.2.2.4 of the Solexa software pipeline focuses on the first cycle given to it for
determination of numerous parameters, in these cases such cycles were manually excluded.
Further, due to the biochemical construction of the bisulfite DNA libraries, the first five cycles
are generally those that sequence bases not derived from the original organismal DNA of
interest. Hence, subsequent analysis focuses on the tail 31 = 36 – 5 or 28 = 33 – 5 cycles.

Basecalling via Gaussian Mixture Models

As generally many fewer than n ≈ 30 bases are required to have only a comparatively small
fraction of DNA sequences of length n appear in multiple windows or be PBC (even for large
genomes, such as human), mapping of reads and BS–reads to reference genomes are typically
somewhat robust processes that do not demand exceptionally high accuracy of absolutely every
single base for a given read. However, for estimation of methylation at single–base resolution,
it is critical that individual bases be called with high accuracy. Due to the extreme depletion
of “C”s after bisulfite conversion (and, e.g., the generally low level of CHH methylation if any
at any given site), error rates even in the vicinity of a single percent may be quite misleading as
to final estimated methylation.

The apparent statistical well–behavedness of the distribution of signal vectors S within cycles
of a given lane and the systematic drifts and changes of these distributions across cycles of the
lane (apparently due in part to non–constancy of crosstalk and phasing across lanes and cycles)

doi: 10.1038/nature06745 SUPPLEMENTARY INFORMATION

www.nature.com/nature 27

suggested that explicit modeling of signal vector distributions would be fruitful. This was
confirmed after the development of basecalling via fitted multidimensional Gaussian mixture
models outlined in one form presently, the application of which has been observed, e.g., to
provide significant reduction in post–mapping occurrences of alignments of genomic bases
to read basecalls not consistent with bisulfite conversion.

Full multi–component four–dimensional Gaussian mixtures (without constraints such as
diagonal covariances) are fitted by braked expectation maximization (EM) to signal vectors S
on a per–lane, per–cycle basis. EM is an iterative local optimization method that requires a fairly
close initial approximation to an optimal mixture to converge to it and so fitted models must
generally be monitored for reasonability as regards certain application–driven desiderata
(and also as suboptimal fits that are more reasonable than optimal fits may be preferred).
Starting at cycle 6, the color crosstalk correction applied by the Solexa software pipeline serves
to normalize S vectors sufficiently that it is often not difficult to form an automated suitable
initial mixture model for that cycle, and the fitted mixture for each cycle generally serves as
a suitable initial model for the next cycle. In fitting each mixture, up to 50 EM iterations are
performed, with a provision made for early termination when all parameters of interest change
sufficiently slightly on successive iterations.

For a typical cycle of a typical lane, the S vector density concentrates in four distinct and
roughly hyperellipsoidal fuzzy regions with different means, radii, principal axes, and overall
proportion (the overall proportions being different due to the uneven distribution of post–
bisulfite bases). These concentrations of signal vectors correspond to “A”, “C”, “G”, and “T”.
However, due to physical overlap on the flow cell of some of the clusters corresponding to spots,
there are also fuzzy sheets of density between pairs of these hyperellipsoids, most pronounced
between the “A” and “T” concentrations due to their high proportion; fitting must generally be
adapted to account for these. Additional considerations are made for S whose spot (x, y) pixel
location to the nearest other spot is unusually small or large, for S in regions of low density of
signal vectors, and for S that are particularly far away from or close to the origin. The ANN
nearest–neighbors C++ library (http://www.cs.umd.edu/~mount/ANN/) of David Mount and
Sunil Arya and the E and M steps of Tim Bailey’s Gaussian Mixture Model and Gaussian Kernel
MATLAB Utilities (http://www-personal.acfr.usyd.edu.au/tbailey/software/gmm_utilities.htm)
are incorporated.

Desiderata mentioned in the paragraph just before the previous one are a clear association of
“A”, “C”, “G”, and “T” to distinct mixture components as judged by angle between mean vectors
and canonical axes, mixture probabilities within expected intervals, and bounds on ratios of
hyperellipsoid volumes, of hyperellipsoid maximum radii, and of largest to second largest radii
of individual hyperellipsoids. While automated monitoring is necessary to efficiently deal with
the massive volume of raw data encompassed by a project of this size, such can only go so far
as tendency for variation in physical materials (flow cells, reagents, …), physical conditions,
and chemistry as well as hardware glitches and failures results in a wide and hard–to–anticipate
variety of observed anomalies in the terapixels of collected images. Hence, a variety of two–
dimensional projections of empirical S density and fitted Gaussian mixture components are
arrayed into frames of a losslessly–compressed Apple QuickTime movie, one frame per cycle
and one movie per lane. These movies provide a rapid means of manual evaluation of both
the quality of a lane and the reasonability of the final mixture fits. Cycles that display any
indication of an experimental mishap or for which the fitted mixtures are not manifestly highly
co–located with empirical density are suppressed (hence the final paragraph under Comparison
of Matrices above). Lanes which would otherwise have had more than four suppressed cycles
were completely omitted from the study.

doi: 10.1038/nature06745 SUPPLEMENTARY INFORMATION

www.nature.com/nature 28

For a given cycle of a given lane, basecalling is straightforward once a Gaussian mixture has

been fit for it. For m = 1, 2, 3, and 4 (corresponding to “A”, “C”, “G”, and “T”, respectively), let
real p(m) > 0 be the mixture probability for mixture component m (with p(1) + p(2) + p(3) + p(4) = 1),
let µ(m) be the real 4–by–1 column vector giving the mean of the mth component, and let Σ(m) be
the 4–by–4 real symmetric positive definite covariance matrix of mixture component m. Then

€

Pr(SA, SC, SG, ST |m) = Pr(S |m) =
exp − 1

2 (S −µ(m))T (inverseΣ (m)) (S −µ(m))()
4π 2 determinantΣ (m)

> 0

for all S in ℝ4 is the Gaussian density of mixture component m. Hence, by Bayes’ Theorem,
Pr(m | S) is proportional to Pr(m) Pr(S | m) = p(m) Pr(S | m) as m varies in 1..4, so that the
basecall (before a few adjustments described below are applied) for a given signal vector S
is the column vector

€

b(S) = Pr(“A” | S), Pr(“C” | S), Pr(“G” | S), Pr(“T” | S)() =

p(m)
exp − 1

2 (S −µ(m))T (inverseΣ (m)) (S −µ(m))()
determinantΣ (m)

m=1

4

∑












−1

⋅

p(1) exp − 1
2 (S −µ(1))T (inverseΣ (1)) (S −µ(1))() determinantΣ (1) ,(

p(2) exp − 1
2 (S −µ(2))T (inverseΣ (2)) (S −µ(2))() determinantΣ (2) ,

p(3) exp − 1
2 (S −µ(3))T (inverseΣ (3)) (S −µ(3))() determinantΣ (3) ,

p(4) exp − 1
2 (S −µ(4))T (inverseΣ (4)) (S −µ(4))() determinantΣ (4)).

Hence, the position–weight matrix for a read r is

€

B(r) =

b S(r,1)()1 b S(r,2)()1  b S(r,n)()1
b S(r,1)()2 b S(r,2)()2  b S(r,n)()2
b S(r,1)()3 b S(r,2)()3  b S(r,n)()3
b S(r,1)()4 b S(r,2)()4  b S(r,n)()4



















.

It is, however, desirable to not call bases whose signal vector is unusually distant from

the means of all four of the “A”, “C”, “G”, and “T” mixture components. Let Q(S) be the
four–dimensional real vector with successive entries in (0, 1] being the outer Gaussian quantile
of S in the respective component of the mixture model. That is, let Q(S)m for m in 1..4 be the
probability that S' is at most as likely as S (i.e., Pr(S' | m) ≤ Pr(S | m)) when S' is an independent
multinormal random variable of mean µ(m) and covariance Σ(m). If all four entries of Q(S) are
below one billionth, then S is unlikely to be from the model (it is likely anomalous in some
experimental or analytic way) and the basecall b(S) for it was replaced with (1/4, 1/4, 1/4, 1/4).

In addition to addressing cases where a mixture model might otherwise be extrapolated too
far out in signal vector space, one is also concerned with the model assigning basecalls that are
overly precise (i.e., placing all but an extremely small amount of the probability mass on just
one of “A”, “C”, “G”, or “T”). Some errors are introduced even before the Solexa measurement
process (e.g., DNA polymerases used in DNA library construction do not have perfect fidelity

doi: 10.1038/nature06745 SUPPLEMENTARY INFORMATION

www.nature.com/nature 29

and a base error at such a stage can amplify to an entire cluster on a flow cell). Further, it was
desired to continue an overall conservative tendency in the present study. Hence, if a basecall
b(S) arises that has an entry in excess of 0.98 (if so, there is only one such entry), then the excess
was equidistributed to the other three entries.

For each lane, p(m) for m in 1..4 were fixed across cycles via re–normalized medians.
Additionally, analyses in the present work that are downstream of mapping operate on
discretized single–letter basecalls. A position–weight matrix was converted by replacing each
column that has an entry of 0.9 or higher (there can be at most one such entry) with the
single letter that corresponds to its row (be it “A”, “C”, “G”, or “T”). Each remaining column
was replaced with “N”. Degree of methylation at a given genomic “C” was then determined from
tallies of the number of manifest read “C” bases versus manifest read “T” bases mapping to
that genomic “C” (taking reverse complements as appropriate for BS–reads deemed RC).

Non–Conversion Filtration

It is well–known from low–throughput sequencing of molecular clones of DNA treated with
sodium bisulfite that non–conversion can occur, that is, some genomic “C” bases remain “C”
after treatment regardless of their methylation state. In low–throughput traditional bisulfite
sequencing, these are typically filtered out manually; if such occurrences are not identified,
spurious apparent methylation results. Non–conversion usually arises because of short stretches
of non–denatured DNA (as sodium bisulfite operates on single–stranded DNA) with the
result that it appears as several adjacent unconverted cytosines [Warnecke P. M. et al., Methods.
2002 2:101–7].

Several instances of apparently unconverted sequences were discovered via manual
inspection of a variety of regions of an unfiltered version of the dataset as displayed in the
UCSC genome browser (see below). These instances were small dense patches of “methylation”
found in regions that would not be expected to be methylated, such as the promoters of active
genes and the unmethylated chloroplast genome. Often, this “methylation” derived from
reads in which all genomic “C”s appear as “C”s in the read, either alone or in small groups,
and thus appear to be unconverted. To confirm this, four of these regions were validated by
traditional bisulfite sequencing, and all were completely unmethylated (shown in Supplementary
Figure 17). Looking carefully at the patterns, it was determined that eliminating reads with
three CHH sites in a row virtually eliminated these unconverted reads and this was the largest
(i.e., most selective) number of adjacent CHH sites needed for this filter to be effective.

The total fraction of reads removed is ~0.23%. While this filter undoubtedly removes some
genuine methylation, based on the expected frequency of CHH methylation at individual sites
(roughly 10% at most loci; see Supplementary Figure 1) and prior experience of the Jacobsen lab
(e.g., the observation that methylation at sites of even close proximity is rather independent
within individual clones across clones covering a given small genomic region), this filter is
expected to remove only a small amount of veridical methylation.

A precise description of the filter is as follows. Given a read and a mapped genomic location
for it with discrete single–letter IUPAC genomic bases g and discrete read bases r (with r already
reverse complemented in the RC case), consider only the “C”s in g, retaining their order and
classifying the genomic context of each (as each sits in the entire genomic sequence in question)
as CG, CHG, or CHH. For each, consider it methylated if and only if the corresponding base in r

doi: 10.1038/nature06745 SUPPLEMENTARY INFORMATION

www.nature.com/nature 30

is “C” (and not part of a suppressed cycle). The read is rejected by the filter if and only if there
are three consecutive methylated CHHs.

Presentation in the UCSC Genome Browser

From prior work, a local mirror (http://epigenomics.mcdb.ucla.edu/) of the UCSC Genome
Browser (http://genome.ucsc.edu/) that had already been augmented with the Arabidopsis
genome was available. While the browser was not designed for datasets on the scale of whole
genome single–base DNA methylation, it is serviceable providing that the track loading tools
(which operate with the browser’s formats [which are space–inefficient in this application]
and assume the underlying data of whole tracks can be read entirely into memory at one time)
are bypassed and MySQL tables in the browser’s internal formats are filled directly.

The only table columns for BED–style tracks that cause any difficulty are bin (derived from
chromStart and chromEnd), which serves as the browser’s device to improve efficiency of
spatial searching (e.g., to retrieve all objects of a track intersecting a given end–user’s display),
and reserved (derived from external itemRgb), which encodes color. The other fields are
essentially direct from the external BED format of http://genome.ucsc.edu/FAQ/FAQformat
already documented on the UCSC site. Needed details were derived from direct examination of
the UCSC source code (obtained via CVS; see http://genome.ucsc.edu/admin/cvs.html).

Assuming 32–bit two’s complement ints, bin may be computed by the C++ function

int binFromRange(int chromStart, int chromEnd) {
 chromStart >>= 17; chromEnd = ((chromEnd-1) >> 17);
 if(chromStart == chromEnd) return(chromStart + 585);

 chromStart >>= 3; chromEnd >>= 3;
 if(chromStart == chromEnd) return(chromStart + 73);

 chromStart >>= 3; chromEnd >>= 3;
 if(chromStart == chromEnd) return(chromStart + 9);

 chromStart >>= 3; chromEnd >>= 3;
 if(chromStart == chromEnd) return(chromStart + 1);

 chromStart >>= 3; chromEnd >>= 3;
 if(chromStart == chromEnd) return(chromStart + 0);

 /*FAILURE: [chromStart, chromEnd) out of bin-able range*/
 std::abort() /*...from #include <cstdlib>*/;
 }

and, if the three comma–separated fields in 0..255 of itemRgb are red, green, and blue,
respectively, reserved may be computed by the C++ function

unsigned int bedParseRgb(const unsigned int red,
const unsigned int green, const unsigned int blue)
{ return((red<<16) | (green<<8) | blue); }

(trivial transliterations of these two functions also work in, e.g., Perl).

doi: 10.1038/nature06745 SUPPLEMENTARY INFORMATION

www.nature.com/nature 31

As the MySQL MyISAM engine fills the backing store file of a table in the same order
as rows arrive via bulk inserts (performed via, e.g., LOAD DATA INFILE), it is helpful to sort
rows by genomic position before loading. GNU sort, in particular, has no trouble with text files
even of hundreds of gigabytes on hardware of today. (Indeed, the desire to sort is perhaps the
main reason the UCSC loading tools start by loading entire tracks into memory. GNU sort
scales much better as it transitions to strategies designed for external sorting and provides the
--buffer-size= command line option for configuring the size of its in–memory buffer.)
Further, use of myisampack is helpful to overcome some inefficiencies of the UCSC internal
table formats in the present application.

Tracks that display individual read manifest “C”s and “T”s (colored according to methylation
state and genomic context) as they align to genomic “C”s are straightforward. It is more difficult
to choose how to display reads as there is no obvious track type choice that can display short
and generally overlapping objects aligned to the genome with arbitrary patterns of trinary state
(“methylated”, “unmethylated”, and “non–genomic–C”) within each at single–base resolution.
However, prepending and suffixing single–base “UTRs” permits display of arbitrary patterns
of binary state via “exon”–“intron” distinctions, and advantage was taken of this to exhibit
tracks that display reads with “methylated–genomic–C” vs. “unmethylated–or–non–genomic–C”
visually apparent for every base of every displayed read when zoomed in sufficiently close.

Determination of Methylation Status for Cytosines

Once reads meeting all criteria are mapped to the genome, one may tabulate at each genomic “C”
the number a ≥ 0 of manifest read–“C”s and b ≥ 0 of manifest read–“T”s mapping there.
Though ~93% of theoretically–coverable cytosines were covered with at least one sequenced
read, most downstream analyses were restricted to genomic “C”s having a + b ≥ 5 to reduce
the error in percent methylation estimates inherent in the statistics of few counts. Methylation
at each position was estimated as the fraction a / (a + b).

Additional Details of Data Analysis

All Arabidopsis data analyzed in the paper are from BS–unique sequences, except for the rDNA
and telomere analyses in which all sequences mapping to these regions were analyzed. For the
basic analysis (not using mapping) of overall methylation in the wild type and np95–/– mouse
libraries, the stock Solexa pipeline was used — including a “chastity” ≥ 0.6 filter to eliminate
sequences of presumably poor quality — after which the number of apparent CpG (as exhibited
in the Solexa _seq stock discrete basecalls) remaining in the reads were tallied. Hence, all
passing sequences were included in this case regardless of their uniqueness in the genome or
whether they were present in the assembled portions of the mouse genome.

Algorithmic and Implementational Details of Cokus Pipeline

Overview

The key to CokusAlignment fast mapping of hundreds of millions of short, imprecise reads
to a reference genome of hundreds of millions to billions of well–known nucleotides while
making use of the full probabilistic content of reads is the ability to rapidly but rigorously
eliminate large fractions of Wn — the set of all genomic windows of length n — as candidates

doi: 10.1038/nature06745 SUPPLEMENTARY INFORMATION

www.nature.com/nature 32

for highest–scoring windows for each read. This is done by pre–processing the reference
genome into an efficient encoding of a tree structure invented for this work and intelligently
traversing it using branch–and–bound techniques via a double–ended priority queue. A sequence
of simplified data structures and algorithms (some of which are not practical, but are easier to
explain) will be presented, leading up to the data structures and algorithms actually employed
by the highly–optimized C++ versions of CokusAlignment used in this work.

Key Ideas

As scoring against a given window w in Wn is a function of the window sequence of w and
not the genomic location of w, it simplifies mapping to consider instead of Wn the set

€

Gn := the IUPAC nucleotide sequence of w | w ∈Wn{ }

of distinct window sequences, and the location whole–genome copy number

€

WGCNL (g) := # w ∈Wn | the IUPAC nucleotide sequence of w is g{ } ≥1

and a fixed but arbitrary representative location

€

RL(g)∈ w ∈Wn | the IUPAC nucleotide sequence of w is g{ } ≠∅

of each g in Gn. For typical genomes (even large ones, e.g., mouse) and n, the location whole–
genome copy numbers of all but a fairly small percentage of g in Gn are 1. Put

€

Gn
∗ := { prefix of length i of g | g∈ Gn }

i= 0

n

 ,

the set of all prefixes of Gn, and form the graph T whose set of vertices is

€

Gn
∗ and that has a

directed edge from node x to node y if and only if x is a prefix of y and exactly one letter
shorter. Label each leaf g with WGCNL(g) and RL(g), and label each edge (x, y) with the
single IUPAC letter that ends y. T is a (typically enormous) rooted, directed tree with ε, the
empty string, as root.

Take q to be the position–weight matrix of the current read for which mapping is desired,
and put S'(x) :=

€

S∗(x, prefix of q of same length as x) or

€

SBS
∗ (x, prefix of q of same length as x)

as appropriate for all

€

x ∈ Σ0∪∪Σn (considering x as if it were from a genomic sequence).
The primary operation of mapping q is visitation of the leaves of T in an order such that S' is
non–increasing; this primitive and variations of it suffice to answer many questions about Lq
and M(q) (or the bisulfite equivalents, if appropriate; in the following, L and M will be used in
this way without further comment). Note that S'(ε) = 1 and S'(y) is easily computed from S'(x)
by multiplying by a simple factor when y extends x by a single letter (that is, when (x, y) is
an edge; the factor is a function of the label on this edge and q). Note that the factor is in [0, 1]
and, hence, S'(y) ≤ S'(x). The basic idea is to compute S' at nodes of the tree, starting at the root
and flowing from parents to children to eventually reach leaves, but doing so in a prioritized way
so that, in the end, in typical applications most q avoid visiting almost all of the tree.

Let D be an initially empty ordinary priority queue of nodes with priority corresponding to S'.
Hence, if D is non–empty, a node with maximal S' among the nodes in D is available at the top
of D. Enqueue ε with S'(ε) = 1. While D is not empty, dequeue the top of D as x and visit x,

doi: 10.1038/nature06745 SUPPLEMENTARY INFORMATION

www.nature.com/nature 33

which for the moment is the computation of S'(y) and enqueueing of y for each child y of x
(if any). This procedure achieves the basic goal; in fact, all nodes (both leaves and non–leaves)
are visited in an order such that S' decreases (with ties visited consecutively in an as–yet–
arbitrary order) so that, in particular, the subsequence of visits to leaves are such that S' is
non–increasing. Note that, for example, M(q) (and, using RL, a window achieving it) can be
determined from the first leaf visited.

Many refinements are required to make the basic traversal of the previous paragraph
practical. These are both technical (e.g., traditional representations of trees in computer
memory are too inefficient in this application and need replacing) that improve space and time
consumption by constant (but still critical) factors, and algorithmic (e.g., dynamic prunings
of T) that can provide more dramatic savings.

Algorithmic Optimizations for Practical Execution

Suppose one is only interested in g in Gn such that S'(g) ≥ α for some real parameter α
(e.g., 0.01). Then one does not need to visit any node x such that S'(x) < α nor (and this is key)
any of the descendents y of x since S'(y) ≤ S'(x) < α. Hence, a first refinement to the basic
traversal is to not enqueue any node whose S' is below α. Such pruning (that is, non–visitation
of a node and its descendents, by the criteria introduced in this and later paragraphs) is the major
means by which CokusAlignment is greatly sped up relative to brute force implementations.
For example, pruning of a node not far below the root can safely (and nearly instantaneously)
eliminate many millions of genomic windows from consideration.

Next, suppose real parameter β in [0, 1] is specified (e.g., 0.01) and one is only interested
in those g such that S'(g) ≥ β M(q) (or in determining that there is no g in Gn such that S'(g) ≥ α).
One may proceed as in the previous paragraph, initially pruning nodes x such that S'(x) < β α
until the first leaf is visited, establishing M(q). (If the queue empties before visiting any leaves or
if S' for the top of D drops below α, then there is no g in Gn such that S'(g) ≥ α.) Processing then
continues until the queue empties, except pruning nodes x such that S'(x) < β M(q); the desired
leaves are exactly those visited.

It is apparent from the previous two paragraphs that, in general, the sooner a high pruning
level on S' can be established, the better. While the basecalls in q can be sufficiently fuzzy that
taking the most likely call (be it “A”, “C”, “G”, or “T”) at each base of q may not be the window
sequence of a high–scoring window, it is not uncommon for this to be the case. Hence, while
not sound if used in isolation, a greedy approach may be employed before the queue–based main
loop to provide a lower bound on M(q) that may result in more extensive and earlier pruning
(but still safe — i.e., mapping speed is generally improved without ever sacrificing accuracy)
than would otherwise be had. Start at ε and continue until a leaf x is reached; at non–leaves,
follow an edge that leads to a node of highest S' (breaking ties arbitrarily). Then proceed as
before, but as M(q) ≥ S'(x), if the pruning level at any given moment is below β S'(x), then it
can be taken as β S'(x) instead.

In the next refinement, S' is permitted to increase as nodes are visited. However, as
mentioned previously, non–increasingness of S' is required on the subsequence of visits to
leaves, and this will be maintained. Until now, when prioritizing nodes and pruning, non–
leaves x generally could be viewed as having higher scores than strictly required in that S'(y)
is often rather smaller than S'(x) for all children y of x that are leaves: the columns of q and the
probabilities associated with genomic bases are generally smaller than 1, and hence the factors

doi: 10.1038/nature06745 SUPPLEMENTARY INFORMATION

www.nature.com/nature 34

yet to be multiplied to S'(x) to obtain the S'(y) are generally smaller than 1 as well. One can form
tail bounds that provide conservative (but generally tighter than heretofore) upper bounds on S'
of leaf–descendents of general nodes as follows. Put Ξ := {A, B, C, D, G, H, K, M, N, R, S,
T, V, W, Y}, the IUPAC nucleotide alphabet. Identify each member of Ξ with the probability
distribution on (“A”, “C”, “G”, “T”) associated to it as a base from a genomic sequence. If x is
a node of length m in 0..n and y is a descendent of x that is a leaf, then in the non–bisulfite case,

€

′ S (y) ≤ max
c∈Ξ (m+1)..n

′ S (concatenation of x and c)

= max
c∈Ξ (m+1)..n

′ S (x) (cj)1q1, j + (cj)2q2, j + (cj)3q3, j + (cj)4 q4, j()
j= m +1

n

∏



 




 

= ′ S (x) ⋅ max
c∈Ξ

c1q1, j + c2q2, j + c3q3, j + c4q4, j()
j= m +1

n

∏
= :λ(m)∈ [0,1], the q tail bound for leaf – extensions of length m nodes
                

,

and in the bisulfite case,

€

′ S (y) ≤ max
c∈Ξ (m+1)..n

′ S (concatenation of x and c)

= max
c∈Ξ (m+1)..n

′ S (x) (cj)1q1, j + (cj)2 max(q2, j , q4, j) + (cj)3q3, j + (cj)4 q4, j()
j= m +1

n

∏



 




 

= ′ S (x) ⋅ max
c∈Ξ

c1q1, j + c2 max(q2, j , q4, j) + c3q3, j + c4q4, j()
j= m +1

n

∏
= :λ(m)∈ [0,1], the q tail bound for leaf – extensions of length m nodes

                    

.

Hence (in either case), an upper bound for S'(y) for all leaf–descendents y of any given node x
of T is S''(x) := S'(x) λ(length x) ≤ S'(x). Priority queue D may now be ordered and pruning may
now be triggered by S'' instead of S'. Also, one can conclude that there is no g in Gn such that
S'(g) ≥ α as soon as S'' (rather than S') for the top of D drops below α.

It is convenient now to comment on how two particular supported features are handled.
First, as discussed earlier, it is useful to be able to inhibit a manually–specified subset of cycles
from scoring of reads. (Suppressed subsets are typically small, e.g., size 0..4, as suppression of
larger subsets degrades the efficiencies otherwise made possible by T and then the means to be
described momentarily of handling suppressed bases is not so effective. In such cases, if there
are not too many suppression patterns, then a new, generally “discontinuous” T customized
for each particular pattern of bases suppressed can be constructed; this was not needed in the
present work and is not elaborated here.) If cycle j' in 1..n is among those suppressed, then when
computing S'(x') for a node x' of length j' from its prefix x of length j' – 1, the multiplicative
factor is taken to be 1 so that S'(x') = S'(x) (and S' of all descendents of x' are consequently
automatically corrected as well). To maintain S'', the j = j' factors in the products defining λ
are also omitted. There is an interaction between suppressed cycles and greedy establishment of
lower bounds introduced above; this is discussed when timings for Arabidopsis are given later.

Second, in the bisulfite case, it may be desired to permit a read to be FW, RC, or both. It is
straightforward to permit just one of FW and RC. While it is simple to handle allowance of both
FW and RC by two separate, independent traversals of T (namely, once with q and once with its
reverse complement), this is not generally as efficient as the means to be described presently;

doi: 10.1038/nature06745 SUPPLEMENTARY INFORMATION

www.nature.com/nature 35

typically one of these designations (FW or RC) produces no high–scoring window and to
determine such can be relatively expensive compared to the other designation in which traversal
often provides a positive result by reaching at least one leaf. The idea is to marry both traversals,
permitting the fast designation to rapidly reach positive results and enable good pruning as
pruning in either designation applies to both designations (so that the highest pruning in either is
applicable at any given moment). Each entry in priority queue D is extended with a Boolean flag
that indicates whether it is part of the FW traversal or the RC traversal. The greedy lower bound
performed before the main loop can be taken to be the maximum of that for FW and that for RC.
Enqueueing of ε is attempted twice at the beginning of the main loop, once for the start of the
FW traversal and once for the start of the RC traversal. The main loop then proceeds as before,
except switching between working on the FW or RC traversal moment–to–moment according
to the flag of the top element of D. If one wishes to provide a Bayesian prior with Pr(FW) = γ
in (0, 1) and Pr(RC) = 1 – γ, this is easily done (although this was not used in the present work)
by prefixing Pr(FW) or Pr(RC) as appropriate for the current traversal as a multiplicative factor
to S'; λ is unchanged and S'' is automatically adjusted via S'.

The final algorithmic refinement employed is the use of a double–ended priority queue for D.
With an ordinary priority queue, when the pruning level is raised, the “bottom” elements in D
whose S'' is below the new level remain in D for a relatively long time (until all elements —
both existing and yet–to–be–inserted — above them are processed). These bottom elements
are useless in that as soon as one rises to the top of the queue, mapping for q is finished just
as it would be if D were to become empty at that moment instead. Bottom elements cause all
operations on D involving non–bottom elements to be slower than need be. For example, an
efficient implementation of an ordinary priority queue of size m is via an array–based heap,
with O(1) time for retrieval of the top of the queue and O(log m) time to enqueue a new element
or dequeue the top of the queue, and log m is larger than need be if there are bottom elements.
However, by using two array–based heaps (or interleaving them, as in the versions of
CokusAlignment presented here) and cross–indexing them, it is possible to provide a double–
ended priority queue of size m that provides O(1) time for retrieval of a top (i.e., highest priority)
and simultaneously bottom (i.e., lowest priority) element of the queue and still consume only
O(log m) time to enqueue a new element or dequeue the top or bottom of the queue. Using such a
double–ended priority queue for D enables all elements whose S'' is below the new pruning level
to be jettisoned from D when the pruning level is raised.

Computational Optimizations for Practical Execution

With description of the algorithmic refinements complete, details of the implementations that
result in only constant factors of efficiency improvement are now discussed. These details are,
however, still essential to achieve practicality on problems of interest on reasonable hardware.
The first, and most important, is an efficient binary encoding of T. To illustrate the necessity,
a traditional in–memory form of T might use 15 link pointers (one for each element of Ξ as
possible edges, with null pointers for non–appearing labels) for each non–leaf node. In this case,
64–bit pointers would be required for even smaller genomes (such as Arabidopsis), resulting in
120 bytes of memory under heavy random access per non–leaf. As T for both strands of ATH1
chr1..5/C/M (366,923 bp mitochondrion) with n = 31 already has 3,782,356,392 non–leaves, a
completely unreasonable amount of RAM (in excess of 422 GiB) would be required.

Initially, as Arabidopsis was the only target reference genome, binary encodings optimized
for it (“CokusV8A”) were employed; these are described first. Later, as use of larger genomes
(such as human or mouse) was desired, encodings (“CokusV8B”) that are slightly less efficient
for smaller genomes but that are capable of capturing large genomes were implemented, and

doi: 10.1038/nature06745 SUPPLEMENTARY INFORMATION

www.nature.com/nature 36

these are described second. Should even larger genomes (or meta–genomes) be required, further
encodings are easily implemented.

While members of Ξ other than A, C, G, T, and N do occur in reference genomes, these five
are typically the most used letters in genomic sequences by far. Hence, it is generally wasteful
to reserve links for all 15 members of Ξ for every node; given that presence/absence of an edge
with a given label can be encoded with a single bit (that controls a much larger, say, 32 to 64 bits
of actual link data), it is helpful to employ nodes of variable size that only consume space for
links actually present. Thus, non–leaf nodes come in two varieties: “short” and “long”. Both are
sequences of binary bits packed into sequences of 8–bit bytes from most significant bit (msb) to
least significant bit (lsb) within each byte. A short node is a 0 bit (to indicate shortness) followed
by 7 flag bits that indicate presence (1) or absence (0) of 1..7 links: N, S, W, T, G, C, and A
(in order), followed by actual links. A long node is a 1 bit (to indicate longness) followed by
15 flag bits that indicate presence (1) or absence (0) of 1..15 links: N, S, W, T, G, C, A, K, Y,
R, M, B, D, H, and V (in order), followed by actual links.

Links are presented sequentially in the order N, S, W, T, G, C, A, K, Y, R, M, B, D, H,
and finally V, with absent labels skipped. Each link is either a link to another non–leaf, a
“short” link to a leaf, or a “long” link to a leaf. Links are encoded as either one or two 32–bit
little–endian quantities. A link to a non–leaf is encoded as a 0 bit (indicating link to a non–leaf)
followed by 31 bits that give the zero–based offset in bytes from the start of the binary data
encoding the entirety of T to the target non–leaf. A long link to a leaf is given by two consecutive
1 bits (to indicate a long link), followed by 30 bits specifying which genomic sequence and
the position on that sequence for the window designated as the representative location for the
target leaf, followed by an unsigned 32–bit binary integer giving the location whole–genome
copy number of the target leaf. Since location whole–genome copy numbers of 1 are typically
common, space can be saved by using short links, which start with a 1 bit followed by a 0 bit
and omit the 32–bit location whole–genome copy number (implicitly taking it to be 1), but are
otherwise the same as long links.

The precise 30–bit encoding of which genomic sequence and the position on that sequence
for the windows associated with representative locations is not particularly important for the
present discussion, but is included here for the sake of completeness. The first three bits give
an unsigned binary integer that specify the Arabidopsis chromosome (1..7, with 6 = chloroplast
and 7 = mitochondrion), followed by a flag (0 = plus, 1 = minus) giving the strand, followed by a
26–bit unsigned binary integer x. Index the bases on the plus strands of chromosomes increasing
starting from zero in the 5' to 3' direction. The index associated with a minus strand base is that
of the plus strand base paired to it. Then x gives the index of the 5'–most base of the window.

As already mentioned, T as described heretofore typically has an impractically large number
of nodes (e.g., for n = 31 for Arabidopsis, 3,782,356,392 non–leaves and 223,891,022 leaves).
However, the general shape of typical trees suggests many nodes are not truly required. While
all or nearly all members of Σm for smaller m are nodes in T (so that the first few levels of T are
quite “full”), for rather smaller n than one might think a large fraction of windows have location
whole–genome copy number 1. (For example, in Arabidopsis, while under 1% of length 12
windows have WGCNL 1, more than 3/4 of length 17 and 7/8 of length 22 windows do.) This
implies that the deeper levels of typical T are very spindly, consisting of stretches of single–child
nodes, creating long paths leading down to individual leaves whose sequence became unique at
a prefix significantly shorter than typical n; most true branching is commonly over and done with
in the early levels of the tree. This suggests that a form of path compression would be highly
beneficial: when an edge leads to a node whose set of descendents that are leaves has only a

doi: 10.1038/nature06745 SUPPLEMENTARY INFORMATION

www.nature.com/nature 37

single element, that edge and all nodes and edges below it can be replaced by a (long or short)
leaf link such as already described above. On traversing such an edge, S', S'', etc. are updated
essentially as if the whole sequence of edges represented by the compressed edge were traversed
in quick succession. A compact encoding of the now–omitted sequences of edge labels is
provided by the genomic sequences themselves (which are typically rather smaller than the
binary size of T and hence it is not much of an additional burden for them to be retained in
RAM during mapping as well, especially since it is sufficient to retain only plus strands):
the representative location for the leaf is still provided by the compressed link, and the needed
edge labels are easily extracted from the tail of the window sequence referenced by it.

The efficacy of the final CokusV8A encoding of T is apparent from, e.g., statistics of
the Arabidopsis n = 31 tree. There are just 213,030,377 short nodes, only 2,136 long nodes,
213,032,512 links to non–leaves, 217,121,214 compressed short links to leaves, and only
6,769,808 compressed long links to leaves. The final packed binary encoding of T occupies
only 1,987,808,017 bytes (under 1.852 GiB). As this build of Arabidopsis has 119,707,898 bp,
this is just ~16.6 bytes per basepair. Further, this is small enough for the mapping process
to operate in a 32–bit address space on suitable operating systems should the need arise, and
only a modest (e.g., 4 GiB) total amount of RAM is required by today’s research standards.
The CokusAlignment implementations included here are fully multi–threaded (with each thread
working independently on a different q) and use POSIX mmap() to access the encoded form of T
so that a single copy of T is shared among CPUs in an individual machine and interaction with
components of the virtual memory system (e.g., the Unified Buffer Cache of Apple Mac OS X)
of modern operating systems is efficient.

On a 32–CPU 64–bit Intel Mac OS X 10.4 cluster of three Apple Mac Pros with 8 CPUs each
(dual quad–core 3.0 GHz Intel Xeon X5365, 16 GiB 667 MHz DDR2 ECC FB-DIMMs) and two
Mac Pros with 4 CPUs each (dual dual–core 2.66 GHz Intel Xeon 5150, 10 GiB 667 MHz DDR2
ECC FB-DIMMs), mapping with α = β = 0.01 of the 278,927,842 raw reads from 78 lanes for
the Arabidopsis datasets presented in this work took approximately four days. This is an average
of ≈200 processed q per second or ≈5 hours per lane on a single 8–CPU machine (however, see
the next paragraph; due to a fair number of lanes here having suppressed cycles near the edges
of reads, relatively small and simple changes to the current implementations would increase
speed significantly). Time needed, of course, depends greatly on user–specified parameters such
as α and β (for example, as typically every q has some non–zero — albeit often miniscule —
probability of mapping to every single window, if α and β are sufficiently close to zero then
the mathematics demands that all millions or billions of windows be returned for each of the
hundreds of millions of q so that just the I/O required to report answers could be enormous even
if there was an algorithm otherwise using zero time and space).

Currently, suppressed cycles near the start (for FW traversals) or end (for RC traversals) of a
read typically slow mapping greatly due to a loss of effectiveness in the algorithmic optimization
of establishing a lower bound on M(q) via a quick greedy search. During greedy descent when
focused on a node with the next edge to be traversed corresponding to a suppressed cycle, all
edges (e.g., all four of “A”, “C”, “G”, and “T”) are numerically exactly equally attractive to the
greedy search and an arbitrary (but deterministic — e.g., always “A”) choice is taken, which is
not unlikely to be the “wrong” choice. The result is often a poor greedy lower bound and pruning
during the main queue–based traversal not being as effective as it could be, slowing mapping
(but not affecting correctness). Indeed, the mapping of the 78 lanes of the previous paragraph
on the five Mac Pros saw per–machine rates vary widely — between ~34 and ~4,507 reads
per second across lanes — with all of the slowest lanes having suppressed cycles at the edges
of reads. (In the Cokus pipeline distribution available on the web site that accompanies this

doi: 10.1038/nature06745 SUPPLEMENTARY INFORMATION

www.nature.com/nature 38

publication, sample lane N1try2-L7 with 16 non–suppressed bases followed by a single
suppressed base followed by 14 non–suppressed bases has 2,946,339 reads and maps at ~3,082
reads per second on one of the 8–CPU machines, finishing in ~16 minutes.) If the number
of suppressed cycles is not too large, this issue can be addressed by having greedy search try
all edges at each suppressed cycle (or, e.g., just those corresponding to non–ambiguous IUPAC
nucleotides; of course, at non–suppressed cycles, a greedy choice is made as before). As the
current greedy search is extremely fast, even if it were, e.g., sixteen times slower (as it might
be if there are two suppressed cycles near the edges of a read), the possibility for great increase
in pruning during the queue–based main search is likely to more than compensate for the
additional time. As an alternative, if suppressed bases are at the very beginning or very end
of reads, one may consider trimming these bases and using smaller window sizes instead.

As RAM is precious, it is also desired to represent double–ended D efficiently in memory.
In the CokusV8A–based CokusAlignment implementation provided here, D is a single array
that encodes two logical array–based heaps and each entry of D occupies 16 bytes as follows.
An IEEE 754 single–precision floating–point value storing S' for the relevant node of T occupies
32 bits. A single–bit flag states whether the entry is part of an FW (1) or an RC (0) traversal.
(Allowance for FW vs. RC is possible even in applications other than BS–Seq, although such
may not be useful or appropriate; typically, in other applications every read can be taken
as FW, i.e., only an FW traversal is performed for each q.) A 31–bit unsigned binary integer
(0..2,147,483,647) gives a zero–based byte offset from the beginning of the packed form of T
that indicates the node of T, and a 6–bit unsigned binary integer (0..63) indicates the tree depth
(i.e., length) of the node. Two unsigned binary integers iAUX–to–MAIN and iMAIN–to–AUX, each 29 bits
(1..536,870,911), are used to cross–index the two heaps as described momentarily and enable
fast priority queue operations simultaneously at both ends of D. Indexing of each heap is as
usual as a binary tree stored in a 1–based array with the left and right child of index i being 2i
and 2i + 1, respectively (and with the priority of every heap node at least as big [or no more than]
every one of its heap descendents). Entries are stored in the D array according to the high–
priority–is–top (“main”) heap. The low–priority–is–top (“auxiliary”) heap is essentially
composed of the iAUX–to–MAIN fields of the D entries; the remainder of the data for each entry
of the auxiliary heap is in the D entry of index iAUX–to–MAIN. To provide O(1) identification
of corresponding heap entries in the other direction, the auxiliary index corresponding to a
main heap entry is given by the iMAIN–to–AUX field of that entry. For the sake of completeness
(tie–breaking rules are arbitrary and do not affect correctness), the complete specification of
priority used is as follows. First (as required), larger S'' is higher priority. In the case of a tie,
the longer node has higher priority. If a tie remains, FW traversals are higher priority than RC.
If a tie still remains, the node with smaller offset from the beginning of the packed encoding
of T has higher priority (for which a tie is not possible).

Adaptations for Larger Genomes

It is now appropriate to discuss the CokusV8B representations for trees T and double–ended
priority queues D that are more flexible and support larger genomes (but which are slightly less
efficient for Arabidopsis) than CokusV8A. The 1– and 2–byte headers of short and long nodes
are the same, but links are changed. The 31–bit byte offset (limited to the vicinity of 2 GiB)
in links to non–leaves is increased to 39 bits to accommodate trees whose packed form is up to
the vicinity of 512 GiB. Short links to leaves, formerly 32 bits but now 40 bits, handle WGCNL
in 1..8 rather than just WGCNL = 1. Representative locations as 30–bit units (1–bit strand, 3–bit
chromosome number limited to 0..7, 26–bit chromosomal coordinate limited to 0..67,108,863)
are replaced by 35–bit units: 1–bit strand (0 = plus, 1 = minus) followed by a 34–bit unsigned
binary integer (capable of the range 0..17,179,869,183) that encodes both on which genomic

doi: 10.1038/nature06745 SUPPLEMENTARY INFORMATION

www.nature.com/nature 39

DNA molecule and at what coordinate on that molecule the window of the representative
location resides as described in the next paragraph. The final 3 bits of a short link communicate
WGCNL in 1..8, using 0002 for 8 and 0012..1112 for 1..7. Long links to leaves are expanded from
8 bytes to 9 bytes each. The 30–bit representative location is extended to 35 bits as described for
short links (and discussed further below), and this is immediately followed by a 35–bit unsigned
binary integer providing for WGCNL up to 34,359,738,367 rather than the former 32–bit value
limited to 4,294,967,295. In CokusV8B, all units are stored in big–endian byte order, which is
essentially equivalent to a simple stream of bits.

Depending on the extent to which the reference genome from the genome project conducting
sequencing is finished, there is considerable variation in the number of genomic sequences
across reference genomes that one may wish to use. For example, JGI Populus trichocarpa 1.0
has 485,510,911 bp but spread over 22,012 scaffolds of size 1,001..35,571,569 bp, while NCBI
Homo sapiens 34 (UCSC hg16) has 3,070,144,630 bp in only 25 molecules (chr1..22/X/Y/M)
of size 16,571..246,127,941 bp. As it is relatively inefficient to reserve bitfields of large enough
width for separate indexing of genomic sequences and coordinates on them to deal with a wide
variety of potential usage scenarios, storage of representative locations in CokusV8B is other
than just a widened version of that used for CokusV8A. Instead, a user may choose one of
the many ways to form a single virtual “chromosome” (e.g., by concatenating all plus strand
sequences end–to–end in some fixed but arbitrary order, with spacers if desired). Because the
implementations of CokusAlignment here operate almost completely independent of the details
of reference genome organization, there is, for example, no requirement that windows occur
spaced every 1 base on a genomic sequence; building of T can be performed with windows
arbitrarily and variably overlapped or separated on genomic sequences. (Of course, one of
the window generators included with the present implementations of tree building needs to be
altered to emit only the windows of interest. Indeed, T could be built from any collection of short
sequences of equal length whatsoever; recall the mathematical abstraction of genomes currently
in use as discussed near the beginning of this document. The restriction to equal widths is not
essential, but relaxation of this constraint was not needed for the present project and hence is
not elaborated here. Allowance for gapped alignments with various probability models on the
gaps also theoretically fits in the CokusAlignment algorithmic and mathematical framework,
but has not been explored as such has not been needed for the present project.) With a single
virtual chromosome, all that is needed to express a representative location is a single–bit strand
flag and a single coordinate, and the 34 bits provided for the latter allows for a range of more
than 17 Gbp of virtual chromosome, which is sufficient for immediately anticipated applications.
(As already mentioned, further encodings are easily implemented should even larger genomes be
of interest.)

As an example relevant to the present work, the NCBI Mus musculus 37.1 21–chromosome
assembled mouse genome (chr1..19/X/Y) has a total of 2,654,895,218 bp in molecules of
15,902,555..197,195,432 bp. The plus strand sequences were concatenated in the order
chr1, …, chr19, chrX, then chrY with 100,000 bp “x” spacers between chromosomes. As the
implementations of tree building included here (and described below) do not consider any
window whose sequence contains at least one “x” to be part of the genome, the resultant set
of windows for T is equivalent to that which would be obtained from the chromosomes as they
originally were. (Of course, 1 bp spacers would have been sufficient, and if the implementation
of tree building included here was slightly modified, inclusion of spacers for the present purpose
could be dispensed with entirely.) The resulting CokusV8B tree for n = 31 occupies ~17.0 bytes
per basepair (45,103,975,398 bytes: 3,875,407,338 short nodes, 0 long nodes [as opposed to
Arabidopsis, the mouse sequences contain only “A”, “C”, “G”, “T”, and “N”], 3,875,407,337
links to non–leaves, 4,351,875,616 short links, and 10,239,255 long links; without path

doi: 10.1038/nature06745 SUPPLEMENTARY INFORMATION

www.nature.com/nature 40

compression, there would have been 62,636,850,826 non–leaves and 4,362,114,871 leaves).
An Arabidopsis tree is 2,398,843,683 bytes (~2.23 GiB), just over a 20% expansion (~392 MiB)
relative to CokusV8A. (This is close to 25%, an easy theoretical upper bound on the expansion
of a CokusV8A tree when it is re–expressed in CokusV8B form: 1– and 2–byte node headers
stay the same size, non–compressed links and short compressed links grow from 4 bytes to
5 bytes, and long compressed links go from 8 bytes to either 5 or 9 bytes; the maximum ratio
among these of new to old is 5/4.)

Today, 64 GiB RAM machines are certainly available, but 16 GiB (such as that of the largest
three machines mentioned above) is more common and the encoded T for large genomes, e.g.,
the current mouse example (at a hair over 42 GiB), exceed this smaller amount. One could rely
on the virtual memory subsystem of modern operating systems to manage this issue via demand
paging. This is trivial to implement, as essentially nothing need be done other than compilation
for and use of a 64–bit platform. However, in typical applications, to have a chance to avoid the
enormous performance penalty associated with such an approach, careful arrangement of the
order of nodes in the encoded form of T, the order of presented q, and a degree of luck would be
required to attain sufficient spatiotemporal locality of reference; heavy random access to modern
hard drives is orders of magnitude slower than such accesses to modern DIMMs. (Of course, if
Moore’s Law — now in its fifth decade — continues unabated, machines with 64 GiB and more
of RAM will soon become commonplace. If the trend sustains itself sufficiently long, brute force
approaches to mapping may become economically inexpensive and perhaps even preferred due
to their simplicity. However, that day is not yet today, and some anticipated extensions increase
the number of possible alignments to such an extent that feasibility of brute force is expected to
be only in the remote future at best.)

Other strategies readily present themselves, however. For example, S' and S'' do not change
on those nodes that remain under reduction to a subset of windows, and so another possibility
is to partition windows so as to form smaller virtual genomes whose encodings of individual T
are small enough to completely reside in available RAM. One may combine the outputs of
multiple CokusAlignment runs (see the next two paragraphs), one run for each virtual genome
component of the original genome, to obtain mathematically equal information on L and M
as would be had without partitioning. (For example, note that M(q) for the original genome is
equal to the maximum M(q) over the individual component runs.) The main disadvantage
of partitioning approaches is that pruning is generally not as effective (and, hence, mapping
is slower) because the high S' and S'' for a given q typically often lie only in a single partition
component. Various strategies to combat this are easily imagined, e.g., the establishment of
greedy lower bounds can be broken out into a separate initial phase: one genome component
would be resident in a given machine’s RAM at a time, and lower bounds computed for all q.
Once all components are processed, lower bounds mathematically equal to those without
partitioning are easily obtained by taking for each q the maximum lower bound obtained
over all components. These cross–component lower bounds would be made available to all
components during a second phase in which execution of the main, rigorous mapping loop
would be made for a single component at a time per machine. (However, for the large genome
applications encountered thus far, pure partitioning with no attempt at recovering lost pruning
power has been found to be adequate.)

Some terminology to be introduced presently simplifies discussion in the next paragraph.
Suppose (“α–mapping”) that one wishes to obtain for each read all hits scoring at least α.
(Both α and β will generally be assumed to be members of (0, 1) or [0, 1] here.) This may be
done by (“strategy 1”) disabling β pruning, or by (“strategy 2”) setting β to the same value as α
and filtering out any and all extra hits (i.e., those scoring below α), but strategy 2 is generally

doi: 10.1038/nature06745 SUPPLEMENTARY INFORMATION

www.nature.com/nature 41

less efficient than strategy 1. Suppose instead (“α–top–hit–mapping”) that one wishes to obtain
for each read a single, top hit or determine that the score of top hits is below α. This can be
achieved by (“strategy 3”) disabling β pruning and stopping traversal at the first leaf visited
(if any), or by (“strategy 4”) the typically slightly less efficient method of setting β = 1 and
filtering out any and all extra hits (i.e., all hits except the first for each read with at least one hit).
Usual mapping is referred to as “(α, β)–mapping” if needed.

Combining the outputs of multiple CokusAlignment runs to obtain results mathematically
equal to a single unpartitioned run may be performed as follows, where α' and β' are the original
values of α and β (which are generally both assumed to be in (0, 1) here), and M'(q) for read q
refers to the value of M(q) in the unpartitioned genome. A simple approach (“method 1”) is
to (β' α')–map once with each genome component, concatenate all results (noting that for
every read q one can now easily calculate M'(q) or determine that it is below α'), and finally
filter out any extra hits (i.e., those below β' M'(q) but at or above the generally smaller β' α')
for those reads q with M'(q) ≥ α'. Method 1 typically often assumes a worst–case value of α' for
each M'(q) and so not as much pruning is made as is generally possible. A conceivably more
efficient alternative (“method 2”) is to perform two passes, the first being α'–top–hit–mapping
once with each genome component, so that resolution of whether M'(q) ≥ α' or not and a
numerical value for M'(q) in the former cases becomes easily available for every read q. Then,
in a second pass, α–mapping with α taken per read to be β' M'(q) is performed once per genome
component and all results concatenated. For the present work, method 1 was used in combination
with strategy 2 and, as described thus far, this would essentially reduce to a single (β' α', β' α')–
mapping in each genomic component. However, β in these mappings may be increased
from β' α' to β' (generally resulting in a performance improvement) without loss: for reads q
with M(q) ≥ α' in the current genome component, hits with scores at least β' M(q) are sufficient
(since M'(q) ≥ M(q)); for reads q with M(q) in [β' α', α'), hits with scores at least β' α' are
sufficient (as either M'(q) ≥ α' or q will have no hits retained in the final combined output;
hence, hits with scores at least β' M(q) [which is smaller than β' α'] are also sufficient); and
no hits are needed from reads q with M(q) below β' α'. As 0.01 was the desired value of both α'
and β', (0.0001, 0.01)–mappings were performed on each mouse genomic component below.

For n = 31, windows of the mouse genome were partitioned into five components based on
first letter: “A”, “C”, “G”, “T”, and “other”. (While not giving a particularly equal division —
the “other” group is very small and the C + G content of mouse is ~42% so that the “A” and “T”
components are significantly larger than the “C” and “G” components — as long as the largest
component is reasonable for available RAM, this is not a critical concern. A better division
would be to take sets of windows from four contiguous [and slightly overlapping] covering
regions approximately equal in length from the concatenated single mouse virtual chromosome.
This would not only produce trees of more uniform size, but would also allow additional
memory to be saved as only one of these genomic regions would need to be in memory at a
time rather than the entire original virtual chromosome.) The resultant CokusV8B trees are
~12.27 GiB, ~8.75 GiB, ~8.76 GiB, ~12.23 GiB, and ~562 KiB, respectively, which are quite
usable on 8–way 16 GiB machines (even with ~2.47 GiB of the somewhat–inefficiently–
encoded 1–byte–per–basepair plus strands of mouse genome and live portions of 8 threads’
double–ended D also in RAM). To enhance performance, it has been found helpful to POSIX
mlock() as much of the genomic sequences and T as possible, as this communicates to the
operating system the great importance of keeping these in physical RAM even though they
may be very large and consume almost all of physical RAM. (This also has the advantage of
ramping up to full mapping speed faster when processing many q since mlock() typically reads
underlying memory mapped files sequentially if they are not already in cache and few page

doi: 10.1038/nature06745 SUPPLEMENTARY INFORMATION

www.nature.com/nature 42

faults and userland vs. kernel context switches tend to be incurred; otherwise, the many VM
pages needed are typically first hit in a highly scattered order that is slow to load from disk
and has relatively high overhead. The main disadvantage is that if only a handful of q are to be
mapped, then all locked data must be read even if it will not be accessed.)

The format of double–ended D entries must also be modified to accommodate larger
genomes; the 31–bit byte offset into T is expanded to 39 bits (0..549,755,813,887). Finally,
a smaller detail (in both implementations) not yet mentioned concerns the actual number of
simultaneously live elements over the lifetime of each per–thread D being hard to anticipate
(and theoretically very large). To avoid having to move elements should an expansion be
required, virtual memory for a maximum–sized D is allocated in each thread as soon as
execution begins. This costs very little, as allocation of even many tens of gigabytes of
virtual memory address space is extremely cheap on 64–bit platforms when individual
memory pages are only truly allocated on demand as referenced.

Tree Construction Overview

Although the rationale, ideas, usage, and encoding of trees T have now been discussed,
it remains to describe how typical multi–gigabyte information–dense tree files with nodes
of variable length are constructed. Tree construction is a non–trivial process (and obviously
essential for the method as CokusAlignment depends on its existence) for largely the same
reasons as why traditional (e.g., pointer–based) encodings are impractical as already discussed
above (i.e., it is difficult to work internally in–core: machines having the colossal amounts of
RAM required are not readily available at this time).

On the other hand, modern commodity SATA hard disks are extremely cheap immense mass
storage devices at approximately 200 USD per terabyte. (For comparison, it is helpful to keep
in mind that individual Solexa runs of eight lanes currently stand at thousands of dollars each.)
While placing, e.g., four spindles into service as a RAID 0 stripe set may give under 10 MB/sec
during heavy random access, upwards of ≈200 MB/sec can be available for largely sequential
“streaming” access — one might view the disks of today as the modern counterparts of the
reel–to–reel magnetic tapes of yesterday. This latter figure is, of course, still nowhere near
comparable to modern RAM subsystems which achieve gigabytes per second and with virtually
no random access penalties, but is still in excess of 17 TB per day.

It follows that external algorithms that operate by making several sequential passes over a
handful of different streams would leverage the three advantages of present–day external storage:
terabytes of capacity, moderately fast sequential access, and low price. A relevant and excellent
example is provided by the computer science problem that is perhaps the one that has been the
most extensively studied: sorting. It is routine to use, e.g., GNU sort on modern hardware to
sort the lines of individual plain text files of even hundreds of gigabytes by configurable criteria
in a matter of minutes or hours (but, of course, having a few gigabytes of internal memory
to serve as in–core sorting buffer is not unimportant). Indeed, the ability to sort very large
files is used in the first stage of tree construction as well as peripheral tasks to be outlined later.
Subsequent stages of tree construction are fully streaming and need to keep only a small constant
number (e.g., 1 or 2) of input lines in–core at a time.

Main Ideas of Tree Construction

In the first stage, a two–column plain text stream enumerating all windows with the first
column being window sequence and second column being genomic location is generated and

doi: 10.1038/nature06745 SUPPLEMENTARY INFORMATION

www.nature.com/nature 43

piped to GNU sort to be sorted lexicographically by window sequence (with ties broken
by location). The result, file U, is a representation of Wn with lines corresponding to each
element of Gn appearing consecutively, and this file is permanently saved on disk as it is useful
for more than just tree construction (see Solutions of Peripheral Computing Problems below).
The typically large file size — e.g., 10,294,861,168 bytes in 239,415,376 lines for Arabidopsis
n = 31 and 233,630,723,744 bytes in 5,309,789,176 lines for mouse n = 31 — can be mitigated
(at a typical cost of up to several CPU hours, although if desired this can be concurrent with
subsequent stages) by, e.g., GNU gzip --best (reducing Arabidopsis to under 2.92 GiB and
mouse to under 59.8 GiB; while other compression programs can achieve better compression,
gzip represents a good compromise between compression time and performance and, further,
decompression with gzcat is relatively fast and it streams its I/O well for subsequent direct
use of compressed files in UNIX pipelines). Sorting generally requires temporary disk
space comparable to input size. Current implementations of window generation bring whole
chromosomal sequences into core; this could be reduced, but to little gain as mapping will
have plus strands, the finished form of T, and multiple D in RAM, which together are typically
much larger.

The second stage begins by reading the output of the first to form file En. An iterative process
is begun by which file Ei–1 is produced from Ei and file Yi–1 is produced from Ei–1 and Ei for
successive i = n, n–1, …, 1. The E–files are large (the largest for Arabidopsis is ~17.5 GiB) and
deleted as soon as possible (e.g., En is deleted as soon as Yn–1 is generated). Yi for i in 0..(n–1)
is the binary encoded nodes of T of length i, except that when Yi is generated, the final byte
lengths of it and more shallow layers of T are not yet known, and so byte offsets to non–leaves
(these being all to nodes in the next deeper layer) are all given as relative to the beginning
of the next deeper layer rather than the beginning of T. In the third stage, the final byte lengths
of all layers of T are known, and so the Y–files can be concatenated (first Y0, then Y1, etc.)
and appropriate adjustments applied to byte offsets as node links stream by to create the final,
finished encoded form of T. (This has a net effect to order the nodes of T according to a
breadth–first search [BFS]; the performance impact on mapping of other orders, e.g., that
of a depth–first search [DFS], has not yet been investigated. BFS orders have conceivable
advantages: for example, if T is barely too large for available RAM, then because the upper
layers of T consisting of those nodes with shortest length are typically frequently referenced
[as the first steps of processing a typical q must touch them] and a BFS order places these layers
into an interval of memory addresses, they can be easily and profitably locked with mlock().
DFS orders, however, attempt to provide address locality for the subtree of descendents of
each node, which might be helpful as regards demand paging and the memory cache hierarchy
for the near–final steps of processing typical q.)

The format of the E–files is plain text lines of five columns each: node (that is, element of

€

Gn
∗

that may or may not appear in the final encoded form of T due to path compression) given by
an explicit nucleotide sequence; a representative location for this node; the WGCNL for this
node (i.e., the number of elements of Wn whose sequence is an extension of the first column);
a 15–character string (the extension flags) to be explained momentarily and in the next paragraph
that is either “ACGTVHDBMRYKWSN” with zero or more letters in lowercase and zero or more
letters each replaced with an ASCII hyphen “-”, or is all “x”s; and the sequence whole–genome
copy number WGCNS of this node, respectively. This last column is defined to be the number
of elements of Gn whose sequence is an extension of the first column. Due to the sorted nature
of the output from the first stage, creation of En — essentially corresponding to the passage
from Wn to Gn — is trivial: in a single pass over the output from the first stage, the lines that
share each window sequence appear consecutively, and thus are easy to identify as groups. The
window location of the first line in each group is taken as representative location for the group.

doi: 10.1038/nature06745 SUPPLEMENTARY INFORMATION

www.nature.com/nature 44

Each successive group generates the next line in En with the first column being the common
sequence, the second column being the representative location for the group, the third column
being the number of lines in the group, the extension flags all “x”s (as there are no window
sequences that strictly extend the current sequence, which is of full length n), and the last column
obviously being 1.

The streaming generation of Ei–1 from Ei is as follows. Due to the lexicographic order used in
the first stage, lines that share leading i – 1 characters of sequence appear consecutively, so that,
in a similar manner to that already described above, such subsets of lines are easily identified as
groups during streaming. Each successive input group generates the next line of Ei–1 as follows:
the new first column is the common sequence prefix of length i – 1, the new representative
location is taken to be that of the first line in the group, the new WGCNL is the sum of the same
over the lines in the group, and the new WGCNS is the sum of the same over the lines in the
group. The new extension flags point the way to the sequences of the input group: a letter is
present (i.e., is a non–hyphen) if and only if a member (and there is at most one) of the input
group has its sequence end in that letter. Further, there is enough information immediately
available to determine, should the new entry of Ei–1 be a node appearing in the final encoding
of T, whether each letter in the new extension flags will be a leaf–link or not and, if so, if
that link will be long or short. Critical advantage is taken of this, and extension flag letters
that correspond to what would be long links, i.e., those whose corresponding input line have
WGCNS = 1 and WGCNL too large (greater than 1 for CokusV8A, greater than 8 for CokusV8B)
are emitted in uppercase, with the rest in lowercase.

The production of near–final encoded tree nodes and links in the form of the Y–files is
relatively easy due to the careful arrangements made above. Recall that to stream–produce Yi
for given i in 0..(n–1), assistance in the form of streamable inputs Ei and Ei+1 is available.
Proceeding through both input streams in synchrony, each Ei line pairs with a readily–
identifiable group of Ei+1 lines. As only non–leaf nodes not path–compressed–away appear
explicitly in the encoded form of T, pairs whose Ei line has WGCNS = 1 are skipped. A non–
skipped pair corresponds to a non–leaf node not path–compressed–away, and the 1– or 2–byte
header (indicating short or long node and the subset of potential links present) is trivially
generated from the extension flags of its Ei line. In the canonical order described earlier,
the links are then emitted as follows. First, the number of bytes z (if any) used by the target
of the link in the encoded form of the next deeper layer (if any) of T is determined: if the
WGCNS of the Ei+1 line is 1, then z = 0 as that line does not appear explicitly; otherwise,
that line appears explicitly as a node and from its extension flags one can tell whether it is
a short or long node and how many long vs. non–leaf/short links it has, which collectively
determine z. If z = 0, one emits a short or long link to a leaf into Yi (as the Ei line is a node
that will appear in the final form of T but the child Ei+1 line will not); the contents of the Ei+1
line are enough to determine short vs. long and generate the link. Finally, if z ≠ 0, a link to a
non–leaf not path–compressed–away is emitted into Yi (as both the Ei and Ei+1 lines are nodes
appearing in the final form of T), except that the best that is easily done for the byte offset is
relative to the start of Yi+1 by keeping a running sum of all z computed in this iteration thus far;
fix–up is performed in the third and final stage as already described above.

Future versions of tree construction may benefit from incorporation of ideas from existing
strategies for fast generation of suffix trees. However, the above method is relatively simple to
understand and implement, and has proven readily usable for current applications and is expected
to be sufficient for the near future.

doi: 10.1038/nature06745 SUPPLEMENTARY INFORMATION

www.nature.com/nature 45

Miscellany and Solutions of Peripheral Computing Problems

IUPAC nucleotides are represented internally with “A”, “C”, “G”, “T”, “V”, “H”, “D”,
“B”, “M”, “R”, “Y”, “K”, “W”, “S”, “N”, and “x” (this last letter being added to represent
the empty set, i.e., a non–nucleotide such as a spacer) being unsigned binary 00002..11112,
respectively. This code has a number of convenient properties. The nucleotide complementary
to h in 0..15 is h XOR 0112 if h < 12 and h otherwise. The unambiguous nucleotides are the
two bit quantities 002..112, and letters of equal cardinality (e.g., “V” corresponds to the subset
{“A”, “C”, “G”} of cardinality 3) are intervals: 15..15 has cardinality 0, 0..3 have cardinality 1,
8..13 have cardinality 2, 4..7 have cardinality 3, and 14..14 has cardinality 4. To avoid control
and whitespace characters externally, 0..15 are biased by +33 to become successive characters of
the 16–character ASCII string “!"#$%&'()*+,-./0”. If needed, answering questions such as
“is ‘A’ permitted by this (potentially ambiguous) nucleotide?” can often be reduced to simple
“bit–fiddling” (which can be preferred to use of lookup table arrays on today’s CPUs, which
typically have a surplus of ALU resources and a deficit of access to caches/memory, often
making direct computation more desirable than indirect memory references). Using ISO/IEC
C99, for example, “A” is permitted in h if and only if (0x5371U >> h) & 0x1U; replace
0x5371U with 0x65B2U for “C”, 0x6AD4U for “G”, and 0x5CE8U for “T”. A bitfield with
simultaneous answers for “A” (msb) then “C” then “G” then “T” (lsb) could be obtained via
(0x0F6935AC7BDE1248ULL >> (h << 2)) & 0xFU.

UNIX pipelines and POSIX FIFOs and tee are used in concurrent processes to reduce the
number of times E–files need to be read from disk. (This saves time, but uses more temporary
disk space.) One of the Mac Pro machines already mentioned has four contemporary 500 GB
hard disks in RAID 0 with a 64 KiB stripe size; on this machine, total tree building time for
all three stages for n = 31 is under three hours for Arabidopsis (with only ~16 minutes in the
first stage) and about two days for mouse. It would be relatively easy to reduce these times by
a factor of two to four; however, as tree building was needed only infrequently for the present
project, current tree building times were not prohibitive and optimization effort was expended
elsewhere (namely, in the main implementations of CokusAlignment). The easiest optimizations
would be to reduce the amount of disk I/O required, such as by switching from the convenient–
but–somewhat–inefficient plain text encoding of intermediate E–files used presently to either a
fixed–width binary encoding (e.g., four bits per nucleotide letter and packed binary for locations,
extension flags, and integers) or a variable–width compressed binary encoding (e.g., only two
bits for the most common nucleotide letters and short forms of common values of other fields).

The current implementation of tree building for larger genomes uses 10 decimal digits for
virtual chromosome coordinates. This saves a slight amount of temporary disk space during tree
construction for genomes less than ~10 Gbp at the expense of not covering the entire ~17.2 Gbp
range supported by the CokusV8B tree format, but is easy to change if needed.

Evidence of the compactness of the final encodings of T is provided by the relatively low
compressibility of the binary files for T. For n = 31 for Arabidopsis, only ~14.2% is saved by
bzip2 ––best (which uses Burrows–Wheeler block sorting and Huffman coding), ~24.2% by
gzip ––best (which uses Lempel–Ziv 1977 and Huffman coding, unusually beating bzip2),
and ~44.7% by the world–class but ultra–slow context mixing paq8o8 -8 (taking more than
four CPU days to compress compared to about seven CPU minutes for the others). However,
while the lack of rapid random access to decompressed data (and, in some cases, substantial
consumption of RAM — even more than 1 GB — for the decompression process itself)
precludes direct use of these compression schemes to conserve additional RAM during mapping,
that these percentages are positive suggests that there may still be some simple patterns in T

doi: 10.1038/nature06745 SUPPLEMENTARY INFORMATION

www.nature.com/nature 46

that remain to be exploited without appreciable decrease in mapping performance for T that
already fit in core. (Of course, a very compact “encoding” of T is decompressor source code or
executable together with a compressed version of the plus strands of the reference genome and
source or executables for the tree building process; “decompression” then involves expansion
by the outer compressor followed by the entire tree building process as already described.
Using paq8o8 -8 for the outer compressor achieves a size under 25.8 MiB — less than 1.4%
of the binary tree file — for n = 31 for Arabidopsis. However, this obviously blatantly fails
the mapping requirement of rapid random access to nodes and edges of T.)

There are a number of peripheral, less challenging computational tasks not yet discussed
for which sample implementations are not provided. These are mostly reduced to the sorting
of large files and various single–pass streaming procedures in the same spirit as tree building.
For example, each line of CokusAlignment output in current implementations concerns one
member of Gn and representative locations are given only when the WGCNL for this member is 1
(as then the representative location is the only location); otherwise, the only location information
reported is the WGCNL as a positive integer. If desired, expansion to a complete list of explicit
locations for lines with WGCNL ≥ 2 is easily performed in a streaming fashion after mapping
as follows. CokusAlignment output is sorted according to window sequence in the same order
used for the output U of the first stage of tree construction. Then, in a single synchronized pass
through the prepared CokusAlignment output and U, expansion from Gn back to Wn begins by
collecting lines of U into groups according to common window sequence (which is not difficult
as the order of lines in U ensures groups are composed of consecutive lines). U groups are
skipped as long as their window sequence comes before that of the current mapping line in
the sorting order. Otherwise, the window sequence of the current mapping line and that of
the U group must be the same, and the locations given in the second column of the current U
group lines are exactly those desired. Each line of mapping output includes two positive integer
fields, one giving the line number the corresponding read had in the mapping input and the other
a per–read serial number for mapping output lines (as, in general, a single read to be mapped
produces multiple mapping output lines). Assuming these fields are propagated during location
expansion, a numeric lexicographic sort on them easily enables permutation of the lines of
the expanded mapping output into an order consistent with the order of presentation of q
during mapping and the per–read order of visitations to leaves. (A final sort similar to this is
generally required even if location expansion is not performed, as current implementations
of CokusAlignment are permitted to mingle output lines from different threads in unspecified
order in order to reduce output buffering and cross–CPU synchronization.)

If needed, a reasonably efficient device for having Gn to Wn expansion information available
during mapping is as follows. (Since the RAM cost of the following is substantial and expansion
in the applications of the present work is easily performed after mapping in a streaming fashion
as already described in the previous paragraph, the following was not used in the present work.)
Starting with the CokusV8B encoding of T, the distinction between short and long links is
removed; instead, a link to a leaf is a 40–bit unit consisting of a 1 bit (to indicate link to a leaf)
followed by a 4–bit unsigned binary integer c (in 0..15) followed by a 35–bit unsigned binary
integer p (in 0..34,359,738,367). Let m ≥ 1 be the location whole–genome copy number of the
target leaf. If m is in 1..15, then c = m; otherwise, c = 0. When m = 1, the representative location
(in this case, the only location in the whole genome for its sequence) is encoded into 35–bit p
as usual. Otherwise, p contains a zero–based index into a run of m consecutive elements of a
new auxiliary array A of 40–bit units. Every element of A belongs to exactly one run; the order
of runs is unspecified (although when proceeding from the beginning of the binary encoding
of T to the end it would be reasonable for runs to occur in the same order as do the links that
reference them). The lower 35 bits of each element of A encode a window location in the usual

doi: 10.1038/nature06745 SUPPLEMENTARY INFORMATION

www.nature.com/nature 47

manner as for representative locations and, unless otherwise specified, the upper five bits of each
element of A are all zeros. The locations in a run precisely enumerate the genomic windows that
share the sequence of the leaf (there being m such windows); the order of windows within each
run could be unspecified, but it is nice to use the same order as that used in tree construction
(which, for example, places the representative location first). When m ≥ 16, then m is treated
as a 35–bit unsigned binary integer, partitioned from msb to lsb into a seven–element sequence
of fragments that are five consecutive bits each, and the fragments placed in order into the upper
five bits of the first seven entries of A in the run. Finally, if one is concerned over reduction
of memory locality from splitting the data of any given link across two possible data structures,
A can be folded into T at a cost of additional complexity (especially to tree building).

The net effect of the previous paragraph is to enable O(1) access during mapping to the
WGCNL and representative location of any given leaf as well as best–possible O(m) access to
the m genomic locations that share its sequence at a net cost (compared to pure CokusV8B)
of five bytes per genomic window with WGCNL ≥ 2 minus four bytes per former long link.
For n = 31 CokusV8B unpartitioned (“whole”) mouse, 947,674,305 windows of 5,309,789,176
do not have a unique sequence and there are 10,239,255 long links; hence, an additional
~4.37 GiB would be required. This RAM cost could be mitigated by more efficient encodings
of genomic sequences. In current implementations, each plus strand IUPAC genomic nucleotide
(coded as a 4–bit quantity in 0..15 as already explained) occupies an entire 8–bit byte, while
two nucleotides could be easily packed into each byte. This would save, e.g., more than 1.2 GiB
for whole mouse, and further improvements are discussed in the next paragraph.

A large majority of nucleotides are typically unambiguous (i.e., “A”, “C”, “G”, or “T”, coded
as 2–bit quantities 0..3). For whole mouse, fully ~96% of nucleotides are unambiguous. Hence,
more complex schemes should be able to pack nearly four nucleotides per byte, saving ≈1.8 GiB
for whole mouse (but rapid random access must be maintained). A relatively easy to implement
approach that is effective when the fraction of ambiguous nucleotides is small and ambiguous
nucleotides form few distinct window sequences is to partition (or further partition) genomic
windows into those with at least one ambiguous nucleotide and those with zero ambiguous
nucleotides. As ambiguous nucleotides are never referenced while mapping the latter, they can
be arbitrarily replaced with unambiguous nucleotides (e.g., all “A”s) and genomic nucleotides
then easily encoded at a uniform ratio of four per byte. For mapping the former, a set of distinct
window sequences can be concatenated end–to–end (without expending any effort to overlap
them even if savings by doing so is possible) to form a virtual sequence that is typically very
small: for whole mouse, such a set has just 57,369 sequences (192,737,508 — or ~99.96% —
of the 192,807,870 windows that have at least one ambiguous nucleotide consist of all “N”s) and
so only ~1.7 MiB is needed. (If desired, virtual positions past the end may be used as stand–ins
for locations of repeated ambiguous window sequences beyond the representative locations.)
The partitions (or additional partitions) introduced here need not incur the full complexity of
combining multiple mapping outputs into a single output mathematically equivalent to not
partitioning (as already discussed earlier in this document) as mapping implementations may be
modified to load multiple trees and virtual chromosomes into memory at the same time, with
elements of D extended to enable simultaneous traversal in multiple trees (so as to collectively
treat them as a single logical tree).

Another peripheral task is the determination of which aligned windows are PBC with at
least one other window (so that, e.g., the q that give rise to such hits may be discarded as not
mapping BS–uniquely). The BS location whole–genome copy number WGCNL–BS of g in Gn is
the number of windows w in Wn such that g shares at least one PBP with the window sequence
of w. (One might also define the BS sequence whole–genome copy number WGCNS–BS of g

doi: 10.1038/nature06745 SUPPLEMENTARY INFORMATION

www.nature.com/nature 48

in Gn to be the number of g' in Gn such that g shares at least one PBP with g'.) If g contains
m1 ≥ 0 and the window sequence of w contains m2 ≥ 0 “C”s, then one does not need to compare
all

€

2m1 2m2 pairs of PBPs to determine if at least one is shared. (If g and the sequence of w are
poly–“C”, this would be 4n pairs to be compared simply to determine PBC of a single g and a
single w, and there can be hundreds of millions of g and hundreds of millions or billions of w.
For n = 31, 4n > 1018 so that BS–unique filtering could involve an infeasible 10~36 comparisons.)
Instead, note that g and the window sequence of w share at least one PBP if and only if the two
sequences are literally identical after each and every “C” (if any) in g or the window sequence
of w is replaced with “T”. This characterization renders sharing of at least one PBP decidable in
time proportional to n, and by sorting on the first column of a two–column plain text file similar
to that used as input to the first tree construction stage (with lines enumerating all windows,
the first column being sequences and the second column being genomic locations) except with
every “C” in the first column replaced with “T”, the WGCNL–BS of every member of Wn can be
computed in just the time required for a single pass through the output of the sort: identical
first–column sequences have been collected by the sort into runs of consecutive lines, so that
the problem is solved by counting the number of lines in each run (this being the common
WGCNL–BS of every location in the run) and emitting this count paired with each of the locations
in the second column of the lines of the run. If desired, a second sort can be performed on
genomic locations, so that the WGCNL–BS of every w in Wn is directly available by chromosomal
position. Windows with WGCNL–BS greater than 1 are exactly those that are not BS–unique,
and external sorting has again been shown as an efficient way to effectively perform relational
database operations (e.g., joins) on tables consisting of large sets of rows; ordering rows
appropriately often renders such operations trivial (and original row order can always be
restored if desired by a final sort, having introduced a serial number column or the equivalent
at the outset if needed).

Concluding Remarks on Alignment

The theory and implementations provided here are suitable or adaptable for processing data
resulting from the bisulfite library strategy of the present work, other bisulfite library strategies,
general genomic re–sequencing (e.g., SNP detection), gene expression (either via general
mRNA extraction or reduced collections of tags), chromatin immunoprecipitation, and other
Solexa–based and non–Solexa experimental designs. For some applications, it may be desirable
to modify the representation of T (e.g., imbuing leaves or general nodes with additional or
alternative information, or extending support to even larger genomes or meta–genomes) or the
traversal of T so that information about L and M not necessarily that exposited in detail for the
current work is computed efficiently. The present document is hoped to elucidate both the
underlying ideas and computational details of the provided implementations sufficiently and
indicate some of the many anticipated extensions, enhancements, and alternatives so that such
adjustments are relatively easy; the present codes are essentially research prototypes on which
the author expects to continue development. As computing machines gain increasing amounts
of needed random–access memory, more usage scenarios will be able to be simultaneously
supported, reducing the need for separate representations of T and alignment implementations.
As code matures, ease of use for end–users will eventually be addressed. At this early stage
when theory races ahead of practice, prioritization restricts development to immediate needs.
To conclude, a few examples of adjustments are given below.

A simple example of a trade–off that was made in the current implementations is in the
structure of elements of double–ended D. As all nodes in T at a given tree depth (i.e., all nodes
of a given prefix length) appear consecutively in the binary packed form of T (due to the current
use of a BFS order), it might be reasonable to forego the presence of the 6–bit field (0..63) in

doi: 10.1038/nature06745 SUPPLEMENTARY INFORMATION

www.nature.com/nature 49

each element of D that explicitly gives the tree depth of the node associated with the entry.
If omitted, recovery of the field would be possible, e.g., by a variant of binary search to identify
the depth byte interval that the node’s byte offset inhabits. This would be (probably only slightly)
slower and hence trade time for a small space savings (but liberation of 6 bits is not enough to
shrink elements by a much more convenient 8–bit byte unit; code complexity would necessarily
increase somewhat) and practically unlimited depth range (although this is much more easily
achieved by simply enlarging D elements by another byte and distributing the now–surplus 8 bits
among the fields so as to also prepare D for even larger genomes). In general, the current binary
formats of elements of D and nodes of T are felt to represent carefully balanced compromises.

For SNP detection, one may want to give up to a small number k (e.g., 0, 1, 2, 3, …) of
“mismatches” for “free,” i.e., to have up to k bases effectively dynamically suppressed from
scoring chosen independently for each q so as to maximize the score of q. This can be done by
extending each element of D to have k + 1 in–progress scores instead of 1. The jth score with
j in 0..k would be the best score–in–progress possible when suppressing exactly j bases for the
current prefix. Elements would be prioritized based on the maximum of these scores, and when
traversing an edge of T, it would effectively be done both ways (either using or not using another
suppressed base if any remain available); the k + 1 scores for each child are easily computed
from the k + 1 scores for the parent. This is effectively a dynamic programming algorithm, and
like any such, if more than just the final optimal value is desired, either sufficient backtracking
information can be encoded into each element of D to allow recovery of the optimal subset of
suppressed bases upon reaching a leaf (e.g., by also keeping an n–sized bitset for each of the
k + 1 scores indicating a maximizing set of live bases), or such can be re–computed on demand
as needed.

Solexa’s ELAND mapping (ranking hits based on the number of discrete mismatches
between discrete genomic and discrete read basecalls) can be subsumed with the use of simpler
scoring factors in S' and S''. It is easy to adapt the CokusAlignment implementations here so
that the entries of a 16–by–16 matrix Vi,j of reals in [0, 1] are the scoring factors, with Vi,j used
when the discrete read base is i in 0..15 and the discrete genomic base is j in 0..15 (using the
encoding of IUPAC nucleotides discussed above). Taking Vi,j = 1 when at least one of “A”, “C”,
“G”, or “T” is consistent with both i and j and Vi,j = µ in [0, 1] (e.g., 1/2) otherwise, then S'(x)
for a leaf x of T is µk in [0, 1], where k is the number of discrete mismatches between the read
sequence and x. Dropping pruning based on β and keeping just that of α, use of an appropriate
absolute scoring threshold for α translates into finding all genomic matches that disagree
with the read (“have errors”) in up to a user–configurable number of bases. (Note that care
must be taken in the choice of µ so that µk for k of interest are distinct in the floating–point
arithmetic used, but this is not a problem in typical applications; for example, (1/2)0..64 are all
distinct [and even exactly representable] in IEEE 754 single precision. If needed, passage from
multiplication of linear scores to addition of log–scores could be made in the implementation
to better handle alternate scoring systems such as these, or entries of D could be modified to
directly store, e.g., k. Logarithms also help avoid denormal floating–point numbers and
underflows (which can be slow on today’s platforms) if one does not wish to flush to zero and
multiplications are chained to the extent that many values extremely close to zero are produced.
Finally, note that due to potential floating–point representation and rounding errors, if two
consecutive discrete final scores are x and y with x < y and one wishes y to be an inclusive lower
mathematical threshold, it is generally safer to use, e.g., (x + y) / 2 as a computational threshold.)
If β pruning is retained, then, e.g., setting β = 1 will find all hits that have at most as many errors
as allowed by α but only give those with the fewest number of errors. Other appropriate choices
of β permit finding for each read all hits that have at most a specified number of errors in excess

doi: 10.1038/nature06745 SUPPLEMENTARY INFORMATION

www.nature.com/nature 50

of the minimum number (should the minimum be permitted by α). For V, one could also use
substitution matrices similar to those of BLAST or informed by nucleotide substitution rates.

One may view the result of a chromatin immunoprecipitation experiment as determining
a density (a non–negative real number ideally proportional to true counts of library fragments)
on genomic sequences. This density is “smeared” both due to fundamental mapping ambiguities
(i.e., window sequences with WGCNL > 1) as well as ambiguities of location within fragments
as only fragment ends are sequenced and the ends may not have caused or inhibited precipitation.
(However, the probability distribution of fragment lengths can be determined from analysis
of a gel electrophoresis image of the library, and hence the fragment length distribution can be
assumed to be known from gel densitrometry.) Once mapping produces a preliminary density,
fragment length ambiguity is readily accounted for via a certain convolution of the mapped
density and a particular probability distribution easily derived from the empirical fragment
length distribution. While it is possible to construct a mapped density with α and β parameters
as used here for BS–Seq, one may instead want for each q a sufficiently large set of w in Wn such
that the sum of Lq(w) over these w is at least some absolute level δ, such as 0.99 (i.e., that almost
all of the posterior distribution on location for each read is captured so that computed density is
rigorously close to that which would be obtained by full brute force calculation).

Such a desire can be accommodated with a new pruning strategy. Denote by m the total
number of windows and note that CokusAlignment visits the leaves of T also in order of
descending Lq. Each visit to a leaf x affords S'(x) and so contributes information about both
the numerator of Lq(w) for windows whose sequence is x as well as the denominator of all Lq.
The problem essentially mathematically reduces to having elements of a finite sequence
(z1, …, zm) of m non–increasing non–negative reals with z1 > 0 available successively and
deciding when enough elements k in 1..m have been seen so that their sum is at least a pre–
specified fraction δ in (0, 1) of the unknown total rTRUE := z1 + … + zm > 0 of all the elements.
(WGCNL > 1 can be understood as effectively repeating S'(x) for a given x that many times.)
As the elements are non–increasing, stopping at zk guarantees all of the following elements are
each individually at most zk, and so with rSO–FAR := z1 + … + zk > 0, one has rTRUE in the closed
real interval rSO–FAR + [0, (m–k) zk]. As zk typically falls rapidly, this interval is often soon narrow
so that the uncertainty in the denominators of Lq quickly becomes proportionally small. Indeed,
deciding if (m–k) zk / rSO–FAR ≤ (1–δ) / δ does not depend on knowing rTRUE yet implies rSO–FAR is at
least δ fraction of rTRUE. Further, numerators of Lq(w) for w in Wn whose window sequence is
one of those visited are known exactly while their denominators are in [1, 1/δ] rSO–FAR, so that if
rSO–FAR is used for the denominator then the computed Lq(w) values are in [δ, 1] times full brute
force values so that their accuracy is controllably high. In addition, the sum of Lq(w) over all
windows whose sequence is not visited is at most 1 – δ and so is controllably small.

Hence, global control over missing computed mapped density relative to theoretically
perfectly–computed mapped density is attained (as at most 1 – δ fraction of all density is missing
since this is true even on a per–read basis), as has per–read control over captured mapped density
(as this is at least δ as a fraction). If desired, one can also control per–read fidelity of final
density summed over all q: since the missing density per read is at most 1 – δ, then in the
worst case (this being the typically extremely unlikely event that all error is concentrated
at a single window), every read is missing at most (1 – δ) r' density, where r' is the number of
reads q; if this is small, then at every window final density has either high relative accuracy
(being no worse than δ) or is small on an absolute scale (being at most (1 – δ) r', which is
controllably small). The δ required to achieve this, however, may be extremely close to 1
and the CPU time required for mapping may then be considerable; one might be satisfied with

doi: 10.1038/nature06745 SUPPLEMENTARY INFORMATION

www.nature.com/nature 51

a theoretically more approximate mapped density that still has excellent quality (such as the
global quality guarantees, which typically do not require δ to be anywhere near as close to 1).
Even so, the typical exponential fall–off of S' as more and more genomic bases are “wrong”
for the current read due to typical fairly tight basecalls implies that even what might seem
rather extremely tight error tolerances have a chance at being achieved with practical amounts
of computing time. Further, if one can afford for all nodes of T (instead of just leaves) to be
augmented with WGCNL information, then improved pruning strategies for this application
(not detailed here) exist.

The typically huge mapping output files that would otherwise result in this application
can be avoided by doing density accumulation directly during the mapping stage. (Lock–free
multithreaded accumulation can be achieved with the atomic compare–and–swap operations
of modern CPUs, so that all threads can share the same accumulation buffer with low penalty.
This is important to conserve RAM, as accumulation buffers are typically substantial in size.)
Hence, there is no mapping output until all q in a batch are processed, when mapped density
over the entire genome is emitted at once. Further, one can avoid the apparent need to have
WGCNL expansion information (i.e., the passage from Gn back to Wn) in RAM at mapping
time by accumulating density only at representative locations and uniformly distributing from
representative locations to all locations in a separate phase after mapping is complete.

The additional applications just sketched illustrate the flexibility of the CokusAlignment
framework and how trees T are rich sources of information on reference genomes that can be
readily adapted to numerous genomic data analysis tasks.

CokusCalling: Per–Lane, Per–Cycle Gaussian Mixture Models (GMMs) for Basecalls

The most interesting details of CokusCalling have already been described. Unlike alignment
to a reference genome, there is no mathematically precise problem to be solved, and so the
actual implementation (in MATLAB) is based on empirical experience and is rather “messy,”
being known to have good performance only on the lanes of interest on the particular flow cells
involved in the present project (and it contains a number of parameters and coping strategies to
that effect that likely require tuning, replacement, or augmentation for other lanes; while some
general strategies have been conceived, more experience is needed to determine the breadth of
their applicability and hence they are omitted here). For more detail than contained in the present
document, the source files in the distribution available on the web site that accompanies this
publication are perhaps as good of a means of communication as any.

However, the QuickTime movies made and used for quality control deserve additional
exposition. The distribution available on the web site contains a movie for the example lane
N1try2-L7 used throughout that posting. One can observe a Solexa “blip” or “hiccup” at
cycle 22, where a single–cycle increase is observed in Solexa _sig2 (SA, SC, SG, ST) signal
vectors with at least one negative component, and the fitted GMM components (described
further below) are slightly affected. (Even such “minor” phenomena as this were taken as
cause for suppression of a cycle from basecalling; there exist cycles of lanes on other flow cells
with much more severe problems that were, of course, also suppressed.) The movie readily
illustrates some of the behavior of S vectors (which the Solexa software has already corrected
for crosstalk and phasing as best it can) with which CokusCalling aims to assist. For example,
in the SG–vs.–ST plot at the right edge of the middle row (this plot being introduced below
along with the eight others), one can see that while at cycle 6 the “G” and “T” concentrations
are well–separated (although the angle between them in this two–dimensional projection is
only ~65° and not 90°) and lie approximately on their respective canonical axes, by cycle 36

doi: 10.1038/nature06745 SUPPLEMENTARY INFORMATION

www.nature.com/nature 52

the “G” concentration has rotated considerably in the direction of “T” so that “G” is now rather
not aligned along its canonical axis and the separation between it and the “T” concentration in
this projection has reduced to ~35° (in addition to both concentrations being fuzzier due to the
many repetitions of the “only” near–perfect per–cycle chemistry by that time).

There is one losslessly–compressed (Apple Animation codec) looping 24–bit color 797–by–
705 pixel 12 frames–per–second .mov per lane. Frames correspond to cycles (generally, 6..36).
The main data displayed are the four–dimensional (SA, SC, SG, ST) signal vectors from the Solexa
software _sig2 files. There is one vector per raw spot in the lane, so that there are typically
millions of vectors per lane. However, it is hard to plot four–dimensional data directly and the
nature of the Solexa signals does not really require it; instead, nine two–dimensional projections
are shown (arrayed into a three–by–three grid). Rightward is increasing on x–axes and upward
is increasing on y–axes. Levels x = 0 and y = 0 are shown as very thin light gray lines.

There are essentially six ways to take SA, SC, SG, and ST two at a time, and giving one
member to the x–axis and the other to the y–axis results in the upper six plots. (For example,
the plot in the upper–left corner shows SA on x and SC on y; SG and ST are dropped from each
vector in this plot, or, equivalently, the SG and ST axes are orthogonally projected out. The result
is that stronger SA is right, stronger SC is up, and vectors that are mostly SG and ST appear near
the origin.)

As it is useful to see all four bases at once, the lower three plots are also included. There
are essentially three ways to partition SA, SC, SG, and ST into two groups of two, and these
correspond to the three lower plots. Differences of pairs are plotted. (For example, the plot
in the lower left corner has SA – SC on x and ST – SG on y. Hence, SA is rightward, SC is leftward,
SG is downward, and ST is upward.)

Because there are so many vectors (or, after projection, two–dimensional points) to plot,
a density plot rather than a scatter plot is used. The number of points m falling in each bin of a
250–by–250 grid is converted into a color by linearly mapping log10(1 + m) from 0 → 4 to blue
→ cyan → green → yellow → orange → red (with values above 4 clipping to the brightest red).
Border bins are attached and collect what would otherwise be out–of–range vectors.

Ideally, one would see three stationary red dots in each of the upper six plots (one dot
directly on the +x–axis, one directly on the +y–axis, and one — really an overlapping pair —
at the origin), and four stationary red dots in each of the three lower plots (one along +x, –x,
+y, and –y). Of course, that is too much to expect; a physical measurement process is involved.
The next best result one might hope for is small, tight, well–separated circular fuzzy blobs
instead of dots, but that is still too much to hope for. Instead, the best one typically observes
are medium–sized, decently–separated, narrow elliptical (or, pre–projection, four–dimensional
hyperellipsoidal) fuzzy blobs. These are the signal concentrations (one for each call of “A”, “C”,
“G”, and “T”) that CokusCalling is trying to fit. Distractions include the (sometimes heavy)
sheets of density connecting concentrations which result from Solexa–software–called raw
spots that actually involve multiple physical DNA clusters.

As expected, signal concentrations tend to get fuzzier (rounder and more overlapping) as
cycles go by. They do not appear to shrink much, however, because the plots are auto–scaled
to deal with the general decrease in intensity over time. Each axis of the upper six plots runs
[–l/3, +l] and each axis of the lower three plots runs [–l, +l], where l is the largest Euclidean
norm of the mean vectors of fitted “A”, “C”, “G”, and “T” hyperellipsoids for that cycle.

doi: 10.1038/nature06745 SUPPLEMENTARY INFORMATION

www.nature.com/nature 53

The outlines of the 97.5 percentile hyperellipsoids of individual fitted mixture components
(each of which projects to an ordinary ellipse in each two–dimensional plot) are shown. “A” is in
red, “C” is in green, “G” is in blue, and “T” is in violet. Under human inspection, it is generally
obvious when the mixture fitter has failed to track the signal concentrations accurately.

For each cycle, mixture probabilities (p(A), p(C), p(G), p(T)) from the GMM model for that cycle
are collected. The median m(A) of the p(A), m(C) of the p(C), etc. are found, and vector (m(A), m(C),
m(G), m(T)) is linearly re–scaled so that its components sum to 1. The result is displayed in textual
form as modeled percent “A”, “C”, “G”, and “T” at the top. ♦

[This is Supplementary Methods for the Nature publication Shotgun bisulfite sequencing of
the Arabidopsis genome reveals DNA methylation patterning by Shawn J. Cokus, Suhua Feng,
Xiaoyu Zhang, Zugen Chen, Barry Merriman, Christian D. Haudenschild, Sriharsa Pradhan,
Stanley F. Nelson, Matteo Pellegrini, and Steven E. Jacobsen.]

doi: 10.1038/nature06745 SUPPLEMENTARY INFORMATION

www.nature.com/nature 54

	Jacobsen-Supp-Figures-print.pdf
	Jacobsen-Supp-Methods.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

