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Abstract

Light affects many aspects of plant development, including seed germination, stem elongation, and floral
initiation. How photoreceptors control photomorphogenic processes is not yet fully understood.  Because
phytohormones are chemical regulators of plant development, it may not be surprising that light affects,
directly or indirectly, cellular levels and signaling processes of various phytohormones, such as auxin,
gibberellins (GA), cytokinin, ethylene, abscisic acid (ABA), and brassinosteroids (BR). Among those
phytohormones, light regulation of GA metabolism has probably attracted more attention among photobi-
ologists and it is arguably the most extensively studied plant hormone at present with respect to its role in
photomorphogenesis.  It has become increasingly clear that phytochromes and cryptochromes are the
major photoreceptors mediating light regulation of GA homeostasis. This short article attempts to examine
some recent developments in our understanding of how light and photoreceptors regulate GA biosynthe-
sis and catabolism during seedling development. It is not our intention to carry out a comprehensive
review of the field, and readers are referred to recent review articles for a more complete view of this area
of study (Kamiya and Garcia-Martinez 1999; Hedden and Phillips 2000; Garcia-Martinez and Gil 2001; Olszewski
et al. 2002; Halliday and Fankhauser 2003; Sun and Gubler 2004).
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Gibberellins (GA) Metabolism and Signaling

Gibberellins (GA) are tetracyclic diterpenoid hormones that regu-
late many aspects of plant development (Hedden and Phillips
2000; Olszewski et al. 2002; Sun and Gubler  2004).  Unlike
other plant hormones, GA are defined by their chemical

structures that all contain the same ent-gibberellane ring, and
only a few of the presently known 126 different GA, such as
GA1, GA3, GA4, and GA7, are physiologically active.  Different
plant species appear to preferentially use different forms of
bioactive GA.  For example, GA1 is believed to be the bioactive
GA in lettuce, peas, and rice, whereas GA4 is the bioactive GA
in Arabidopsis and cucumber.  GA metabolism takes place in
three different cellular compartments, plastids, endoplasmic
reticulum (ER), and cytosol (Figure 1) (Hedden and Phillips 2000;
Olszewski et al. 2002; Sun and Gubler 2004).  Multiple en-
zymes are involved in GA metabolism and catabolism, including
ent-copalyl diphosphate synthase (CPS), ent-kaurene synthase
(KS), P450 monooxygenases (e.g. KO), and dioxygenases.  Two
dioxygenases, GA 20-oxidase (GA20ox) and GA 3b-
hydroxygenase (GA3ox), catalyze the last few steps in the
synthesis of bioactive GA.  Another dioxygenase, GA 2-oxi-
dase (GA2ox), catalyzes GA catabolism of bioactive GA or
their precursors (Figure 1) (Thomas et al. 1999; Hedden and
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Phillips 2000; Olszewski et al. 2002).
Two general experimental strategies often used at present

to study light regulation of GA metabolism are the analysis of
levels of various GAs, especially the bioactive GAs, and
comparisons of the expression level of genes encoding GA
metabolic/catabolic enzymes.  In this regard, two features of
GA metabolism and associated genes are particularly relevant
in the interpretation of experimental results.  First, the expres-
sion and activity of many GA metabolic/catabolic enzymes are
controlled by cellular GA levels via complex feedback and feed-
forward regulatory networks.  For example, an increased level
of GA usually suppresses expression of GA20ox and GA3ox,
which controls the last a few steps in GA biosynthesis.
Conversely, an elevated GA level stimulates the expression of
GA2ox, which acts to inactivate physiologically active GAs or
to remove their immediate precursors.  Secondly, one type of a
GA metabolic/catabolic enzyme is often encoded by multiple
members of a gene family, and the expression of different
member of the respective gene family varies with respect to
the cell type, developmental timing, and response to light.  For
example, Arabidopsis GA2ox gene family has at least six
members, and the expression of each member in response to
blue light is not identical.  These complexes presumably reflect
a delicate homeostatic balance of GA metabolism in plants, but
they would make it difficult to accurately interpret results of
individual experiments with respect to physiological implications.

According to our present understanding, the GA signal
transduction starts with the GA receptor(s), GID1 and related
proteins.  GID1 is a nuclear protein with structural similarities to
the hormone-sensitive lipases (Ueguchi-Tanaka et al. 2005;
Nakajima et al. 2006).  GID1 interacts with the DELLA proteins,
which are a subgroup of the GRAS family transcription regula-
tors that contain a 27-residue conserved motif known as the
DELLA domain.  The DELLA proteins act as negative regulators
of the GA signaling (Peng et al. 1997; Silverstone et al. 1997).  It
is believed that, when the cellular GA level is low, the DELLA
proteins suppress the activity of positive regulators such as
GAMYB or other transcription factors and transcription of GA-
dependent gene expression.  Association of GA to the GA re-
ceptors leads to ubiquitination and degradation of the DELLA
proteins, resulting in de-repression of the expression of GA-
induced genes (Olszewski et al. 2002; Peng and Harberd 2002;
Sun and Gubler 2004; Chow and McCourt 2006).  Therefore,
similar to other plant hormones such as ethylene and auxin, GA
appears to act by de-repression of its signal transduction
(Bishopp et al. 2006).  It seems intuitive that light may affect not
only GA metabolism but also GA signaling processes, and some
physiological and genetic analyses are consistent with this
notion (Reed et al. 1996; Peng and Harberd 1997; Xu et al.
1997; O’Neill et al. 2000; Cao et al. 2005).  However, in contrast
to abundant reports on the light regulation of mRNA expression
of GA metabolic/catabolic genes, how light affects the GA sig-
naling processes remains largely unclear.

Genes associated with both GA metabolism and GA signaling
are important to agriculture productivity.  The remarkable in-
creases in the yields of cereal crops such as wheat, rice, and
corn during the ‘Green Revolution’ in the 1960s–1970s were
made possible largely by breeding of dwarf traits into the new
cultivars (Hedden 2003).  Those new varieties have shorter
stalks that allow plants to uphold increased weight of grains,
resulting from improved agriculture practices such as applica-
tions of fertilizers and pesticides.  Those semi-dwarf cultivars
are also more resistant to winds and rains.  It turns out that the
semi-dominant mutations of wheat Rht-B1/Rht-D1 and maize
dwarf-8 (d8), which have been widely bred into commercial
cultivars, are functional orthologs of the Arabidopsis GAI gene
that encodes the first DELLA protein identified (Peng et al. 1997;
Peng et al. 1999).  In contrast, the rice sd1 recessive mutations,
which are responsible for the semi-dwarf trait of many differ-
ent rice cultivars, were found to affect the same GA20ox gene,
OsGA20ox2 (Sasaki et al. 2002; Spielmeyer et al. 2002).  It is
intriguing that, although rice genome encodes four GA20ox
genes, mutant OsGA20ox2 has been isolated and bred into
various semi-dwarf rice cultivars grown in different regions of
the world.  This coincidence may be attributed to the fact that,
compared to other OsGA20ox genes, OsGA20ox2 is more
abundantly expressed in rice stems (Hedden 2003; Sakamoto
et al. 2004).

Figure 1.  A brief view of the GA metabolic pathway in higher plants
(modified from Hedden and Phillips, 2000).

GGDP, geranylgeranyl diphosphate; CDP, ent-copalyl diphosphate;
CPS, ent-copalyl diphosphate synthase; KS, ent-kaurene synthase;
KO, ent-kaurene oxidase; KAO, ent-kaurene acid oxidase; GA13ox,
GA 13-hydroxylase; GA20ox, GA 20-oxidase; GA3ox, GA 3b-
hydroxylase; GA2ox, GA 2-oxidase.
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Phytochrome Regulation of GA Metabolism

The red/far-red l ight receptor phytochrome was f i rst
discovered over a half century ago in a study of lettuce seed
germination (Borthwick et al. 1952).  Soon after, it was found
that phytochrome might be required for seed germination be-
cause it stimulates GA accumulation (Ikuma and Thiman 1960).
However, those same researchers may have also been puzzled
because they failed to detect in the germinating lettuce seeds a
significant increase of GA3, which was thought to be the ac-
tive GA required for lettuce seed germination (Ikuma and Thiman
1960).  This mystery was solved many years later when it was
found that GA1, instead of GA3, was the bioactive GA in lettuce,
and that phytochromes indeed mediate red light-induced accu-
mulation of GA1 in the germinating lettuce seeds (Toyomasu et
al. 1993).  Not only was an identification of the correct form of
active GA important, but it is also critical to find out which
specific member of a gene family is affected by light in order to
understand how light regulates GA metabolism.  In this regard,
it may be interesting to revisit a study on the role of phyto-
chrome and GA metabolic genes in Arabidopsis seed
germination.  It was known for a long time that seeds of
Arabidopsis mutants such as ga1, ga2, and ga3, which are
defective in genes encoding early GA biosynthesis enzymes
CPS, KS, and KO, respectively (Figure 1), could not germinate
without exogenous application of GAs, confirming that GA is
essential for seed germination.  Another Arabidopsis GA meta-
bolic mutant, ga4, is impaired in the GA3ox1 gene encoding a
GA3ox catalyzing the last step of GA4 biosynthesis (Chiang et
al. 1995; Williams et al. 1998) (Figure 1).  In contrast to the
other GA metabolic mutants, ga4 can germinate without exog-
enous application of GAs.  This puzzle was resolved only when
another GA3ox gene in the Arabidopsis genome, GA3ox2
(previously referred to as GA4H) was isolated (Yamaguchi et
al. 1998).  GA3ox1 and GA3ox2 apparently act redundantly so
that the monogenic mutation of neither one alone is insufficient
to prevent seed germination.  It was found that GA3ox2 was
predominantly expressed in germinating seeds and its expres-
sion was stimulated in response to red light.  The red light-
induced expression of GA3ox2, but not GA3ox1, is impaired in
the phyB mutant, demonstrating that phyB stimulates seed ger-
mination at least partially by activating GA3ox2 expression
(Yamaguchi et al. 1998).

It seems clear now that phytochromes regulate many as-
pects of plant development via their direct physical interactions
with phytochrome interacting factors (PIF) such as PIF3, PIF4,
and PIF1/PIL5, which are bHLH (basic-helix-loop-helix)-type
transcription factors (Ni et al. 1998, 1999; Martinez-Garcia et
al. 2000; Huq et al. 2004)(Quail, article in this issue).  Phyto-
chromes may affect the expression of GA metabolic genes via
a direct interaction and regulation of those PIF transcription
factors.  For example, one of the PIF factors, PIF1/PIL5,

positively regulates transcription of GA2ox2 but negatively regu-
lates transcription of GA3ox1 and GA3ox2 (Oh et al. 2006).
PIF1/PIL5 interacts preferentially with the Pfr form of phyA and
phyB.  Interaction with phytochromes leads to degradation of
the PIF1/PIL5 protein, resulting in altered expression of the
GA3ox1, GA3ox2, and GA2ox2 genes, increased accumula-
tion of bioactive GA, and stimulation of seed germination (Figure
2A) (Martinez-Garcia et al. 2000; Oh et al. 2006).

In addition to the regulation of GA metabolism, light may also
affect GA signal transduction to promote seed germination (Cao
et al. 2005).  It has been reported recently that removal of the
negative regulators of GA signal transduction pathway can
rescue the none-germinating phenotype of the ga1 mutant.
Arabidopsis has at least five DELLA proteins, GAI, RGA, RGL1,
RGL2, and RGL3, but the direct involvement of those proteins
in photomorphogenesis has not been extensively studied.  In
the absence of exogenous application of GAs, the ga1 mutant
fails to germinate in either dark or light, the ga1rgargl1rgl2 and
ga1gairgl1rgl2 triple mutants could germinate in light but not in
dark, whereas the ga1gairgargl2  t r ip le mutant and
ga1gairgargl1rgl2 quadruple mutant could germinate in both
light and dark.  It appears that, at least in the seed germination
process, light acts in a way similar to that of GA-triggering
degradation or inactivation of DELLA proteins such as GAI and
RGA to activate the GA signal transduction pathway.  This
hypothesis, however, is yet to be directly tested.

In nature, germinating seeds are often buried under soil in
the dark and they need to push the embryonic leaves
(cotyledons) out of soil by rapid elongation of the embryonic
stem (hypocotyls).  When the cotyledons emerge above the
soil surface to light, there seems little need to keep pushing
anymore; the energy and recourses would be better spent on
other developmental processes, such as leaf expansion and
chloroplast formation.  Next to greening, inhibition of hypocotyl
elongation is probably the most visible response to light in young
seedlings.  Indeed, light inhibition of hypocotyl elongation has
been arguably the most widely used read-out in the study of
plant photoreceptors.  How is GA involved in the photomorpho-
genic processes, such as light inhibition of hypocotyl elongation?
Alternatively, this question may be asked in a different way:
how is GA involved in skotomorphogenesis or seedling devel-
opment in the absence of light?  In a series of elegant
experiments, it has recently been shown that GA is essential
for skotomorphogenesis (Alabadi et al. 2004).  GA is not only a
positive regulator promoting hypocotyl elongation in etiolated
Arabidopsis seedlings, it also acts as a negative regulator of
other photomorphogenesis responses, such as light-induced
gene expression and cotyledon opening.  In dark-grown or
etiolated seedlings, application of paclobutrazol, which pre-
vents GA biosynthesis by inhibiting KO, suppresses hypocotyl
elongation but stimulates cotyledon opening.  Surprisingly, the
application of paclobutrazol also enabled seedlings to express
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light-induced genes such as CAB2 and Rbcs in the absence of
light (Alabadi et al. 2004).  Consistent with the role of GA in
skotomorphogenesis, ga1 mutant seedlings grown in the dark
also had short hypocotyl, opened cotyledons, and ectopic ex-
pression of mRNA of the CAB2 and Rbcs genes (Alabadi et al.
2004).  Interestingly, the phenotype of ga1 resembles that of
cop (constitutive photomorphogenesis) and det (de-etiolated)
mutants (Chory et al. 1989; Deng et al. 1989).  The cop/det
phenotypes of the ga1 mutant is suppressed in the presence
of both gai and rga mutations.  Based on these observations,
one might argue that suppression of GA accumulation would
be all phytochromes need to do to bring about photomorpho-
genic development in a seedling.  Although this scenario is
apparently oversimplified, results of numerous studies have
demonstrated that light regulation of GA metabolism/catabolism
does play an important, and probably indispensable role, in
photomorphogenesis of young seedlings (Kamiya and Garcia-
Martinez 1999; Hedden and Phillips 2000; Garcia-Martinez and
Gil 2001; Halliday and Fankhauser 2003).

In contrast to light stimulation of the accumulation of bioactive
GA in germinating seeds, light appears to suppress the accu-
mulation of bioactive GAs in young seedlings (Figure 2B).  Many
of the studies on the light control of GA metabolism in seedlings
have been carried out in the garden pea (Pisum sativum), par-
tially because it is easier to collect more tissues from pea seed-
lings for the GA analysis (Ait-Ali et al. 1999; Gil and García-
Martinez 2000; O’Neill et al. 2000; Weller et al. 2001; Reid et al.
2002; Symons and Reid 2003).  For example, the bioactive GA4

in Arabidopsis was hardly detectable in some early studies,
because of the difficulty in collecting sufficient Arabidopsis
seedling tissues (Reed et al. 1996).  This appears to not be a
problem for peas.  It has been shown that the level of bioactive
GA1 decreased to the trace amount soon after etiolated pea
seedlings were exposed to light (Ait-Ali et al. 1999; Gil and
García-Martinez 2000; Symons and Reid 2003).  In a system-
atic analysis of how different hormones in pea seedlings change
their levels in response to light, it was found recently that the
GA1 level decreased approximately 10-fold during the first 4
hours of light treatment.  In contrast, the levels of IAA and ABA
changed much later after light exposure (Symons and Reid
2003).

Given that the amount of GA1 decreases in response to light
in young pea seedlings, one may expect that the expression of
genes required for the synthesis of bioactive GAs, such as
GA20ox and GA3ox would decrease in response to light.  Con-
trary to this expectation, it has been reported that the expres-
sion level of two major GA biosynthesis genes, GA20ox and
GA3ox, increased by about 5-fold within the first 4 hours of
light treatment (Ait-Ali et al. 1999; Gil and García-Martinez 2000).
This perplex observation was interpreted by the feedback inhi-
bition of GA on the expression of GA biosynthetic genes.  It
was shown that the light induction of GA biosynthetic genes is

controlled by phyA and phyB (Ait-Ali et al. 1999), but it remains
unclear whether the phytochrome-dependent upregulation of
GA20ox and GA3ox is a direct or indirect consequence of the
phytochrome activity.  Given this, could phytochromes mediate
light suppression of GA1 accumulation via activation of GA
catabolism?  Indeed, the mRNA expression of a GA-inactivating
gene, GA2ox, increased approximately 5-fold in response to
light, and that the light-induced GA2ox expression was signifi-
cantly impaired in the pea phyA (fun1) or phyB (lv) mutant (Weller
et al. 1995; Weller et al. 1997; Ait-Ali et al. 1999).  Therefore, it
is most likely that phytochromes mediate light-induced expres-
sion of GA2ox to suppress the accumulation of bioactive GA in
response to light, resulting in reduced hypocotyl elongation.
However, it has also been noticed that the amount of bioactive
GA appears to climb back to “normal” after a prolonged light
exposure, probably as a result of the feedback upregulation of
GA20ox and GA3ox expression (Ait-Ali et al. 1999; Symons
and Reid 2003).  It remains unclear how the inhibition of seed-
ling elongation under prolonged illumination is sustained.  But it
has been suggested that, at least in peas, the light effect in the
relatively later stages of seedling photomorphogenesis may be
accomplished by light regulation of the GA signaling process
(O’Neill et al. 2000).

Cryptochrome Regulation of GA Metabolism

The blue light-receptor cryptochrome was first discovered in a
study of Arabidopsis seedling development in response to blue
light, although it has since been found in animals and bacteria
as well (Ahmad and Cashmore 1993; Lin et al. 1995).

Figure 2. Working models depicting effects of light and GA on seed
germination (A) and seedling growth (B).

Arrows and T-bars represent positive or negative effect, respectively.
Dashed lines indicate that more than one step may be involved
between the two points.
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Cryptochromes mediate blue light inhibition of hypocotyl elon-
gation in Arabidopsis and other plants (Cashmore 2003; Lin
and Shalitin 2003). Similar to phytochromes, cryptochromes
may also regulate seedling development via a control of GA
metabolism/catabolism (Figure 2B).  Indeed, it has been shown
that etiolated pea seedlings exposed to blue light exhibited a 5-
fold decline in the level of GA1, which was accompanied by an
increase in the level of GA8; a physiologically inactive catabolic
product of GA1 (Foo et al. 2006).  This blue light-induced de-
crease of GA1 is significantly compromised in the pea cry1phyA
double mutant, demonstrating that cry1 and phyA act redun-
dantly in mediating blue light suppression of GA1 accumulation
in pea seedlings.  The redundant function of cry1 and phyA
may explain why the pea monogenic cry1 mutant showed little
phenotypic alternation (Platten et al. 2005).  cry1 and phyA also
act redundantly to mediate blue light-induced down- and
upregulation of mRNA expression of the PsGA3ox1 and
PsGA2ox2 gene, respectively (Foo et al. 2006).  It is interest-
ing that, in contrast to the phyB- and phyA-mediated upregulation
of the expression of a GA3ox gene discussed in the previous
section, the blue light-induced downregulation of GA3ox ap-
pears consistent with the decreased GA1 level in response to
blue light.  Why the decreased level of GA1 did not cause a
feedback upregulation of the GA3ox expression in blue light is
unclear.

 Although direct measurement of GA content in Arabidopsis
has not been easy as discussed previously, recent improve-
ment in the methodology of GA measurement has made it
possible.  And possible changes in the level of bioactive GA4 in
different Arabidopsis genotypes in response to blue light have
been recently investigated by James Reid’s laboratory in Aus-
tralia (J. Reid, personal communication).  It was found that the
level of bioactive GA4 decreased approximately 4-fold in
Arabidopsis seedlings exposed to blue light for 4 h.  As
expected, the blue light-induced decline of GA4 was signifi-
cantly impaired in the cry1cry2 mutant.  Cryptochrome-depen-
dent changes in the expression of GA metabolic/catabolic genes
have been shown in a number of recent DNA microarray analy-
ses (Ma et al. 2001; Folta et al. 2003; Ohgishi et al. 2004).
Although these studies are invaluable in offering the first glance
of genome expression profiles, the dynamic nature of expres-
sion changes of GA metabolic/catabolic genes may require more
detailed kinetic analyses.  Such an analysis of the expression
of six members of the GA2ox gene family and three members
of the GA20ox gene family in Arabidopsis seedlings under
different blue-light conditions have revealed some of those
details (Zhao et al., unpublished data).  The results of this
study indicate that the cryptochrome-dependent decline of GA4

in response to blue light is at least partially accounted for by an
increased expression of several members of the GA2ox gene
family, especially GA2ox1 (Zhao, unpublished data).  For
example, when etiolated seedlings were exposed to blue light

(100 μmol.m−2.s−1) for 24 h, all six members of the GA2ox gene
family showed transiently increased expression. The blue light-
induced expression for four of the six GA2ox genes, again
GA2ox1 in particular, was impaired in the cry1 or cry1cry2
mutant.  When etiolated seedlings were compared with seed-
lings grown in continuous blue light, it was found that the ex-
pression of GA2ox1 increased significantly in wild-type seed-
lings grown in blue light but not in the cry1cry2 mutant seedlings.
Among the six Arabidopsis GA2ox genes, only GA2ox1 and
GA2ox2 showed robust circadian rhythm that peaks in the light
phases, but the circadian rhythmic expression of only GA2ox1,
not GA2ox2, showed significantly reduced amplitude in the
cry1 or cry1cry2 mutant.  These results demonstrated that the
expression of GA2ox1 is most dramatically affected by blue
light, although the expression of other members of the GA2ox
gene family also increased in response to blue light.  This study
also showed that Arabidopsis cry1 and cry2 are the major
photoreceptors mediating blue light induction of the expression
of GA2ox genes, especially GA2ox1.  In contrast to the blue
light-induced expression of GA2ox genes, the expression of
the GA20ox genes appear to be suppressed by blue light.  All
three members of GA20ox gene family showed transient and
moderate decreases in their mRNA expression during the first
hours of blue-light treatment.  Interestingly, those expression
changes seemed not significantly affected in the cry1cry2
double mutant, implying the involvement of phytochromes.
However, when arabidopsis seedlings grown under continu-
ous blue-light were examined, the GA20ox1 expression de-
creased dramatically in blue light-grown wild-type seedlings,
but not in the cry1cry2 mutants.  Therefore, cryptochromes
mediate not only blue-light induction of the expression of
GA2ox1, but also blue-light suppression of the expression of
GA20ox1. Both would contribute to a decreased level of GA4 in
young seedlings exposed to blue light (Figure 2B).

Conclusions

Light regulation of GA levels and GA signal transduction are
important mechanisms underlying photomorphogenesis in plants.
Light modulation of GA accumulation is accomplished, at least
partially, by regulation of the expression of GA metabolic genes
encoding GA20ox and GA3ox, and GA catabolic genes encod-
ing GA2ox.  Two complexities associated with the GA meta-
bolic/catabolic genes are: (1) they are prone to feedback regu-
lation by the cellular level of GAs, and (2) different members of
the same gene families may be differentially regulated.  Sys-
tematic analyses of the level of bioactive GAs and the expres-
sion of each members of GA20ox, GA3ox, and GA2ox gene
families in different genetic backgrounds under different ki-
netic condit ions would further our understanding of
photomorphogenesis.
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Phytochromes are the major photoreceptors that mediate light
promotion of seed germination.  Phytochromes stimulate rapid
accumulation of bioactive GA in germinating seeds via
modification of the expression of members of GA20ox, GA3ox,
and GA2ox gene families.  In Arabidopsis, phytochromes inter-
act with bHLH transcription factors, such as PIF1/PIL5, which
is a negative regulator of GA3ox and a positive regulator of
GA2ox, to regulate GA homeostasis.  Phytochromes mediate
light-induced degradation of PIF1/PIL5 protein, resulting in an
increased accumulation of bioactive GA and stimulation of
germination.  It is clear that phytochromes also regulate GA
homeostasis in seedling development, and that phytochromes
affect seedling growth via, at least partially, stimulation of
GA2ox expression.  How phytochromes regulate expression
of GA metabolic/catabolic genes in developing seedlings is not
completely clear, but modification of protein stability and/or
activity of transcription factors are apparently the possible
mechanisms.  Control of GA homeostasis is also an impor-
tant mechanism underlying the function of cryptochromes.
Similar to phytochromes, cryptochromes suppress accumu-
lation of bioactive GA in developing seedlings in response to
blue light.  It appears that cryptochromes suppress the ex-
pression of GA20ox, but stimulate the expression of GA2ox.
However, the molecular mechanism associated with
cryptochrome-regulated gene expression in general remains
to be elucidated.
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