SUPPLEMENTARY INFORMATION

The SRA domain of UHRF1 flips 5-methylcytosine out of the DNA helix

Hideharu Hashimoto¹, John R. Horton¹, Xing Zhang¹, Magnolia Bostick², Steven Jacobsen^{2,3}, and Xiaodong Cheng¹

¹Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA
²Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, 621 Charles E. Young Dr. South, Los Angeles, CA, 90095, USA
³Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA

Figure S1. Mapping the SRA domain within mouse UHRF1

a, Mouse UHRF1 (mUHRF1) is a 782-residue protein containing four recognizable domains including a ubiquitin-like domain, a plant homeodomain (PHD) that may be involved in histone H3 tail binding ^{1, 2}, a SET and RING associated (SRA) domain that preferentially binds to hemimethylated CpG sites³, and a C-terminal Really Interesting New Gene (RING) domain may confer E3 ubiquitin ligase activity 1 . **b**, Proteolytic digestion, mass spectrometry, and deletion analyses identified the SRA domain boundaries of mUHRF1 as residues 419-628. Left panel: SDS-PAGE gel of the purified recombinant mUHRF1 full length and its trypsin digestion products. Purified hexahistidine-SUMO-tagged mUHRF1 full length protein (1.7 µg) in 20 mM Hepes 7.0, 400 mM NaCl, 5% glycerol, and 0.1% 2-mercaptoethanol was treated with 0, 0.5, 5, 50 ng of trypsin for 30 min and separated on a 13% SDS gel. Mass spectrometry determined molecular masses of individual fragments. Each fragment was constructed into a hexahistidine-SUMO tagged fusion protein and expressed in *Escherichia coli*. We also varied the starting and ending amino acids of fragments to reach maximum expression and solubility. Right panel: SDS-PAGE gel of the purified recombinant SRA domain (between the molecular weight markers of 20 and 26.6 kDa) used for crystallization.

References:

- 1. Citterio, E. et al. Np95 is a histone-binding protein endowed with ubiquitin ligase activity. Mol Cell Biol 24, 2526-35 (2004).
- 2. Karagianni, P., Amazit, L., Qin, J. & Wong, J. ICBP90, a novel methyl K9 H3 binding protein linking protein ubiquitination with heterochromatin formation. Mol Cell Biol 28, 705-17 (2008).
- 3. Bostick, M. et al. UHRF1 plays a role in maintaining DNA methylation in mammalian cells. Science 317, 1760-4 (2007).

Figure S2. Sequence alignment of mammalian and plant SRA domains

Secondary structural elements are indicated in light blue. Numbering above the sequences corresponds to the mouse ortholog. White-on-black residues are invariant among the blocks of sequences examined, while gray-highlighted positions are conserved (with ≤ 1 substitution). Positions highlighted in * are responsible for various functions as indicated, and the red circles with a letter P are amino acids that interact with the DNA phosphate backbone. Residues from two parts of the polypeptide form the hydrophobic patch. Mammalian UHRF1 included are Mouse (AAH22167), Rat (NP_001008882), Human (ABQ59043), Chimpanzee (XP_001139655), Cow (NP_001096568), Dog (XP_868468), Chicken (XP_418269), and Zebrafish (NP_998242).

Arabidopsis homologs of UHRF1 included are ORTH1 (At5g39550), ORTH2/VIM1 (At1g57820), ORTH3 (At1g57800), ORTH4 (At1g66040), ORTH5 (At1g66050), and ORTH-like (At4g08590). Also included are the Arabidopsis SRA containing histone methyltransferase genes (SUVH genes) exemplified by the KRYPTONITE (KYP) protein involved in DNA methylation control ⁴. X_n represents an insertion of variable (n) amino acids in the SUVH proteins.

The large majority of the invariant amino acids are involved in structural and intramolecular interactions. For example, conserved hydrophobic side chains intercalate with each other to form the hydrophobic core of the molecule. In addition, many of the invariant residues are polar or charged and are critically involved in stabilizing a network of polar interactions involving different parts of molecule. For example, H447 interacts S464 (Fig. 2e). These two residues are critical for stabilizing a network of polar interactions involving (1) the main chain carbonyl oxygen of A452, the amino acid next to the key residue (V451) important for base flipping, (2) R438 interacting with DNA phosphate, and (3) a water-mediated network involving main chain atom of R448, and side chains of H455 and R538. R448 and H455 interact with DNA phosphates (see Fig. 1a). R538 interacts with the main chain atoms of H422, G424, and V446 (not shown).

A network of interactions involves D476...R541...D560...R558 (Fig. 2f). D560 is part of the three consecutive invariant residues YDG initially used to name the domain ⁵. Q504 interacts with the main chain atoms of G485, G487, and W580. N510 interacts with the main chain atoms of S486 and K505; E571 bridges between W569 and R581.

References

- 4. Johnson, L. M. et al. The SRA methyl-cytosine-binding domain links DNA and histone methylation. Curr Biol 17, 379-84 (2007).
- 5. Baumbusch, L. O. et al. The Arabidopsis thaliana genome contains at least 29 active genes encoding SET domain proteins that can be assigned to four evolutionarily conserved classes. Nucleic Acids Res 29, 4319-33 (2001).

doi: 10.1038/nature07280

SUPPLEMENTARY INFORMATION

				hydro	phobic	base					5mC			CpG				
	patch flipping				binding pocket			recognition										
		420	430	- 4	40	450	- 40	50	47	0 [48	0	L 49	0	500	51	0	520
				β1	$\frac{\alpha 1}{\alpha}$		β2	β3			.β4	β5	+	-			α2	
Mouse	419	PANHEGPI	PGVPV	GTMWRFR	VOVSESG	VHRPHVA	GIHGRS	IDGAYSI	LVLAG	GYED	DVDNGN	YFTYT	GSGGR	DLSGNKRTA	G <mark>OS</mark> SI	OKLTNN	NRALALN	CHSPINEK
Rat	466	PANHEGPT	PGVPV	GTMWRFR	VOVSESG	VHRPHVA	GTHGRS	IDGAYSI	VIAG	GYED	DVDNGN	FFTYT	GSGGR	DLSGNKRTA	GOSSI	OKLTNN	NRATATIN	CHSPINEK
Human	414	PSNHVGPT	PGTPV	GTMWRFR	VOVSESC		ACTHORS	IDGAVSI	.VT.AG	GYED	DVDHGN	FFTVT	GSGGR	DI.SGNKRTA	EOSCI		NRAT.AT.N	CFAPINDO
Chimpa	n414	PSNHVGPI	PGTPV	GTMWRFR	VOVSESC		AGTHGRS		.VI.AG	GVED	DVDHGN	FFTVT	GSGGR	DI.SGNKRTA	EOSCI		NRAT.AT.N	
Cow	418	PSNHFGPI	PGTPV	GTMWRFR	VOVSESG		AGTHGRS	JHGAYSI	UVI.AG	GYEDI	DVDHGN	SETVT	GSGGR	DI.SGNKRTA			NRAT.AT.N	CFAPINDI.
Dog	417	PSNHVGPI	PGTPV	GTMWRFR	VOVSESC		AGTHGRS		.VI.AG	GVED	DVDHGN	SETVT	GSGGR	DI.SGNKRTA	EOSCI		NRAT.AT.N	
Chicke	n399	PSNHVGPI	DGTDV	GTMWKER	VOVSESC		ACTHCRS		WT.AG	CVED	DTDHGN	SEUL	CSCCR	DI.SCNKRTA			NRAT.AT.N	
Zebraf	i 4 1 1	PSNHVGPN		GTLWKER	VOVSESC		ACTHCRS		WT.AG	CVED			CSCCR	DI.SCNKRTA			NRAT.AT.N	
DCDIUI									•••						<u>100</u> c	<u></u> M		
				E 🔁 🖻		P	e e e			P			P		:	:		
									•••						:			
பு பாப் 1	253			CESWEDB	OFCROWC								CCCD				· · · ·	CVM
	255			GESWEDR								WET VO		ULSGNAR <mark>I</mark> N	K-RUSSI	OVEEVS		
	200			GESWEDR						CVDD		WET VO				OVET NE		
	200	AENDPVRI		GESWKGK								WELLI		TTT CONKUN		OVELNE OVELNE		
	200			GESWEDR							DEDHGE	WELIT	GSGGR	DLSGNKRVN	K-IQSSI			
	200	AANDVIRD		GESWEDR	QECRQWG VECDOWC			AVGAQS				WELLI			т-т <u>б</u> рог 19			
ORTH-L	229	ALHDPVRI	QGVLV	GESWENR	VECROWG				VLSG	GIND	DEDHGE	WELYI		GRHFAN	E			
0111111	200									XZXZ DAT		• • •			000			
SUVHI	200		PGVEL	GDVFFFR		HSPSMA	$AGID - X_{11}$	-PIATS		YYDN			GUGGI	NADKDK	055			
SUVHZ	202			GDIFFIR		HGQTQF	$AGID - X_{11}$	-PIATS.		GYED			GHGGÇ	DHQHK			INL GMERS	
SUVH3	203	MKKRVGT	PGIEV	GUIFFSR			$AGID - X_{11}$	-SLATS		RYEG		SLIYS	GOGGI	MADK = -NR = -	QASI		INLALENS	
KIP(H4)144	PRKILGDI	PGIDV	GHRFFSR		FENHWLP							GQGGI	INLIGNER	QIK		INLALKHO	
SUVH5	360	GTQIIGT	PGVEV	GDEFQYR	MELNLLG	THRPSQS	$GID - X_{08}$	-LVATS	IVSSG	GYND	VLDNSD		GQGG-	-NV-GKKKNN	EPPK	DOOLV'I'G	INLALKNS	
SUVH6	325	GVHILGE		GDEFQYR	MELNILG	THKPSQ4	$AGLD - X_{07}$	-KVATS	I VASG	GYDD	HLDNSD	VLTYT	GQGGN	NVMQVKKKGE	ELKEPE)QKLTTG	INLALATS	
SUVH7	222	TRRRIGA	'PG1HV	GDIFYYW	GEMCLVG	HKSNYC	$GID - X_{11}$	-HAAMC	V V TAG	QYDG	ETEGLD	TLIYS	GÕGGI	DVYGNAR		DOEMKGO	NLALEAS	
SUVH8	305	MTRRICP	PGVQV	GDIFYYW	CEMCLVG	HRNTAC	$GID - X_{11}$	-PAATS	VVTSG	KYDN	ETEDLE	TLIYS	GHGGF	(PC		JOVLQRC	INRALEAS	
SUVH9	200	DKRIV <mark>C</mark> SI	PGVQV	GDIFFFR	FELCVMG	GHPQS		-PI <mark>A</mark> TS	VIVSG	GYED	DDDQGD	VIMYI	eõeeč	DRLGR	–––QAEI		INLAMERS	
											!					1		
			th	t	t	ĺ	th	h il	n t	m	i	m	s tt			i	i	

t=structural turn; h=hydrophobic core; i=intromolecular polar interaction; m=5mC binding; s=small space only for Gly Supplementary Figure S2 (page 1/2)

SUPPLEMENTARY INFORMATION

patch

		530	540	550	560	570	580	590	600	610	620
		β63_10	β7	α3	<mark>β8</mark>		β9¦>		α4	* *	α5
Mouse	525	-GAEAEDWR	<mark>D</mark> GKPVRVVRN	ÍKGGK <mark>HSKYAP</mark> AEO	G-NRYDGIYKV	VKYWPERG	-KSGFLVWRYLL	RRDD <mark>TEPE</mark> P	PWTREGKDR <mark>T</mark> R	DLGLTMQYPEGY	LEALA <mark>N</mark> KEK <mark>SRKR</mark>
Rat	572	-GAEAEDWR	<mark>D</mark> GKPVRVVRN	ÍKGGKHSKYAPAEO	G-NRYDGIYKV	VKYWPEKG	-KSGFIVWRYLL	RRDD <mark>T</mark> EPEP	WTREGKDR <mark>T</mark> R	DLGLTMQYPEGY	LEALA <mark>N</mark> KEK <mark>NRKR</mark>
Human	519	EGAEAKDWRS	GKPVRVVRN	KGGKNSKYAPAEC	G-NRYDGIYKV	VKYWPEKG	-KSGFLVWRYLL	RRDD <mark>DEP</mark> GP	PWTKEGKDRIKE	K <mark>LGLTMQYPEGY</mark> I	LEALA <mark>N</mark> RER <mark>EKEN</mark>
Chimpar	n519	E <mark>GAEA</mark> KDWR	GKPVRVVRN <mark>V</mark>	KGGKNSKYAPAEC	G-NRYDGIYKV	VKYWPEKG	-KSGFLVWRYLL	RRDD <mark>DEP</mark> GP	PWTKEGKDR <mark>I</mark> KE	K <mark>LGLTMQYPEGY</mark> I	LEALA <mark>N</mark> RER <mark>EKEN</mark>
Cow	523	K <mark>GAEA</mark> KDWR	GKPVRVVRN	KGRKHSKYAPIEC	G <mark>-</mark> NRYDGIYKV	VRYWPEKG	-KSGFLVWR <mark>F</mark> LL	RRDD <mark>V</mark> EP <mark>G</mark> P	PWTKE <mark>GK</mark> DRIKI	K <mark>LGLTMQYPEGY</mark> I	LEALA <mark>R</mark> KEK <mark>ENSK</mark>
Dog	522	K <mark>GAEA</mark> KDWR	GKPVRVVRN <mark>V</mark>	7KGRKHSKYAPAEC	G-NRYDGIYKV	VRYWPEKG	-KSGFLVWRYLL	RRDD <mark>T</mark> EP <mark>G</mark> P	PWTKE <mark>GKDR</mark> IKI	K <mark>LGLTMQYPEGYI</mark>	LEA <mark>RA</mark> RKEK <mark>EKEN</mark>
Chicker	n504	N <mark>GAEA</mark> KDWR	AGKPVRVVRN <mark>V</mark>	7 <mark>KG</mark> GKHSKYAPVEC	G-NRYDGIYKV	VKYWPE <mark>T</mark> G	-KSGFLVWRYLL	RRDD <mark>E</mark> EP <mark>A</mark> P	PWTKE <mark>GKDR</mark> MKI	K <mark>LGLTMQYPEGYI</mark>	leava <mark>n</mark> kdk <mark>enng</mark>
Zebrafi	i516	E <mark>GAEA</mark> KDWK	GKPVRVVRSS	KGRKHSKYSPEDO	G-NRYDGIYKV	VKYWPEKG	-KSGFLVWRYLL	KRNDEESAP	PWTRD <mark>GKER</mark> IKI	K <mark>LGLTMQYPEGY</mark> I	LEAVAAKEK <mark>EKEN</mark>
				: : : :		: :		:	<u>:: \\ \</u>		<u>: ::</u>
ORTH1	355		GYPVRVVRS	KEKR <mark>-SAYAP</mark> AEC	S–VRYDGVYRI	EKCWSNVG	VQGSFKVCRYLF	VRCDNEPAP	PWTSDE <mark>H</mark> GDRPI	RPLPNVPELETA	ADLF <mark>VRKESPSW</mark> D
ORTH2	370		-GYPVRVVRS <mark>H</mark>	IKEKR-SAYAPEEO	S–VRYDGVYRI	EKCWRKVG	VQGSFKVCRYLF	VRCDNEPAP	PWTSDE <mark>N</mark> GDRPI	RPIPNIPELNMA	IDLFERKETPSWD
ORTH3	382		-GYPVRVVRS	KDKR <mark>-SPYAP</mark> QG	LRYDGVYRI	EKCWRIVG	IQMCRFLF	VRCDNEPAP	PWTSDE <mark>H</mark> GDRPI	RPLPNVPELNMA	IDLFERKESPSWD
ORTH4	355		-GYPVRVVRS <mark>W</mark>	KEKR <mark>-SAYAP</mark> AEC	–VRYDGVYRI	EKCWSNVG	VQGLHKMCRYLF	VRCDNEPAP	PWTSDE <mark>H</mark> GDRPI	RPLPDVPELENA	ſDLFVRKESPS₩G
ORTH5	355		-GYPVRVVRSW	KEKR <mark>-SAYAP</mark> AEC	G–VRYDGVYRI	EKCWSNVG	VQGLHKMCRYLF	VRCDNEPAP	PWISDEHGDRPH	RPLPDVPELENA:	ſDLFVRKESPSWG
ORTH-L	322	GYPMNI	ESLR <mark>VRVVRS</mark> Y	KDRY-SAYAPKE	-VRYDGVYRI	EKCWRKAR	FPDSFKVCRYLF	VRCDNEPAP	PWNSDESGDRP	RPLPNIPELETA	SDLFERKESPSWD
				.			::				
SUVHI	306	LRI	RDSAVRVIRGI	JKEASHNAKI	-YIYDGLYEI	KESWVEKG	-KSGHNTFKYKL	VRAPG <u>O</u> P-P	PAFASWTALQK	VKTGVPSRQG	LILPDMTSGVESI
SUVH2	302	MHY	IGIEVRVIRG I	KYE-NSISSKV	7-YVYDGLYKI	VDWWFAVG	-KSGFGVFKFRL	VRIEGOPMM	IGSAVMRFAQTI	LRNKPSMVRPTG	YVSFDLSNKKENV
SUVH3	303	LRI	KGNGVRVVRGE	EDA-ASKTGKI	-YIYDGLYSI	SESWVEKG	-KSGCNTFKYKL	VRQPGQP-P	PAFGFWKSVQKV	VKEGLTTRPG	LILPDLTSGAESK
KYP(H4))250	CEY	ZNVPVRVT <mark>R</mark> GH	INCK-SSYTKR	7-YTYDGLYKV	EKFWAQKG	VSGFTVYKYRL	KRLEGQPEI	LTTDQVNFVAG-	RIPTSTSEIEG	LVCEDISGGLEFK
SUVH5	460	INI	KKNPVRVIRGI	KNTTLQSSVVAK	-YVYDGLYLV	EEYWEETG	-SHGKLVFKFKL	RRIPGOPEL	PWKEVAKS	SKKSEFRDG	LCNVDITEGKETL
SUVH6	428	IEH	KQTPVRV1RGF	KHK-STHDKSKGGN	-YVYDGLYLV	EKYWQQVG	-SHGMNVFKFQL	RRIPGOPEL	JSWVE∨KKS	SKSKYREG	LCKLDISEGKEQS
SUVH7	321	VSI	KGNDVRVVRGV	/IHPHENNQKI	I-YIYDGMYLV	SKFWTVTG	-KSGFKEFRFKL	VRKPNOP-P	PAYAIWKTVENI	LRNHDLIDSRQG	FILEDLSFGAELL
SUVH8	399	VRI	RRNEVRVIRGE	SLYNNEKV	/-YIYDGLYLV	SDCWQVTG	-KSGFKEYRFKL	LRKPGQP-P	GYAIWKLVENI	LRNHELIDPROG	FILGDLSFGEEGL
SUVH9	300	MY	∠GIE <mark>VRVIRG</mark> I	KYENEVSSR	/- <u>M</u> V <u>YDGLF</u> RI	VDSWFDVC	-KSGFGVFKYRIL	ERIECOAEM	IGSSVLKFARTI	LKTNPLSVRPRG	YINFDISNGK P NV
			,,,,,		<u> </u>	!	!	!			
			nınnı		nısnh h	1 1	l	l			

h=hydrophobic core; i=intromolecular polar interaction; s=small space only for Gly

Supplementary Figure S2 (page 2/2)

Figure S3. mUHRF1 SRA domain binds oligonucleotide with an increased affinity for hemimethylated CpG site

Increasing amounts of GST-mUHRF1 SRA domain (amino acids 393-621)^{3,6} are

incubated with a radiolabelled oligonucleotide with a single CG site (5'-A GG GA TG

GG GT TT XG TT TT CT CT CT CT C-3' / 5'-G AG AG AG AG AA AA YG AA AC

CC CA TC CC T-3') that is either unmethylated (X=Y=C; upper panel), hemi-methylated

(X=5mC, Y=C; middle panel), or fully methylated (X=Y=5mC; bottom panel). No

protein is present in lane 1, and the amount of DNA in per reaction was 85 picogram for

unmethylated, 70.4 picogram for hemimethylated, and 83.5 picogram for fully

methylated oligonucleotides. Protein concentration increases in each lane with $0.125 \ \mu g$

(lane 2), 0.25 µg (lane 3), 0.5 µg (lane 4), 1 µg (lane 5), 2 µg (lane 6), 3 µg (lane 7), 4 µg

(lane 8), 5 μ g (lane 9), and 6 μ g (lane 10).

References

- 3. Bostick, M. et al. UHRF1 plays a role in maintaining DNA methylation in mammalian cells. Science 317, 1760-4 (2007).
- 6. Sharif, J. et al. The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA. Nature 450, 908-12 (2007).

Figure S4. Flipping of Ade at the position 9

a, Ade9, two bases 3' to the 5mC, adopts an extra-helical conformation, thus destabilizes the DNA duplex. **b**, F437 and Y615 of a surface hydrophobic patch stabilizes the extra-helical Ade9. F437 and Y615 are part of a hydrophobic surface patch formed by two stretches of residues, one from the SRA domain N-terminus (F437 and V439) and the other from its C-terminus (P612 and Y615) (Supplementary Fig. S2).

Figure S5. Schematic SRA-DNA interactions in the space group P2₁2₁2₁

The SRA residues that interact with DNA are marked in red; residues in blue belong to

the symmetry-related SRA molecule.

Figure S6. Comparison of the SRA with HhaI methyltransferase

a, DNA structure bound by SRA (left) and by HhaI (right). The intercalating amino acids are shown in each case. **b**, Structures of the two opposite-side DNA-approaching loops of SRA (left) and HhaI (right).

Figure S7. NMR structure of MBD1-DNA shows MBD domain inserts a beta-

hairpin through the DNA major groove ⁷

The methyl-binding domains of MBD1⁷ and MeCP2⁸, instead of using a base-flipping

mechanism, recognize changes in hydration of the major groove of a fully methylated

CpG rather than detecting methyl groups directly.

References

- 7. Ohki, I. et al. Solution structure of the methyl-CpG binding domain of human MBD1 in complex with methylated DNA. Cell 105, 487-97 (2001).
- 8. Ho, K. L. et al. MeCP2 Binding to DNA Depends upon Hydration at Methyl-CpG. Mol Cell 29, 525-31 (2008).

MBD of MBD1 (PDB 1ig4)

Supplementary Table T1. Data collection and refinement statistics (molecular replacement)

Data collection	Crystal 1	Crystal 2	Crystal 3				
DNA	5'-GTC	CAGMGCATGG-3'	5'-AACTGCGCAGTT-3'				
	3'-CAG	TCGCGTACCT-5'	3'-TTGACGCGTCAA-5'				
Space group	P2 ₁ 2 ₁ 2 ₁	P4 ₁ 2 ₁ 2	P6 ₁ 22				
Cell dimensions	(0	α=β=γ=90°)	(α=β=90°, γ=120°)				
a (Å)	62.0	62.0	81.5				
b (Å)	69.0	62.0	81.5				
c (Å)	93.0	164.2	182.2				
Beamline		APS 22-ID (SER	SERCAT)				
Wavelength (Å)	1.00000	1.00000	0.97924				
Resolution (Å) *	29.40-2.19	34.23-1.96	34.67 – 3.09				
	(2.27-2.19)	(2.03-1.96)	(3.20 – 3.09)				
R _{sym} or R _{merge} *	0.073 (0.292)	0.076 (0.465)	0.111 (0.392)				
l/σl *	21.8 (5.4)	17.4 (2.6)	13.6 (4.5)				
Completeness (%) *	91.9 (63.7)	99.5 (98.1)	94.3 (93.7)				
Redundancy *	10.4 (6.8)	14.2 (10.3)	7.9 (7.8)				
Observed	205,307	337,304	53,278				
reflections							
Unique reflections *	19,727 (1,343)	23,766 (2,276)	6,782 (638)				
Refinement							
Resolution (Å)	2.19	1.96	3.09				
No. reflections	18,627	22,899	6,424				
R _{work} / R _{free}	0.217 / 0.253	0.221 / 0.246	0.232 / 0.291				
No. of atoms							
protein	1,623	1,587	1,521				
DNA	528	448	486				
heterogen	-	8 (2 ethylene glycerol)	-				
water	42	97	5				
B-factors (Å ²)							
protein	69.6	40.6	35.5				
DNA	86.3	61.4	107.3				
heterogen	-	61.2	40.7				
water	62.2	44.7	16.6				
R.m.s. deviations							
Bond lengths (Å)	0.006	0.005	0.006				
Bond angles (°)	1.1	1.1	1.3				
Dihedral angles (°)	22.3	22.4	22.9				
Improper angles (°)	0.95	0.94	1.05				

* Highest resolution shell is shown in parenthesis.