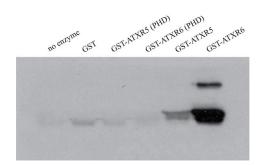
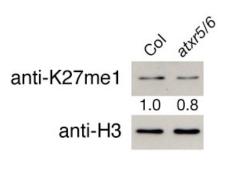
ATXR5 and ATXR6 are novel H3K27 monomethyltransferases are required for chromatin structure and gene silencing


Authors: Yannick Jacob¹, Suhua Feng⁴, Chantal A. LeBlanc¹, Yana V. Bernatavichute^{3,5}, Hume Stroud³, Shawn Cokus³, Lianna M. Johnson², Matteo Pellegrini³, Steven E. Jacobsen^{3,4,5} and Scott D. Michaels¹

Affiliations:


¹Department of Biology, Indiana University, 915 East Third Street, Bloomington, Indiana 47405.²Life Sciences Core Curriculum, ³Department of Molecular, Cell and Developmental Biology, ⁴Howard Hughes Medical Institute, ⁵Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.

ATXR5 ATXR6 P.patens1 P.patens2	MATWNASSPAASPCSSRRRTKAPARRPSSESPPPRKMKSMAEIMAKSVPV 50 MVAVRRRTQASNPRSEPP 19			
ATXR5	VEQEEEEDEDSYSNVTCEKCGSGEGDDELLLCDKCDRGFHMKCLRPIVVR 100			
ATXR6	- QHMSDHDSDSDWDTVCEECSSGKQPAKLLLCDKCDKGFHLFCLRPILVS 68			
<i>P.patens</i> 1	MLLCDRCDRGYHMYCLSPILPT 22			
<i>P.patens</i> 2	- VVWTNGPASAYSLTLCEECKGGDSAEQMLLCDQCDRGFHMFCLSPILVS 50			
consensus	CECSG LLCD CDRGFHM CL PILV			
ATXR5 ATXR6 <i>P.patens</i> 1 <i>P.patens</i> 2 consensus	VPIGTWLCVDCSDQRPVRRLSQKKILHFFRIEKHTHQTDKLELSQ 145 VPKGSWFCPSCSKHQIPKSFPLIQTKIIDFFRIKR-SPDSSQISSSS 114 VPLDDWFCPKCSQSSHVQGIAEFPKVQKKIVDFFRIQKPSPFTAELKCVE 72 IPPGDWICPHCSKSTIAHEFLMVQKKIVDFFRIQNLLPSKSVTEAIE 97 VP G W CP CS F QKKI DFFRI P			
Nuclear localization signal				
ATXR5	EETRKRRRSCSLTVKKRRRKLLPLVPSEDPDQRLAQMGTLASALTALGIK 195			
ATXR6	DSIGKKRKKTSLVMSKKKRRLLPYNPSNDPQRRLEQMASLATALRASNTK 164			
<i>P.patens</i> 1	TRKRRPSGGSLCLQKKSRRLLPYVPCAEPQRRLEQMASLATALTSIGVE 122			
<i>P.patens</i> 2	RKKRKKQSAFSFCPPKRGRRLLPYVPTIDPQRRLKQMASLATALTSIGVQ 147			
consensus	RK SL K RRLLPYVP DPQRRL QMASLATALT G			
ATXR5	YSDGLNYVPGMAPRSANQSKLEKGGMQVLCKEDLETLEQCQSMYRRGECP 245			
ATXR6	FSNELTYVSGKAPRSANQAAFEKGGMQVLSKEGVETLALCKKMMDLGECP 214			
<i>P.patens</i> 1	FTDSLSYG LAPRSANRAENEKGGMQVMSKEDKATLDLCKKMCSHGEWP 170			
<i>P.patens</i> 2	FSDSLSYR YAPRTANRAAHEKGGMREMPRDDKEAFDKCKAMCKSGLWQ 195			
consensus	FSD L Y APRSAN A EKGGMQV KED ETL CK M GE P			
	SET domain			
ATXR5	PLVVVFDPLEGYTVEADGPIKDLTFIAEYTGDVDYLKNREKDD-CDSIMT 294			
ATXR6	PLMVVFDPYEGFTVEADRFIKDWTIITEYVGDVDYLSNREDDYDGDSMMT 264			
<i>P.patens</i> 1	PLMVTHDSRQGFVVEADGNIKDLTIIAEYTGEVDYMRCREHDS-GNSIMG 219			
<i>P.patens</i> 2	PLTVAYDMRQGFVVEADEDIKDMTFIAEYTGEVDYMCCRHYDS-GNSIMG 244			
consensus	PL V D GF VEAD IKD T IAEYTG VDY RE D G SIM			
ATXR5	LLLSEDPSKTLVICPDKFGNISRFINGINNHNPVAKKKQNCKCVRYSING 344			
ATXR6	LLHASDPSQCLVICPDRRSNIARFISGINNHSPEGRKKQNLKCVRFNING 314			
<i>P.patens</i> 1	LLFSDDPAKELVICPDRCGNIARFVSGINNHSPEGRKKQNVRCVRYNIDG 269			
<i>P.patens</i> 2	LLFSDDPIKELVICPDKRSNIARFLSGINNHTEEGRKKQNVRCVRYSING 294			
consensus	LL S DP K LVICPD NIARF SGINNH PEGRKKQN CVRY ING			
ATXR5	ECRVLLVATRDI SKGERLYYDYNGYEHEYPTHHFL 379			
ATXR6	EARVLLVANRDI SKGERLYYDYNGYEHEYPTEHFV 349			
<i>P.patens</i> 1	EARAILVAI RDI PKGERLYYDYNAYQTEYPTKHFV 304			
<i>P.patens</i> 2	EARVILI AMRDI LKGERLYYDYNAYYTEYPTQHFV 329			
consensus	EARV LVA RDI KGERLYYDYN Y EYPT HFV			

Supplementary Fig. 1. Alignment and functional domains of ATXR5, ATXR6, and homologous proteins (XP_001784397.1 and XP_001776886.1, National Center for Biotechnology Information) from *Physcomitrella patens*.

Supplementary Fig. 2. GST alone and the PHD domains from ATXR5 and ATXR6 show no H3K27 monomethyltransferase activity. The products of ATXR5 and ATXR6 HMT assays were analyzed by Western blot using anti-H3K27me1.

Supplementary Fig. 3. Western blot analysis of H3K27me1. Quantization was performed using ImageJ.

Technique	Primer	Sequence (5' to 3')	Reaction Conditions
RT-PCR			
ATXR5 (P1)	712-ATXR5-Fn	TCAATGGCTGAGATAATGGC G	95°C (3 min); 35 cycles of 95°C (30 sec), 55°C (30 sec), 72°C (30 sec)
	858-ATXR5-R	TCTGAGATAACCTTCTTACA	
ATXR5 (P2)	647-5g09790-F	CCATTGGAACTTGGCTTTGTG TC	95°C (3 min); 35 cycles of 95°C (30 sec), 60°C (30 sec), 72°C (30 sec)
	648-5g09790-R	AATAGGACCATCTGCTTCAAC TGTG	
ATXR5 (P3)	856-ATXR5-F	TCCGCTTGAAGGTTACACAG	95°C (3 min); 35 cycles of 95°C (30 sec), 60°C (30 sec), 72°C (30 sec)
	857-ATXR5-R	TTCTTAGCAACCGGATTGTG	
ATXR6 (P1)	312-24330-F	CATCAGATCCCTAAATCTTTC CCTC	95°C (3 min); 35 cycles of 95°C (30 sec), 60°C (30 sec), 72°C (30 sec)
	392-5g24330- GatR212	TTCACCGAGGTCCATCATTTT CTTGCA	
ATXR6 (P2)	860-ATXR6-F	GGAGGCATGCAGGTTCTATC	95°C (3 min); 35 cycles of 95°C (30 sec), 60°C (30 sec), 72°C (30 sec)
	861-ATXR6-R	TTCCTCCCTTCTGGTGAGTG	
UBQ	190-UBQF	GATCTTTGCCGGAAAACAATT GGAGGATGGT	95°C (3 min); 26 cycles of 95°C (30 sec), 55°C (30 sec), 72°C (30 sec)
	191-UBQR	CGACTTGTCATTAGAAAGAA AGAGATAACAGG	
RT-PCR ⁴			
Ta3	1128-Ta3-F	GATTCTTACTGTAAAGAACAT GGCATTGAGAGA	RT-PCR: 95°C (3 min); 44 cycles of 95°C (30 sec), 55°C (30 sec), 72°C (45 sec)
	1129-Ta3-R	TCCAAATTTCCTGAGGTGCTT GTAACC	
CACTA-like	1126-CACTA-like-F	GGCTAGCTGTCCGACTCAATG ACCT	RT-PCR: 95°C (3 min); 40 cycles of 95°C (30 sec), 55°C (30 sec), 72°C (45 sec)
	1127-CACTA-like-R	CAGACATCCTTTCCTTCAGCT TAGC	
TSI	1113-TSI-F	GAACTCATGGATACCCTAAA ATAC	RT-PCR: 95°C (3 min); 37 cycles of 95°C (30 sec), 55°C (30 sec), 72°C (45 sec)
	1114-TSI-R	CTCTACCCTTTGCACTCATGA ATC	

Table S1. PCR primers and conditions.

Ta3	QPCR-Ta3-F	AAGAGAGCTGGCAGAAGCAG TTGA	QPCR: 95°C (10 min); 40 cycles of 95°C (15 sec), 58°C (30 sec), 72°C (15 sec)
	QPCR-Ta3-R	ACGCCCTTTACCTTGACCTCC TTT	
CACTA-like	QPCR-CACTA-F	TGTGTGGGAAGGGTCTTGTGGA CTT	QPCR: 95°C (10 min); 40 cycles of 95°C (15 sec), 58°C (30 sec), 72°C (15 sec)
	QPCR-CACTA-R	AACTTACATGTTTGCGGGCAC GAG	
TSI	QPCR-TSI-F	ATCCAGTCCGAAGAACGCGA ACTA	QPCR: 95°C (10 min); 40 cycles of 95°C (15 sec), 58°C (30 sec), 72°C (15 sec)
	QPCR-TSI-R	TCACTTGTGAGTGTTCGTGAG GTC	
Actin	ChIP-actin-F	CGTTTCGCTTTCCTTAGTGTT AGCT	QPCR: 95°C (10 min); 40 cycles of 95°C (15 sec), 58°C (30 sec), 72°C (15 sec)
	ChIP-actin-R	AGCGAACGGATCTAGAGACT CACCTTG	

SUPPLEMENTAL METHODS

Protein expression and purification

For the expression and purification of GST-ATXR5_{PHD}, GST-ATXR6_{PHD}, GST-ATXR5_{PHD-SET} and GST-ATXR6_{PHD-SET}, E. coli BL21 DE3 cells were transformed with the appropriate pGEX-6P expression plasmid. A starter culture of 30 ml was inoculated and grown overnight at 37°C. The volume of the culture was then increased to 400 ml and ZnCl was added to a final concentration of 50 µM. The culture was shaken for 1 h before adding IPTG to a concentration of 0.1 mM. Induction was allowed to proceed overnight at 20° C. After centrifugation of the culture, the bacterial pellet was resuspended in 20 ml of cold lysis buffer (50 mM Tris-HCl pH 7.5, 150 mM NaCl, 0.05% NP-40). The cells were broken by treatment with 1 mg/ml of lysozyme for 15 min on ice, followed by sonication (Branson Sonifier 250, output 3, 2 x 2 min). The cell lysate was then centrifuged at 18,000 g. The supernatant was mixed with 400 µl of washed 50% glutathione sepharose beads (GE Life Sciences) and rotated at 4°C for 1 h. The beads were then washed once with lysis buffer, twice with elution buffer (50 mM Tris-HCl pH 7.5), and resuspended in 400 µl of elution buffer containing 10 mM of reduced glutathione (Sigma). Elution was performed with rotation, overnight at 4°C. Beads were then pelleted by centrifugation and the supernatant was collected. DTT and glycerol were added to a final concentration of 20 mM and 10%, respectively.

Expression and purification of the plant histone 3.1 proteins (wild-type and H3K27A) were performed as previously described¹. After purification, proteins were dialyzed overnight into 1 L of buffer A (50 mM Tris-HCl pH 8.0, 1 mM DTT, 1 mM EDTA and 300 mM NaCl). The dialysis was initiated at room temperature for 3 h before transfer to 4°C. Buffer A was replaced the next day and the dialysis was allowed to proceed for another 4 h. Note that the two plant H3 proteins (wild-type and H3K27A) used in the histone methyltransferase assay have a higher molecular weight than the human homolog due to the C-terminal V5 epitope-6xHis tag used for purification of the proteins.

Immunofluorescence and FISH

Nuclei isolation from mature leaves was performed as described². Fixed nuclei were dried onto coverslips, post-fixed for 5 min in cold methanol and rehydrated for 5 min in TBS (20 mM Tris, pH 7.5, 100 mM NaCl). Nuclei were blocked in Abdil (TBS, 0.1% Triton X-100, 2% BSA, and 0.1% NaN₃) for 30 min at 37°C, incubated with primary antibodies for 1 h (anti-H3K27me1, 1 ug/ml; anti-H3K27me2, 0.5 ug/ml; anti-H3K9me2, 2 ug/ml; or anti-H3K27me3, 2 ug/ml) and washed in TBS-Tx (TBS, 0.1% Triton X-100). The nuclei were then incubated either with antirabbit Alexa Fluor 488 (1 µg/ml) (Invitrogen) or anti-mouse Alexa Fluor 594 (1 µg/ml) (Invitrogen), and washed in TBS-Tx. All antibodies were diluted in Abdil. Coverslips were mounted in Vectashield mounting medium with DAPI (Vector Laboratories). FISH was performed as described ³ with the following modifications. The centromeric 180-bp repeats were amplified from the pARR20-1 clone using the following primers: pARR20-1F 5'-ATCCTCTAGAGTCGACCTGCA-3' and pARR20-1R 5'-TTCCCAGTCACGACGTTGTAA. The resulting PCR product was labeled with digoxigenin (DIG) using a DIG Nick translation kit according to the manufacturer's protocol (Roche). Leaf nuclei were isolated and fixed onto coverslips as descrived above, followed by post-fixation in 2% formaldehyde in PBS for 5 minutes. Coverslips were hybridized with the labeled probes for 18 hours at room temperature. For detection of DIG-labelled probes, coverslips were incubated with anti-DIG-fluorescein (1 g/ml) (Roche), washed in TBS-Tx, and incubated with anti-Fluorescein (0.4 g/ml) (Roche). After washing in TBS-Tx, coverslips were incubated with anti-rabbit Alexa Fluor 488 (1 ug/ml)

(Invitrogen). All antibodies were diluted in Abdil and incubated for 30 minutes at 37°C. Coverslips were mounted in Vectashield mounting medium with DAPI (Vector Laboratories). Nuclei were imaged on a Nikon 90i microscope equipped with a 100X 1.4 Plan Apo VC objective (Nikon). Digital images were obtained using a Photometrics Coolsnap HQ cooled CCD camera. The camera, shutters, and filter wheels were controlled by MetaMorph software (Molecular Devices). Z-series optical sections through each nucleus were obtained at 0.5 m steps. All images were taken with the same exposure time and scaled identically. Images were deconvolved (blind iterative deconvolution) using AutoDeblur 9.3 software (AutoQuant Imaging). At least 80 nuclei were examined from each genotype in each experiment.

Real-time PCR

Precipitated DNA was quantified by real-time PCR using an MxPro3000 qPCR system (Stratagene) with Platinum SYBR Green qPCR SuperMix-UDG (Invitrogen). Relative quantities were determined by using a comparative Ct method as follows: Relative quantity $= 2^{(-((Ct GOI unknown-Ct normalizer unknown)-(Ct GOI calibrator -Ct normalizer calibrator)))}$, where GOI is gene of interest. Actin was used as the normalizer. At least two different biological samples were used for each ChiP experiment.

REFERENCES

- 1. Tanaka, Y. et al. Expression and purification of recombinant human histones. *Methods* **33**, 3-11 (2004).
- 2. Yu, X. et al. Arabidopsis cryptochrome 2 completes its posttranslational life cycle in the nucleus. *Plant Cell* **19**, 3146-56 (2007).
- 3. Bowler, C. et al. Chromatin techniques for plant cells. *Plant J* **39**, 776-89 (2004).
- 4. Mathieu, O., Probst, A.V. & Paszkowski, J. Distinct regulation of histone H3 methylation at lysines 27 and 9 by CpG methylation in Arabidopsis. *EMBO J* **24**, 2783-91 (2005).
- 5. Peters, A.H. et al. Partitioning and plasticity of repressive histone methylation states in mammalian chromatin. *Mol Cell* **12**, 1577-89 (2003).