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Abstract Interactions between epithelial cells and neurons influence a range of sensory

modalities including taste, touch, and smell. Vertebrate and invertebrate epidermal cells ensheath

peripheral arbors of somatosensory neurons, including nociceptors, yet the developmental origins

and functional roles of this ensheathment are largely unknown. Here, we describe an evolutionarily

conserved morphogenetic mechanism for epidermal ensheathment of somatosensory neurites. We

found that somatosensory neurons in Drosophila and zebrafish induce formation of epidermal

sheaths, which wrap neurites of different types of neurons to different extents. Neurites induce

formation of plasma membrane phosphatidylinositol 4,5-bisphosphate microdomains at nascent

sheaths, followed by a filamentous actin network, and recruitment of junctional proteins that likely

form autotypic junctions to seal sheaths. Finally, blocking epidermal sheath formation destabilized

dendrite branches and reduced nociceptive sensitivity in Drosophila. Epidermal somatosensory

neurite ensheathment is thus a deeply conserved cellular process that contributes to the

morphogenesis and function of nociceptive sensory neurons.

DOI: https://doi.org/10.7554/eLife.42455.001

Introduction
The innervation patterns of cutaneous receptors determine our responses to external stimuli. Many

types of cutaneous receptors form specialized terminal structures with epithelial cells that contribute

to somatosensation (Owens and Lumpkin, 2014; Zimmerman et al., 2014). For example, some low

threshold mechanoreceptor afferents form synapse-like contacts with Merkel cells (Mihara et al.,

1979), which directly respond to mechanical stress and tune gentle touch responses

(Maksimovic et al., 2014; Woo et al., 2014). Similarly, afferent interactions with radially packed

Schwann cell-derived lamellar cells in Pacinian corpuscles facilitate high frequency sensitivity

(Loewenstein and Skalak, 1966). By contrast, although various types of free nerve endings, includ-

ing nociceptive C-fibers, course over and insert into keratinocytes, much less is known about the

anatomy of keratinocyte-sensory neuron coupling, or the mechanisms by which keratinocytes modu-

late sensory neuron structure and function. Recent findings that keratinocytes express sensory chan-

nels (Peier et al., 2002; Bidaux et al., 2015; Chen et al., 2016), respond to sensory stimuli

(Koizumi et al., 2004; Xu et al., 2006; Moehring et al., 2018), release compounds that modulate
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sensory neuron function (Woolf et al., 1997; Koizumi et al., 2004; Moehring et al., 2018), and can

drive sensory neuron firing (Baumbauer et al., 2015; Pang et al., 2015), underscore the importance

of understanding the coupling of keratinocytes to sensory neurons.

Anatomical studies have demonstrated that peripheral arbors of some mammalian somatosensory

neurons insert into keratinocytes, not just intercalate between them (Munger, 1965; Cauna, 1973).

Several factors have hindered characterization of sensory neuron-keratinocyte interactions in mam-

malian systems, including region-specific differences in sensory neuron-epidermis interactions

(Kawakami et al., 2001; Liu et al., 2014), a still-growing inventory of neuronal cell types that inner-

vate the epidermis (Usoskin et al., 2015; Nguyen et al., 2017), and a shortage of markers that label

discrete populations of sensory neurons. Peripheral arbors of somatosensory neurons are likewise

inserted into epidermal cells in invertebrate and non-mammalian vertebrate model systems, making

these promising settings for characterizing epithelial cell-neurite interactions. Notably, portions of

Drosophila melanogaster larval nociceptive class IV dendrite arborization (da) neuron dendrites and

Danio rerio (zebrafish) larval trigeminal and Rohon-Beard (RB) sensory axons become ensheathed by

epidermal cells (Han et al., 2012; Kim et al., 2012; O’Brien et al., 2012), and studies in these sys-

tems have provided insight into the structure and possible function of this epidermal ensheathment

of free nerve endings.

Drosophila and zebrafish epidermal cells wrap sensory neurites by extending membranes around

the entire circumference of the sensory neurite. The wrapping epidermal membranes are tightly

apposed to one another and the ensheathed neurites, embedding them inside a mesaxon-like struc-

ture (Whitear and Moate, 1998; Han et al., 2012; Kim et al., 2012; O’Brien et al., 2012). A similar

structure has been documented for ensheathed somatosensory neurites in Caenorhabditis elegans

and humans (Cauna, 1973; Chalfie and Sulston, 1981), suggesting that ensheathment by epidermal

cells is a conserved feature of sensory endings. The most extensive ultrastructural analysis of these

eLife digest Humans and other animals perceive and interact with the outside world through

their sensory nervous system. Nerve cells, acting as the body’s ‘telegraph wires’, convey signals from

sensory organs – like the eyes – to the brain, which then processes this information and tells the

body how to respond. There are different kinds of sensory nerve cells that carry different types of

information, but they all associate closely with the tissues and organs they connect to the brain.

Human skin contains sensory nerve cells, which underpin our senses of touch and pain. There is a

highly specialized, complex connection between some of these nerve cells and cells in the skin: the

skin cells wrap tightly around the nerve cells’ free ends, forming sheath-like structures. This

‘ensheathment’ process happens in a wide range of animals, including those with a backbone, like

fish and humans, and those without, like insects.

Ensheathment is thought to be important for the skin’s nerve cells to work properly. Yet it

remains unclear how or when these connections first appear. Jiang et al. therefore wanted to

determine the developmental origins of ensheathment and to find out if these were also similar in

animals with and without backbones.

Experiments using fruit fly and zebrafish embryos revealed that nerve cells, not skin cells, were

responsible for forming and maintaining the sheaths. In embryos where groups of sensory nerve

cells were selectively killed – either using a laser or by making the cells produce a toxin –

ensheathment did not occur. Further studies, using a variety of microscopy techniques, revealed that

the molecular machinery required to stabilize the sheaths was similar in both fish and flies, and

therefore likely to be conserved across different groups of animals. Removing sheaths in fly embryos

led to nerve cells becoming unstable; the animals were also less sensitive to touch. This confirmed

that ensheathment was indeed necessary for sensory nerve cells to work properly.

By revealing how ensheathment first emerges, these findings shed new light on how the sensory

nervous system develops and how its activity is controlled. In humans, skin cells ensheath the nerve

cells responsible for sensing pain. A better understanding of how ensheathments first arise could

therefore lead to new avenues for treating chronic pain and related conditions.

DOI: https://doi.org/10.7554/eLife.42455.002

Jiang et al. eLife 2019;8:e42455. DOI: https://doi.org/10.7554/eLife.42455 2 of 38

Research article Neuroscience

https://doi.org/10.7554/eLife.42455.002
https://doi.org/10.7554/eLife.42455


structures suggests that the sensory neurites can be continuously ensheathed over extended lengths

of the arbor, stretching several micrometers or more (O’Brien et al., 2012). Structurally, the interac-

tion between keratinocytes and somatosensory neurites is reminiscent of ensheathment of peripheral

axons by nonmyelinating Schwann cells in Remak bundles, suggesting that keratinocyte ensheath-

ment may likewise regulate sensory neuron structure (Chen et al., 2003) and function (Orita et al.,

2013; Faroni et al., 2014).

Although the extent and distribution of sensory neurite-epidermal ensheathment have not been

systematically analyzed, many of the documented instances involve highly branched mechanosensory

and/or nociceptive neurons. In Drosophila, epidermal ensheathment has been linked to control of

branching morphogenesis in two ways. First, nociceptive class IV dendrite arborization (c4da) neu-

rons are largely restricted to a two-dimensional plane along the basal surface of epidermal cells to

potentiate contact-dependent repulsion and hence tiling (Han et al., 2012; Kim et al., 2012). How-

ever, portions of c4da neurons are apically shifted and ensheathed inside the epidermis, allowing for

dendrites of other da neurons to innervate the unoccupied basal space and hence ‘share’ the terri-

tory (Tenenbaum et al., 2017). Second, epidermal ensheathment appears to regulate dendrite

branching activity, as mutation of the microRNA bantam, which regulates dendrite-epidermis inter-

actions (Jiang et al., 2014), or knockdown of coracle (cora), which encodes a band 4.1-related pro-

tein required for sheath formation (Tenenbaum et al., 2017), each increase dendrite branching.

Although these studies provide the first signs that epidermal ensheathement plays key roles in

somatosensory neuron development, the cellular basis and functional consequences of this sensory

neuron-epidermis coupling remain to be determined.

Here, we characterized the cellular events involved in formation of epidermal ensheathment of

somatosensory neurites in Drosophila and zebrafish. First, we identified a series of reporters that

accumulate at epidermal sites of somatosensory dendrite ensheathment in Drosophila, demonstrat-

ing that sheaths form at specialized membrane domains and providing markers for in vivo tracking

of the sheaths. Remarkably, epidermal sheaths are labeled by similar markers in zebrafish, suggestive

of a conserved molecular machinery for ensheathment. Using these reporters, we found that epider-

mal sheaths in Drosophila and zebrafish wrap different types of neurons to different extents and that

somatosensory neurons are required for formation and maintenance of epidermal sheaths. Finally,

we found that blocking epidermal sheath formation led to exuberant dendrite branching and branch

turnover, as well as reduced nociceptive sensitivity in Drosophila. Altogether, these studies demon-

strate that ensheathment of somatosensory neurons by epidermal cells is a deeply conserved cellular

process that plays key roles in the morphogenesis and function of nociceptive sensory neurons.

Results

PIP2 in epidermal cells is enriched at sites of Drosophila dendrite
ensheathment
Recent studies have demonstrated that large portions of Drosophila c4da dendrite arbors are

ensheathed by the epidermis (Tenenbaum et al., 2017; Jiang et al., 2018). To gain a high resolu-

tion view of ensheathment over extended length scales, we subjected Drosophila third instar larvae

to serial block-face scanning electron microscopy (SBF-SEM) (Denk and Horstmann, 2004). Consis-

tent with prior TEM studies that provided a snapshot of these sheath structures (Han et al., 2012;

Kim et al., 2012; Jiang et al., 2014), in individual sections we observed dendrites embedded inside

epithelial cells and connected to the basal epithelial surface by thin, tubular invaginations formed by

close apposition of epidermal membranes (Figure 1A). To determine whether c4da dendrites were

continuously ensheathed in these mesaxon-like structures, we followed individual dendrites from the

site of insertion into the epidermis through EM volumes of abdominal segments cut into 60-nm sec-

tions along the apical-basal axis. We found that dendrites were embedded in epithelial cells over

extended distances (often several microns or more), that dendrites were continuously embedded in

these mesaxon-like structures with elongated tubular invaginations, and that the epidermal mem-

branes comprising the walls of these tubular invaginations were tightly juxtaposed and electron-

dense along their entire length (Figure 1B and C). Each of these structural elements was previously

described for the ensheathment of peripheral axons by keratinocytes in zebrafish (O’Brien et al.,
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Figure 1. Epidermal PIP2 accumulation marks sites of dendrite ensheathment. (A) Schematic depicting epidermal neurite ensheathment in the

Drosophila larval body wall. (B, C) SBF-SEM analysis of epidermal dendrite ensheathment. (B’ and B”) Traces of da neuron dendrites and epidermal

sheaths in cross-section. (C) Serial sections showing epidermal ensheathment (arrowheads mark sheaths) of da neuron dendrites (shaded green). The

dendrite present in sections z1-z38 branches inside an epidermal sheath. See also Figure 1—video 1. (D, E) Assay for markers of dendrite

Figure 1 continued on next page
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2012), suggesting that the mechanism of epidermal somatosensory neuron ensheathment may be

conserved between invertebrates and vertebrates.

We hypothesized that formation of dendrite sheaths likely involves recruitment of factors that cre-

ate specialized membrane domains. To identify epithelial membrane-associated markers that prefer-

entially localize to sites of dendrite ensheathment, we used the Gal4-UAS system to selectively

express GFP-tagged markers in the epidermis of Drosophila larvae also expressing the c4da-specific

marker ppk-CD4-tdTomato and assayed for GFP enrichment at sites of dendrite-epidermis apposi-

tion. Whereas the single-pass transmembrane marker CD4-GFP broadly labeled epithelial mem-

branes and showed no obvious enrichment at sites of dendrite contact (Figure 1D and E), our

screen of ~90 GFP-tagged membrane- and cytoskeleton-associated proteins identified several

markers enriched in basal domains of epithelial cells adjacent to c4da dendrites (Figure 1—figure

supplement 1A, Supplementary file 1).

First, we screened a collection of membrane markers to determine whether ensheathment occurs

at specialized membrane domains. Among these markers, the phosphatidylinositol 4,5-bisphosphate

(PIP2) probe PLCd-PH-GFP (Várnai and Balla, 1998; Verstreken et al., 2009) exhibited the most

robust enrichment at sites of epidermal dendrite ensheathment. In epithelial cells of third instar lar-

vae, PLCd-PH-GFP accumulated at epithelial cell-cell junctions, punctate patches, and elongated fila-

mentous membrane microdomains adjacent to c4da dendrites (Figure 1F–1K). These PIP2

microdomains were also labeled by antibodies to the Drosophila 4.1 protein cora (Figure 1—figure

supplement 1B), a previously described marker of epidermal dendrite sheaths (Kim et al., 2012;

Tenenbaum et al., 2017), demonstrating that these PIP2 microdomains correspond to epidermal

dendrite sheaths. In addition to labeling epidermal sheaths, anti-cora immunostaining labels glial

sheaths, which wrap axons, cell bodies, and proximal dendrite segments of sensory neurons; how-

ever, epidermal PLCd-PH-GFP was not enriched at these sites of glial ensheathment. PLCd-PH-GFP

labeled membrane domains that often appeared wider than c4da dendrites (Figure 1H–1I), suggest-

ing that PIP2 labels the entire sheath structure, including the convoluted tubular extensions to the

basal surface of the epidermis. To more systematically analyze whether epidermal PIP2 microdo-

mains mark sites of dendrite ensheathment by epidermal cells, we monitored staining intensity for a

surface-exposed neuronal antigen (HRP) (Kim et al., 2012) and the epidermal PIP2 marker PLCd-PH-

GFP simultaneously. The intensity of HRP labeling along dendrites was inversely related to GFP

labeling intensity, further suggesting that PLCd-PH-GFP and hence PIP2 marks sites of neurite

ensheathment (Figure 1—figure supplement 2).

Figure 1 continued

ensheathment. GFP-tagged markers were specifically expressed in the epidermis (A58-Gal4, Cha-Gal80) in larvae expressing the c4da-specific marker

ppk-CD4-tdTomato. Maximum intensity projections of membrane-targeted CD4-tdGFP (D) and c4da dendrites (E) are shown. Insets show magnified

views of c4da dendrites (top) and c4da soma (bottom). (F–K) Epidermal PLCd-PH-GFP labels sites of dendrite ensheathment. Maximum intensity

projections of epidermal PLCd-PH-GFP (F, H, J) and overlay showing PLCd-PH-GFP signal in green and ppk-CD4-tdTomato in magenta to label c4da

dendrites (G, I, K). Hatched lines mark sheaths. (F–I) XY projections of live confocal images. (J, K) Representative image showing epithelial PIP2

distribution at sites of c4da dendrite contact visualized using expansion microscopy. Image shows a side view of a single epithelial cell and ensheathed

c4da dendrites oriented along the apical-basal axis (apical, top). Note the discontinuities in the epithelial sheath at the dendrite branch point and at

epithelial intracellular junctions (arrowheads). Sheaths from six independent neurons analyzed with expansion microscopy showed similar structures.

Scale bars have been divided by the measured expansion factor of ~4 � and therefore refers to pre-expansion dimensions. (L–U) Epidermal sheath

markers. Maximum intensity projections show the distribution of the indicated GFP reporters in the epidermis of 120 h after egg laying (AEL) larvae and

composites show portions of c4da dendrite arbors (shaded purple) wrapped by sheaths labeled by the GFP reporters. Experimental genotypes are

detailed in Supplementary file 2.

DOI: https://doi.org/10.7554/eLife.42455.003

The following video and figure supplements are available for figure 1:

Figure supplement 1. Screen for epithelial markers that accumulate at sites of c4da dendrite contact.

DOI: https://doi.org/10.7554/eLife.42455.004

Figure supplement 2. c4da neurons are enclosed by epidermal sheaths.

DOI: https://doi.org/10.7554/eLife.42455.005

Figure 1—video 1. SBF-SEM analysis of epidermal dendrite ensheathment.

DOI: https://doi.org/10.7554/eLife.42455.006

Jiang et al. eLife 2019;8:e42455. DOI: https://doi.org/10.7554/eLife.42455 5 of 38

Research article Neuroscience

https://doi.org/10.7554/eLife.42455.003
https://doi.org/10.7554/eLife.42455.004
https://doi.org/10.7554/eLife.42455.005
https://doi.org/10.7554/eLife.42455.006
https://doi.org/10.7554/eLife.42455


Because many of the sheath structures are smaller than the axial resolution of a standard confocal

microscope, we used expansion microscopy (ExM) to gain a 3-dimensional view of epidermal PLCd-

PH-GFP localization adjacent to c4da dendrites (Jiang et al., 2018). We found that PLCd-PH-GFP

labeled epidermal structures that extend from the most apical extent of dendrite insertion to the

basal surface of individual epithelial cells (Figure 1J–1K), suggesting that PLCd-PH-GFP indeed

labels the entire sheath structure. PLCd-PH-GFP was locally depleted at branch points (Figure 1J,

white arrows; Figure 1—figure supplement 1D), consistent with prior observations that dendrite

branch points are less extensively ensheathed than dendrite shafts (Tenenbaum et al., 2017). These

sheath structures often appeared to terminate at epidermal cell-cell junctions, where dendrites were

displaced to occupy domains basal to junctional domains. Point mutations in the PH domain of

PLCd-PH-GFP that abrogate PIP2 binding (Várnai and Balla, 1998; Verstreken et al., 2009) pre-

vented accumulation of PLCd-PH-GFP at sites of ensheathment (Figure 1—figure supplement 1C).

Other PIP2-binding proteins, including OSH2-PH-GFP (Figure 1—figure supplement 1E), which

binds phosphatidylinositol 4-phosphate and PIP2 with similar affinities (Hardie et al., 2015), exhib-

ited similar patterns of accumulation at sheaths. Altogether, these observations demonstrate that

epithelial sites of dendrite ensheathment are enriched in PIP2.

PIP2 is a negatively charged phospholipid that recruits a variety of proteins to the plasma mem-

brane to regulate vesicular trafficking and actin remodeling (De Craene et al., 2017). We therefore

examined whether endocytic, cytoskeletal, and/or phagocytic markers also accumulated at sites of

epidermal ensheathment. Although we observed no enrichment of mature phagocytic markers prior

to sheath formation or in mature sheaths, we identified a number of PIP2-linked markers that

together provide a framework for sheath assembly (Supplementary file 1). First, we found that a

GFP-tagged version of the endocytic adaptor Arf51F/dArf6 was enriched at sites of dendrite

ensheathment (Figure 1L–1M). Arf6 regulates clathrin-dependent endocytosis as well as trafficking

of recycling endosomes to the plasma membrane (D’Souza-Schorey and Chavrier, 2006), and the

Arf6 effector phosphatidylinositol4-monophosphate 5-kinase catalyzes plasma membrane synthesis

of PIP2 (Honda et al., 1999). Thus, dArf6 and endocytosis may contribute to PIP2 accumulation at

sites of sheath formation. Second, we found that a GFP-tagged version of the GTPase Rho1, which

promotes filamentous actin (F-actin) assembly, and the F-actin probe GMA-GFP accumulated at sites

of epidermal sheath formation (Figure 1N–1Q), consistent with the fact that PIP2 stimulates actin

assembly (Yin and Janmey, 2003). Finally, in addition to the septate junction marker cora

(Figure 1R–1S), which was previously identified as a component of epidermal sheaths (Kim et al.,

2012; Tenenbaum et al., 2017), other septate junction markers, including GFP-Neurexin-IV and

Neuroglian-GFP, as well as adherens junction markers, including Armadillo-GFP and Shotgun-GFP,

Drosophila homologues of b-catenin and E-cadherin, respectively, accumulated at epidermal den-

drite sheaths (Figure 1T–1U, Figure 1—figure supplement 1F, Supplementary file 1). PIP2 binding

regulates membrane association of 4.1R (An et al., 2006) and the maturation of adherens junctions

via exocyst-dependent recruitment of E-cadherin (Xiong et al., 2012), thus PIP2 may promote

sheath maturation via recruitment of these proteins.

Epidermal sheaths are molecularly similar in the larval skin of
Drosophila and zebrafish
Sensory axon terminals in the epidermis of zebrafish larvae and adults are ensheathed by the apical

membranes of epidermal keratinocytes (Figure 2A) (O’Brien et al., 2012), and ensheathment chan-

nels have also been seen in adult fish (Whitear and Moate, 1998; Rasmussen et al., 2018). These

axonal ensheathment channels are remarkably similar at the ultrastructural level to the sheaths wrap-

ping somatosensory dendrites in Drosophila larvae. To determine whether zebrafish and Drosophila

epidermal sheaths are similar at the molecular level, we examined the localization of fluorescent

reporters for the membrane, cytoskeleton, and cell junctions in basal zebrafish epidermal cells.

At early stages, before sensory axons have grown into the skin, a reporter for PIP2 (PLCd-PH-

GFP) localized at cell-cell junctions and sparse microdomains near the apical surface (Figure 2B).

After axons grew into the skin, PIP2 was enriched in continuous, linear apical microdomains, closely

associated with axons of both larval zebrafish somatosensory neuron cell types, trigeminal and

Rohon-Beard neurons (Figure 2C,H). Farnesylated GFP (CaaX-GFP) similarly localized to microdo-

mains below axons, consistent with the notion that axons are associated with specialized membrane

domains in skin cells (Figure 2—figure supplement 1A–C). Reporters for F-actin (LifeAct-GFP and

Jiang et al. eLife 2019;8:e42455. DOI: https://doi.org/10.7554/eLife.42455 6 of 38

Research article Neuroscience

https://doi.org/10.7554/eLife.42455


early (1 dpf) late (3 dpf)

transverse viewlateral view

trigeminal
axon

periderm

basement membranebasal cell

transverse viewlateral view

ensheathment
channel

A

early (1 dpf)

F
-a

c
ti
n

P
IP

2
α

-c
a

te
n

in

late (3 dpf)

1

2

1

2

trigeminal axons

1

2
1

2

B

D

H

I

F lateral line axons

J DMSO K AG1478

yzyz

C

E

G

PIP2

α-catenin

PIP2

xz

xz

xz

xz

20 µm

20 µm

20 µm

20 µm

Figure 2. Molecular markers of epidermal sheaths in larval zebrafish. (A) Schematic of the bilayered larval zebrafish

epidermis at the indicated stages based on the ultrastructural analysis (O’Brien et al., 2012). (B–G) Maximum

intensity projections of confocal z-stacks showing lateral views through the epidermis at 24 hpf (B,D,F) or 72 hpf

(C, E, G). Fluorescent reporters for PIP2 (B, C), F-actin (D, E), and a-catenin (F, G) are shown. Note the appearance

of linear domains of each reporter through the apical basal cell membrane (green arrowheads) at the later time-

point. Cyan arrows indicate basal lateral cell borders. Yellow arrows indicate periderm lateral cell borders. (H, I)

Dual-labeling of epidermal sheaths and trigeminal sensory neurons. tdTomato-labeled trigeminal sensory neurons

(magenta) together with the PIP2 reporter GFP-PH-PLC in basal cells at 46 hpf (H) or a-catenin-Citrine in both

periderm and basal cells (I) at 73 hpf. Inset 1, examples of axons not associated with PIP2 (H) or a-catenin (I)

enrichment. Inset 2, examples of axon-associated PIP2 (H) or a-catenin (I) enrichment. White dashed lines and

arrowheads indicate examples of ensheathment channels containing labeled axons. Yellow lines indicate planes of

orthogonal sections. (J, K) tdTomato-labeled posterior lateral line axons (magenta) labeled by transient injection

of a neurod:mTangerine plasmid are shown together with GFP-PH-PLC signal in basal cells (green) at 78 hpf in

either DMSO- or AG1478-treated embryos. AG1478 treatment prevents the repositioning of the posterior lateral

line nerve below the epidermis (Raphael et al., 2010), resulting in the indentation of basal cell membranes, but

did not trigger the accumulation of the PIP2 reporter GFP-PH-PLC. Arrowheads indicate ensheathment channels

along the apical surface of basal cells. Cyan arrows indicate basal cell lateral borders. Yellow lines indicate planes

of orthogonal sections. Note that because of the markers used, somatosensory and lateral line axons are sparsely

labeled. Details of zebrafish experimental genotypes are provided in Supplementary file 2.

DOI: https://doi.org/10.7554/eLife.42455.007

The following figure supplement is available for figure 2:

Figure supplement 1. Membrane, adherens junction, and desmosome components localize to epidermal sheaths

in zebrafish.

DOI: https://doi.org/10.7554/eLife.42455.008
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Utrophin-GFP) were also enriched at these axon-associated domains (Figure 2D and E and data not

shown).

Electron microscopy of zebrafish epidermal sheaths revealed that autotypic junctions appear to

seal the ‘neck’ of these sheaths (O’Brien et al., 2012). To determine the molecular nature of these

junctions, we used a-catenin and E-cadherin in-frame, functional gene traps (Trinh et al., 2011;

Cronan et al., 2018); transiently expressed C-terminal-tagged Desmocolin-like two and Desmopla-

kin BAC reporters to visualize desmosomes; and a gene trap of Jupa [a.k.a. Plakoglobin/g-catenin]

(Trinh et al., 2011), a protein found in both types of junctions. Reporters for both adherens junction

and desmosome proteins localized to apical domains directly above axons, suggesting that both

types of junctions associate with epidermal sheaths (Figure 2F–G,I; Figure 2—figure supplement

1D–O). Consistent with the observation that autotypic junctions are only visible in some TEM images

(O’Brien et al., 2012), some of the fluorescent junctional reporters (a-catenin, Dspa, Jupa) appeared

as dotted lines along the length of axons (Figure 2G, Figure 2—figure supplement 1J–O), suggest-

ing that they form spot junctions, rather than continuous belts.

Taken together, our results demonstrate similarity in ultrastructure and molecular composition of

Drosophila and zebrafish epidermal sheaths, suggesting that these structures form via an evolution-

arily conserved pathway.

Ensheathment is specific to somatosensory neuron subtypes
To determine whether epidermal sheaths are specific to somatosensory neurons in zebrafish, or can

occur at any site of axon-basal skin cell contact, we mislocalized axons of another sensory neuron

type to the skin. Axons of posterior Lateral Line neurons (pLL) are usually separated from the skin by

ensheathing Schwann cells, forming a nerve just internal to the epidermis. Treating animals with an

inhibitor of the Neuregulin receptor Erbb3b, which is required for Schwann cell development, causes

the entire bundle of pLL axons to directly contact the basal membrane of basal skin cells

(Raphael et al., 2010). This treatment created a notable indentation in the basal membrane, but

PLCd-PH-GFP was not enriched in these domains (Figure 2J and K), indicating either that somato-

sensory axons can uniquely promote the formation of PIP2-rich microdomains, or that only the apical

membranes of basal keratinocytes are competent to form these domains.

Next, we examined whether PIP2-rich microdomains formed around all somatosensory neurons or

preferentially around particular subsets of somatosensory neurons. In Drosophila larvae, the vast

majority of PIP2-positive sheath structures (94.8 ± 7.8%, n = 8 abdominal hemisegments) were pres-

ent at sites occupied by sensory dendrites of da neurons (Figure 3A–3C). The few sheaths that were

not apposed by dendrites were located directly adjacent to dendrites, suggesting that these sheaths

may persist after ensheathed dendrites retracted. Next, to investigate whether different classes of

da neurons were differentially ensheathed, we expressed membrane-targeted RFP in different clas-

ses of somatosensory neurons and visualized sheaths via epidermal expression of UAS-PLCd-PH-GFP

or anti-cora antibody staining. Among the multi-dendritic da neurons, we found that nociceptive

c4da neurons exhibited the most extensive ensheathment, mechanosensitive and thermosensitive

c3da and c2da neurons exhibited an intermediate level of ensheathment, and proprioceptive c1da

neurons exhibited very little ensheathment (Figure 3D–3F, Figure 3—figure supplement 1). Thus,

different morphological and functional classes of somatosensory neurons are ensheathed by the epi-

dermis to different extents.

Although zebrafish somatosensory neurons have not been as clearly categorized into subtypes as

Drosophila da neurons, similar to Drosophila, different individual sensory neurons in zebrafish were

ensheathed to different degrees (Figure 3G–3K). The degree of ensheathment appeared to corre-

late with axon arbor complexity: axons with fewer branches associated with a-catenin along a

greater proportion of their length (up to ~80% axon length) than did highly complex axons (<30%

axon length). This observation implies that the degree of axon ensheathment may be a subtype-spe-

cific feature in zebrafish, like in Drosophila.

Sheaths are not pre-patterned in the epidermis
As epidermal sheaths occur almost exclusively at sites occupied by sensory neurites, we investigated

whether an epidermal pre-pattern dictates sites of sheath formation or, alternatively,

whether neuronal signals induce epidermal sheath formation. To differentiate between these
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possibilities, we first monitored the timing of arrival and distribution of epidermal sheath markers

throughout Drosophila larval development. Whereas c4da dendrites tile the larval body wall by ~36

h after egg laying (AEL) (Parrish et al., 2009), PIP2 first accumulated in isolated patches adjacent to

dendrites at 48 h AEL (Figure 4A–4C and G). Epidermal PIP2 did not co-occur with large portions of

the dendrite arbor until after 96 hAEL (Figure 4D–4F and G), a time point at which dendrites are

internalized in epithelial cells (Jiang et al., 2014; Jiang et al., 2018). Furthermore, time-lapse imag-

ing demonstrated that PIP2 enrichment at sheaths is not transient; once formed, PIP2-positive epi-

dermal sheaths persist or grow, but rarely retract (Figure 4H, Figure 4—figure supplement 1).

Finally, although PIP2 markers and cora extensively co-localized and labeled a nearly identical popu-

lation of sheaths by the end of larval development (95.7 ± 5.8% of cora-positive sheaths are PIP2-

positive; 88.7 ± 7.4% of PIP2-positive sheaths are cora-positive; n = 8 hemisegments), cora accumu-

lation lagged behind PLCd-PH-GFP (Figure 4G, Figure 4—figure supplement 2). Thus, although
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Figure 3. Epithelial sheaths form adjacent to somatosensensory neurons in a modality-specific manner. (A–C) Dual-labelling of epithelial sheaths and all

somatosensory neurons. Maximum projections of confocal stacks show (A) mRFP-labeled sensory neurons (magenta) together with epidermal PLCd-PH-

GFP signal (green) or (B) epidermal PLCd-PH-GFP signal on its own. (C) PLCd-PH-GFP-positive sheaths are pseudocolored with dendrite-associated

sheaths shaded in magenta and sheaths without apposed dendrites shaded in green. (D, E) Dual-labeling of epithelial sheaths and c3da/c4da sensory

neurons. (D) tdTomato-labeled c3da and c4da neurons (magenta) are shown together with epidermal PLCd-PH-GFP signal (green). (E) Image showing

epidermal PLCd-PH-GFP signal with c3da-containing sheaths shaded green and c4da-containing sheaths shaded magenta. (F) Histogram depicting

mean and standard deviation values for the portion of the dendrite arbor of different classes of da neurons ensheathed by the epidermis using PLCd-

PH-GFP or cora immunostaining as a marker for ensheathment. (G–K) The extent of ensheathment was inversely correlated with trigeminal (TG) axon

complexity in zebrafish. Examples of single TG neurons labeled by transient injection of Tg(isl1[ss]:LEXA-VP16,LEXAop:tdTomato) with low (G, H) or

high (I, J) branch density. Epidermal sheaths are shaded in magenta in (H, J). (K) Scatterplot of axon branches versus percentage of axon length

ensheathed from tracings of 12 individual TG neurons. Note the inverse linear regression (blue line).

DOI: https://doi.org/10.7554/eLife.42455.009

The following figure supplement is available for figure 3:

Figure supplement 1. Dual-labeling of epithelial sheaths and c1da (top) or c2da (bottom neurons).

DOI: https://doi.org/10.7554/eLife.42455.010
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Figure 4. Somatosensory neurons are necessary for formation and maintenance of epidermal sheaths. (A–G) Timecourse of sheath formation. Maximum

intensity projections show dual labeling of sheaths by epidermal PLCd-PH-GFP and the c4da-specific marker ppk-CD4-tdTomato (A, D) or PLCd-PH-GFP

signal alone (B, E) at 48 and 120 h AEL. (C, F) Composites show portions of c4da dendrite arbors (shaded purple) wrapped by sheaths labeled by PLCd-

PH-GFP. (G) Plot shows mean and standard deviation values for the proportion of c4da dendrite arbors wrapped by PLCd-PH-GFP or cora-positive

Figure 4 continued on next page
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PIP2 accumulation marks an earlier stage in sheath formation than does cora recruitment, we found

no evidence that a pre-pattern predicts the site of ensheathment.

In the course of our imaging we occasionally observed hemisegments lacking a c4da neuron. In

such cases, epidermal PIP2-positive sheath structures were largely absent, although PIP2 accumula-

tion at epithelial cell-cell junctions was comparable to neighboring segments containing c4da neu-

rons (Figure 4—figure supplement 3). This observation suggested that dendritic signals induce

formation of epidermal sheaths.

Peripheral sensory neurites are required for sheath formation and
maintenance
To test the requirement for sensory neurons in epidermal sheath formation, we used a genetic cell-

killing assay in Drosophila to eliminate all c4da neurons and assayed for sheath formation using anti-

cora immunostaining. Expressing the pro-apoptotic gene reaper (rpr) in c4da neurons with two cop-

ies of the c4da-specific ppk-Gal4 Gal4 driver (Grueber et al., 2003) resulted in fully penetrant death

and clearance of c4da neurons but not other sensory neurons by the end of the first larval instar,

prior to appearance of epithelial sheaths. Anti-cora staining of these larvae revealed that although

the overall extent of ensheathment was significantly reduced, levels of ensheathment in c1/c2/c3da

neurons were unaffected by this treatment (cora-positive sheath length per mm2 of body wall:

2.72 ± 0.64 mm following c4da rpr expression; 11.44 ± 1.81 mm in sibling controls without rpr;

3.18 ± 1.16 mm for c1/c2/c3da neurons from sibling controls; mean ±sd, n = 8) (Figure 4I–4K). These

results demonstrate that dendrite-derived signals induce sheath formation; such signals are likely

short-range signals, as sheaths form at sites directly apposed to dendrites. These results further sug-

gest that modality-specific levels of ensheathment do not reflect competitive interactions between

c4da and other da neurons for sheath formation, as the absence of c4da neurons did not potentiate

sheath formation in spared neurons.

Figure 4 continued

sheaths at the indicated time points. See also Figure 4—figure supplement 2 for images of cora labeling of sheaths at 72 and 120 h AEL. (H) Once

formed, sheaths persist. Plot shows sheath dynamics; the proportion of sheaths from eight neurons that grew, retracted, or were stable over a 24 h

time-lapse is shown. See also Figure 4—figure supplement 1 for time-lapse images. (I–K) Epidermal sheath formation following genetic ablation of

c4da neurons. Maximum intensity projections show dual labeling of anti-cora staining to label sheaths and anti-HRP staining to label PNS neurons (I)

and the individual markers alone (J, K) at 120 h AEL for a larva expressing the pro-apoptotic gene reaper (rpr) specifically in c4da neurons under control

of ppk-Gal4. (L–N) Epidermal sheath formation following laser ablation of larval c2da, c3da, and c4da neurons. Images show dual labeling of epidermal

sheaths with anti-cora staining and sensory neurons with anti-HRP staining (L) and the individual markers alone (M, N) at 120 h AEL in a hemisegment in

which c2da, c3da, and c4da were ablated with a focused laser beam at 72 h AEL. Red arrowheads in (M) mark cora-positive structures (also visible in

Figure 1R and Figure 4—figure supplement 2) located in the dorsal-medial portion of the hemisegment, corresponding to the position of the dorsal

pharyngeal sense organ. These structures are not co-labeled by other epidermal sheath markers and cora immunoreactivity persists following

epidermal cora(RNAi) (Figure 5—figure supplement 2), suggesting that these structures are distinct from the epidermal sheaths that wrap sensory

neurites. (O–T) Somatosensory dendrites are required for sheath maintenance. Maximum projections of confocal stacks show time-lapse images of da

neurons labeled with membrane-targeted mRFP (O) and epidermal sheaths (P) immediately prior to c4da dendrite severing at 108 h AEL and 12 h post-

severing at 120 h AEL (R, S). White dashed lines outline the anterior-dorsal portions of the c4da arbor that are ensheathed prior to severing and the

location those sheaths would occupy if they persisted post-severing. (Q, T) Traces depict unensheathed c4da dendrites in black and ensheathed c4da

dendrites in green, the arrow marks the site of dendrite severing, and the gray box marks the quadrant in which c4da dendrites and associated

epidermal sheaths are lost post-severing. (U–Z) Epidermal sheath formation in zebrafish injected with a morpholino targeting neurog1 to prevent

somatosensory neuron development. Maximum intensity projections of confocal z-stacks showing lateral views through the zebrafish epidermis at 72

hpf. Note the lack of ensheathment channels (green arrowheads) in neurog1(MO)-injected embryos. Yellow and cyan arrows indicate the lateral cell

membranes of periderm and basal cells, respectively. (AA) Somatosensory axons are required for sheath maintenance in zebrafish.

Arrowhead and arrow indicate sheaths associated with a severed and intact axon, respectively.

DOI: https://doi.org/10.7554/eLife.42455.011

The following figure supplements are available for figure 4:

Figure supplement 1. Time-lapse imaging of epidermal sheaths.

DOI: https://doi.org/10.7554/eLife.42455.012

Figure supplement 2. Absence of an epidermal cora pre-pattern prior to epidermal sheath formation.

DOI: https://doi.org/10.7554/eLife.42455.013

Figure supplement 3. Epidermal PIP2 microdomains sparsely form in hemisegments lacking c4da neurons.

DOI: https://doi.org/10.7554/eLife.42455.014
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Next, we investigated the temporal requirement for dendrite-derived signals in epidermal sheath

formation. Using a focused laser beam we ablated Drosophila c2da, c3da, and c4da neurons at 48 h

AEL, prior to appreciable accumulation of sheath markers or appearance of sheaths in TEM sections

(Jiang et al., 2014), and assayed for sheath formation at 120 h AEL using anti-cora immunostaining.

Following this treatment, cora-positive sheaths did not form (Figure 4L–4N), suggesting that den-

drite signals initiate sheath formation after 48 h AEL, the same timeframe at which PIP2 markers first

accumulate at sites of dendrite contact. These results further demonstrate that different neuron clas-

ses have different capacities for ensheathment, because removing all of the da neurons that are nor-

mally ensheathed did not potentiate c1da neuron ensheathment.

To examine whether dendritic signals are likewise required for sheath maintenance, we used a

focused laser beam to sever the dorsal-anterior dendrites from a c4da neuron at 108 h AEL, after

epidermal sheaths had formed, and used time-lapse confocal microscopy to monitor effects on

sheath maintenance in larvae expressing the sheath marker UAS-PLCd-PH-GFP (Figure 4O–4Q). By

12 h post-severing, both the c4da dendrites distal to the cut site and the epidermal sheaths that

wrapped them had disappeared (Figure 4R–4T). By contrast, sheaths wrapping the spared dorsal-

posterior portion of the c4da dendrite arbor, as well as sheaths that wrapped c2da/c3da neurons in

both the lesioned and unlesioned half of the hemisegment persisted. Therefore, short-range den-

drite-derived signals are required both for the formation and maintenance of epidermal sheaths.

To determine whether, as in Drosophila, axons are required for formation of epidermal sheaths in

zebrafish, we examined sheath-associated reporters in larvae injected with a morpholino targeting

neurogenin 1 (neurog1), a manipulation that blocks somatosensory neuron development

(Andermann et al., 2002; Cornell and Eisen, 2002; O’Brien et al., 2012). Basal cells in neurog1

MO-treated animals lacked coherent PIP2-rich microdomains, apical accumulations of F-actin, and a-

catenin-containing autotypic junctions, demonstrating that epidermal sheaths are initiated by axons

in zebrafish larvae (Figure 4U–4Z). As in Drosophila, axons were also required to maintain sheaths,

as PIP2-rich microdomains disappeared soon after laser axotomy and axon degeneration

(Figure 4AA).

Zebrafish axonal sheaths and Drosophila dendritic sheaths form in a
similar sequence
To determine the order of assembly of these sheath-associated proteins, we conducted a series of

double-labeling and genetic epistasis analyses in Drosophila larvae. We simultaneously expressed

the PIP2 marker UAS-PLCd-PH-Cerulean together with either the endocytic marker UAS-dArf6-GFP

or the F-actin marker UAS-GMA-GFP in the epidermis of larvae additionally expressing the c4da

neuron marker ppk-CD4-tdTomato and monitored the timing of arrival of each marker at epidermal

sheaths. From the earliest time-point that PIP2 enrichment was detectable at sheaths, we also

detected dArf6-GFP enrichment, albeit at a subset of PIP2-positive sheaths, suggesting that dArf6 is

recruited to sheaths shortly after PIP2 enrichment (Figure 5A–5B). By contrast, F-actin labeling

lagged behind PIP2 (Figure 5C–5D), appearing on a comparable timescale as cora.

To directly visualize the stepwise recruitment of sheath components, we labeled epidermal

sheaths with the PIP2 marker UAS-PLCd-PH-Cerulean and assayed for recruitment of GFP-tagged

sheath components using time-lapse microscopy. Consistent with our time-lapse imaging of PIP2-

positive sheaths (Figure 4—figure supplement 1), we found that PLCd-PH-Cerulean labeling per-

sisted at the vast majority of sheaths over a 12 h time-lapse (Figure 5E–5F). However, sheaths that

were initially labeled by UAS-PLCd-PH-Cerulean but not UAS-GFP-cora1-383, a GFP-tagged fusion

protein that mimics endogenous cora localization at epidermal sheaths and septate junctions (Fig-

ure 5—figure supplement 1C), were positive for both markers following a 12 h time-lapse

(Figure 5E–5F). Similarly, we found that GMA-GFP and dArf6-GFP were recruited to sheaths that

were initially PIP2-positive but GFP-negative (Figure 5F, Figure 5—figure supplement 1A–1B). Epi-

dermal sheath assembly therefore appears to proceed via separable steps.

Examining ensheathment channel-associated markers at four stages of zebrafish development

revealed a similar sequence of events. As in Drosophila, we found that membrane reporters

appeared near zebrafish axons before F-actin or junctional reporters (Figure 5G). PIP2-rich microdo-

mains frequently apposed axons by 32 hpf, before ensheathment channels were evident ultrastruc-

turally (O’Brien et al., 2012). This observation suggests that the formation of PIP2-positive

membrane microdomains is an early step in sheath morphogenesis in zebrafish, as in Drosophila.
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Figure 5. Sequence of events in sheath assembly. (A–D) Time of arrival of PIP2 and other sheath markers. Images show dual labeling of sheaths by

PLCd-PH-Cerulean and dArf6-GFP (A) or GMA-GFP to label F-actin (C) in larvae additionally expressing the c4da-specific marker ppk-CD4-tdTomato.

(B, D) Plots show mean and standard deviation values for the proportion of c4da dendrite arbors ensheathed by structures labeled by the indicated

markers at the indicated times. All sheath structures labeled by dArf6-GFP and GMA-GFP were labeled by PLCd-PH-Cerulean. (E) Time-lapse images

show dual labeling of sheaths by PLCd-PH-Cerulean and GFP-cora1-383 in larvae additionally expressing the c4da-specific marker ppk-CD4-tdTomato.

Cyan arrows mark single-positive (Cerulean-positive) sheaths that convert to double-positive (Cerulean-positive and GFP-positive), magenta arrows

mark double-positive sheaths that persist. See also Figure 5—figure supplement 1 for time-lapse images depicting dArf6-GFP and GMA-GFP

recruitment to PLCd-PH-Cerulean sheaths. (F) Quantification of marker recruitment. Bars depict the proportion of PLCd-PH-Cerulean-positive GFP-

negative sheaths at 104 h AEL that are labeled by the indicated markers at 120 h AEL. More than 100 sheaths (from six independent time-lapse series)

were scored for each marker combination. (G) Timing of accumulation of ensheathment channel markers in the zebrafish epidermis. (H) Epistatic

relationship between markers. The indicated RNAi transgenes were expressed in the epidermis and effects on ensheathment were assessed (see

Figure 5—figure supplement 2 for accompanying images). Plots show mean and standard deviation values for the proportion of c4da dendrite arbors

wrapped by PLCd-PH-GFP or cora-positive sheaths. n = 8 neurons each; ***p<0.001 relative to control; one way ANOVA with post-hoc Dunnett’s test. (I)

Model depicting the timing of arrival of sheath components.

DOI: https://doi.org/10.7554/eLife.42455.015

The following figure supplements are available for figure 5:

Figure 5 continued on next page
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Indeed, time-lapse confocal microscopy demonstrated that these domains formed during develop-

ment just minutes after an axonal grown cone passed through that region (Figure 5—figure supple-

ment 2).

To assess the relationship between these sheath-associated proteins, we knocked down lipids or

proteins associated with sheaths in Drosophila. Specifically, to deplete phosphatidylinositol 4-phos-

phate and PIP2, we expressed RNAi targeting the phosphatidylinositol 4-kinase gene PI4KIIIa; to

block endocytosis, we expressed a dominant negative version of shibire (shiDN), which is defective in

GTP binding/hydrolysis (Damke et al., 2001); to block septate junction formation, we expressed

cora(RNAi) in the epidermis. We found that epidermal PI4K(RNAi) and shiDN expression severely

attenuated PIP2 accumulation at sheaths (Figure 5H, Figure 5—figure supplement 3). As PLCd-PH-

GFP accumulation precedes dArf6 accumulation at the onset of sheath formation, PIP2 accumulation

and endocytic events may engage in feed-forward signaling to promote epidermal sheath formation.

By contrast, epidermal cora(RNAi) had no effect on PLCd-PH-GFP accumulation, suggesting that

cora accumulation is a downstream event in sheath assembly. Consistent with this notion, both epi-

dermal PI4K(RNAi) and shiDN expression blocked cora accumulation at sheaths (Figure 5H, Fig-

ure 5—figure supplement 3), suggesting that cora recruitment to sheaths depends on PIP2

accumulation. PIP2 accumulation and cora accumulation therefore mark genetically separable steps

in sheath assembly that we subsequently refer to as initiation and maturation, respectively

(Figure 5I).

Epidermal sheaths regulate dendrite growth dynamics and structural
plasticity
What are the functions of epidermal sheaths that wrap somatosensory neurons? Prior studies sug-

gested a role for epidermal ensheathment in restricting dendrite branching in Drosophila larvae

(Jiang et al., 2014; Tenenbaum et al., 2017). We therefore assayed the requirement in dendrite

growth of each of the sheath assembly components we identified in this study. We expressed PI4K

(RNAi) to reduce epidermal PIP2 levels and monitored effects on c4da dendrite morphogenesis.

Compared to controls, epidermis-specific expression of PI4K(RNAi) significantly increased the num-

ber and decreased the average length of terminal dendrites (Figure 6A–6B and G–H). PLCd-PH-GFP

can function as a competitive inhibitor of PIP2 signaling (Raucher et al., 2000), and epidermal PLCd-

PH-GFP expression increased terminal dendrite branch number and decreased dendrite branch

length in a dose-dependent manner (Figure 6—figure supplement 1). Similarly, blocking epidermal

endocytosis via constitutive epidermal expression of shiDN or expressing temperature sensitive shits

and using it to conditionally blocking epidermal endocytosis specifically in the time window during

which dendrites are normally ensheathed led to severe terminal dendrite branching defects qualita-

tively similar to PI4K(RNAi) (Figure 6C–6D and G–H). Finally, epidermal expression of cora(RNAi)

induced growth of short terminal dendrites (Figure 6E and G–H), as has been previously reported

(Tenenbaum et al., 2017), as did epidermal expression of shg(RNAi) (Figure 6F–6H). Thus, blocking

the early or late events of epidermal sheath formation deregulates branching morphogenesis of Dro-

sophila nociceptive c4da neurons.

To identify the cellular basis of these dendrite growth defects, we monitored dendrite dynamics

in control or sheath-defective larvae using time-lapse microscopy during the time window when

sheaths normally form. Over an 18 h time-lapse beginning at 96 h AEL more than 80% of terminal

dendrites persisted in control larvae, with the vast majority of those dendrites elongating (Figure 6I

and L). By contrast, using epidermis-specific expression of PI4K(RNAi) or cora(RNAi) to block sheath

initiation or maturation, respectively, led to significant alterations in branch dynamics (Figure 6J–

6L). First, a larger fraction of terminal dendrites exhibited dynamic growth behavior. Second, the

Figure 5 continued

Figure supplement 1. Sequential recruitment of epidermal sheath proteins.

DOI: https://doi.org/10.7554/eLife.42455.016

Figure supplement 2. PIP2 microdomains form shortly after axons innervate the zebrafish epidermis.

DOI: https://doi.org/10.7554/eLife.42455.017

Figure supplement 3. Epistasis analysis of sheath-associated proteins.

DOI: https://doi.org/10.7554/eLife.42455.018
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Figure 6. Epidermal sheaths regulate branching morphogenesis in nociceptive c4da neurons. Representative images of 120 h AEL c4da neurons from

(A) control larvae and larvae expressing (B) PI4K(RNAi), (C) dominant-negative shibire (shiDN), (D) temperature-sensitive shibire (shits), (E) epidermal cora

(RNAi), and (F) epidermal shg(RNAi) larvae are shown. Larvae were reared at 25˚ C, with the exception of larvae in (D) which were reared at 25˚ C for 4

days and then shifted to the non-permissive temperature 29˚ C for 1 day prior to imaging. (G–H) Morphometric analysis of dendrites from c4da neurons

Figure 6 continued on next page
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relative levels of growth and retraction were altered; whereas growth predominated in controls,

growth and retraction occurred with comparable frequency in PI4K(RNAi) and cora(RNAi) larvae.

Third, the average change in terminal dendrite length was reduced in PI4K(RNAi) and cora(RNAi) lar-

vae (Figure 6M).

These results suggest that epidermal ensheathment alters dendrite growth properties by stabiliz-

ing existing terminal dendrites and promoting their elongation. To further test this possibility, we

simultaneously labeled epidermal sheaths (Epi > PLCd-PH-GFP) and c4da dendrite arbors (ppk-CD4-

tdTomato) and monitored terminal dendrite dynamics in ensheathed and unensheathed arbors.

Whereas >65% of terminal dendrites were present only transiently during a 12 h time lapse at the

onset of ensheathment (72–84 h AEL), most terminal dendrites persisted during a 12 h time lapse

after arbors were extensively ensheathed (108–120 h AEL) (Figure 6N). In this latter time window

(108–120 h AEL) we compared the growth dynamics of ensheathed and unensheathed terminal den-

drites and found that a significantly higher proportion of ensheathed terminal dendrites were grow-

ing or stable over the 12 h time-lapse (Figure 6O). Altogether, our time-lapse imaging results

strongly suggest that epidermal sheaths contribute to stabilization of somatosensory dendrites.

What is the relationship between epidermal ensheathment and dendrite branching? While den-

drite branch points are occasionally ensheathed (Figure 1B) and new branches can be initiated from

ensheathed dendrites (Han et al., 2012), we found that sheath formation is first initiated on long-

lived dendrite shafts in proximal portions of the dendrite arbor rather than the more dynamic distal

portions of the dendrite arbor (Figure 6—figure supplement 2), and that terminal dendrites in gen-

eral and newly formed terminal dendrites in particular were less extensively ensheathed than other

portions of the dendrite arbor (Figure 6P, Figure 6—figure supplement 3). We therefore moni-

tored the frequency of dendrite branching from ensheathed and unensheathed portions of dendrite

arbors during a 12 h time-lapse. Consistent with prior observations (Han et al., 2012), we occasion-

ally observed new branch initiation from ensheathed portions of dendrite arbors (Figure 6Q).

Figure 6 continued

of the indicated genotypes. Plots show mean and standard deviation for (G) the number of terminal branches and (H) terminal branch length. Data

points, measurements from an individual neuron; ***p<0.001 relative to control; one way ANOVA with post-hoc Dunnett’s test. (I–L) Time-lapse analysis

of epidermal sheath control of terminal dendrite dynamics. C4da neurons were imaged over an 18 h time-lapse (96–114 h AEL) and growth (green) and

retraction (magenta) were pseudocolored in a composite of the two time-points. Representative composite images are shown for c4da neurons from (I)

Gal4-only control, (J) epidermal PI4K(RNAi), and (K) epidermal cora(RNAi) larvae. (L–P) Quantification of terminal dendrite dynamics. (L) The fraction of

terminal dendrites that were growing, stable, or retracting over the time-lapse is shown. ***p<0.001 compared to controls, Chi-square analysis. (M)

Epidermal ensheathment regulates the extent of terminal dendrite dynamics. Box plots depict mean values and 1st/3rd quartile, whiskers mark

minimum/maximum values. ***p<0.001 compared to Epi-Gal4 control; one way ANOVA with post-hoc Dunnett’s test. (N) Epidermal ensheathment

regulates dendrite turnover. C4da neurons were imaged over a 12 h time-lapse (72–84 or 108–120 h AEL) and all terminal dendrites were scored as

persistent (present at both time points) or transient. Each bar represents measurements from a single neuron. Terminal dendrites at the later time-

point, when c4da neurons are extensively ensheathed, were significantly more likely to persist. (O) Quantification of terminal dynamics in ensheathed

and unensheathed terminal dendrites from 108 to 120 h AEL. ***p<0.001, Chi-square analysis with post-hoc Bonferroni adjustment for multiple

comparisons. Pairwise comparisons are indicated. (P) Dynamic portions of dendrite arbors are less extensively ensheathed. Mean and standard

deviation values for the proportion of c4da dendrite arbors, terminal dendrites, and new terminal dendrite growth (12 h time-lapse) wrapped by PLCd-

PH-GFP sheaths at 120 h AEL. ***p<0.001, Chi-square analysis with post-hoc Bonferroni adjustment for multiple comparisons. Pairwise comparisons are

indicated. (Q) Distribution of branching events during 12 h time-lapse imaging. Each bar represents a single neuron. (R–U) Epidermal ensheathment

regulates dendrite structural plasticity. Class IV neurons in newly eclosed 2nd instar control (R), epidermis PI4k(RNAi) (S), and epidermis cora(RNAi) (T)

larvae were ablated with a focused laser beam and imaged 48 h post-ablation. Images depict dendrite growth of spared neurons into unoccupied

territory following laser ablation and hatched boxes demarcate the territory occupied by the ablated neuron. (U) Scatter plot depicting mean and

standard deviation for dendrite invasion of the indicated mutants. The number of samples analyzed for each treatment is indicated. ***p<0.001 relative

to control; one way ANOVA with post-hoc Dunnett’s test.

DOI: https://doi.org/10.7554/eLife.42455.019

The following figure supplements are available for figure 6:

Figure supplement 1. Epidermal PLCd-PH-GFP dosage affects c4da dendrite development.

DOI: https://doi.org/10.7554/eLife.42455.020

Figure supplement 2. Proximal-distal distribution of epidermal sheaths.

DOI: https://doi.org/10.7554/eLife.42455.021

Figure supplement 3. Time-lapse analysis of ensheathment at dynamic portions of dendrite arbors.

DOI: https://doi.org/10.7554/eLife.42455.022
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However, these events were rare and usually occurred at the ends of existing sheaths (Figure 6—fig-

ure supplement 3); the majority of new branch initiation occurred on unensheathed portions of den-

drites. Intriguingly, a large proportion of new branches was formed in the vicinity of epithelial

intercellular junctions; whether this is simply a result of discontinuities in sheaths at intercellular junc-

tions or reflects the function of non-autonomous branch-promoting activities associated with junc-

tions remains to be determined.

Given that epidermal ensheathment constrains terminal dendrite dynamics in Drosophila, we next

examined whether epidermal ensheathment limits structural plasticity of dendrite arbors, as has

been suggested (Parrish et al., 2009; Jiang et al., 2014). Embryonic ablation of c4da neurons leads

to exuberant dendrite growth in spared neurons beyond their normal boundaries to fill vacated terri-

tory (Grueber et al., 2003; Sugimura et al., 2003). This capacity of c4da neurons to expand their

dendrite arbors beyond normal boundaries is progressively limited during development, concomi-

tant with the increase in epidermal dendrite ensheathment (Parrish et al., 2009; Jiang et al., 2014).

Following ablation of a single c4da neuron at 72 h AEL, the spared neighboring neurons extend their

dendrite arbors to cover 13% of the vacated territory, on average (Figure 6R and U). If epithelial

ensheathment limits the structural plasticity of c4da dendrite arbors, we reasoned that blocking epi-

thelial sheath formation should potentiate the invasive growth activity of c4da neurons following

ablation of their neighbors. Indeed, epidermis-specific PI4K(RNAi) or cora(RNAi) resulted in a signifi-

cant potentiation of dendrite invasion (Figure 6S and U). In addition to regulating the growth

dynamics and elongation of individual terminal dendrites, these results suggest that epidermal

ensheathment contributes to the fidelity of receptive field coverage by coupling dendrite and epi-

dermis expansion.

Epidermal sheaths regulate nociception in Drosophila larvae
What role, if any, does epidermal ensheathment play in somatosensation? Having found that noci-

ceptive c4da neurons and proprioceptive c1da neurons were the most extensively and least

ensheathed da neurons, respectively, we investigated whether blocking sheath formation affected

sensory-evoked behavioral responses regulated by these neurons. Harsh touch activates c4da noci-

ceptive neurons to elicit stereotyped nocifensive rolling responses (Zhong et al., 2010), so we moni-

tored touch-evoked rolling responses and rates of larval locomotion in control or sheath-defective

larvae as a measure for sheath influence on c4da neuron function. Stimulation with a 78 nM von Frey

filament induced nociceptive rolling behavior in >60% of control larvae, whereas c4da-specific

expression of the inward rectifying potassium channel Kir2.1 strongly attenuated this rolling

response (Figure 7A). Compared to controls, epidermal expression of either PI4KIIIa(RNAi) to block

PIP2 accumulation or PIS(RNAi) to reduce phophoinositol biosynthesis, or feeding larvae the cell per-

meant polyphosphoinositide-binding peptide PBP10 to antagonize PIP2 signaling during the time

window of sheath formation significantly attenuated mechanonociceptive behavior (Figure 7A, Fig-

ure 7—figure supplement 1). Epidermal expression of shiDN to block epidermal endocytosis and

cora(RNAi) to block sheath maturation similarly attenuated mechanonociception. We additionally

found that previously reported treatments that block ensheathment including overexpressing a- and

b-integrin in c4da neurons to tether dendrites to the ECM (Han et al., 2012; Jiang et al., 2014) and

mutation of the miRNA bantam (Jiang et al., 2014) displayed reduced rolling rates in response to

von Frey stimuli.

Finally, we assayed for effects of ensheathment on larval locomotion. Input from proprioceptive

c1da neurons is required for coordinated larval locomotion, and perturbing c1da neuron function

severely attenuates larval crawling speed (Song et al., 2007). Treatments that reduced epidermal

sheath formation did not reduce larval stride length or crawling speed as would be expected for dis-

ruption of proprioceptor function, but instead led to increased larval crawling speed (Figure 7B and

data not shown). This increased crawling speed was largely the result of reduced turning frequency

and a concomitant increase in forward-directed locomotion (Figure 7C), similar to defects in crawl-

ing trajectory induced by perturbing c4da function (Ainsley et al., 2003; Gorczyca et al., 2014), fur-

ther suggesting that ensheathment modulates c4da function. Thus, epidermal ensheathment

potentiates nociceptive mechanosensory responses and is apparently dispensable for proprioceptor

function, consistent with our observation that nociceptive c4da but not proprioceptive c1da neurons

exhibit extensive epidermal ensheathment.
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Discussion
A neuron’s function is profoundly influenced by its interaction with cells around it. In the skin, spe-

cialized interactions with epidermal cells influence the function of a variety of different sensory neu-

rons. However, despite the fact that keratinocytes are the most abundant cell type in the epidermis,

roles for keratinocyte-sensory neuron interactions in somatosensation are still not well characterized.

Here, we have identified a conserved morphogenetic program for ensheathment of peripheral

somatosensory neurites by epidermal cells. In both Drosophila and zebrafish, sensory neurite-derived

signals induce epidermal cells to ensheath somatosensory neurons in a neuron type-specific manner.

These neurite-derived signals induce local formation of epidermal PIP2-enriched membrane micro-

domains that are essential for ensheathment, local assembly of F-actin, and recruitment of junctional

proteins that likely seal the sheaths.

What triggers formation of epidermal sheaths?
Although the signals are not yet known, our studies define key features of the signaling system that

drives sheath formation. First, epidermal sheath formation likely relies on short-range, contact-medi-

ated signals involving neuron-expressed ligands and epidermal receptors, as sheaths form exclu-

sively at sites occupied by peripheral sensory neurites. Such a signaling system bears similarity to the

C. elegans epidermal SAX-7/L1CAM and MNR-1/Menorin co-ligand complex that interacts with neu-

ronal DMA-1 to regulate patterning of PVD dendrites (Dong et al., 2013; Salzberg et al., 2013).

However, whereas PVD dendrites are positioned according to a hypodermal grid of SAX-7/L1CAM

expression (Liang et al., 2015), the location of epidermal sheaths is dependent on neuron-derived

signals rather than an epidermal pre-pattern. Second, different types of neurons have different

capacities to induce epidermal sheath formation; in zebrafish, only somatosensory neurons are capa-

ble of inducing sheath formation on the apical membranes of basal keratinocytes, and different
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Figure 7. Epidermal dendrite ensheathment regulates nociceptive sensitivity. (A) Bars depict the proportion of larvae of the indicated genotype that

exhibited a nocifensive rolling response to 70 mN von Frey fiber stimulation. UAS-Kir2.1 expression in nociceptive c4da neurons blocked nociceptive

responses to 70 mN stimulus, demonstrating that the response is mediated by c4da neurons, and treatments that reduced epidermal ensheathment

significantly reduced the frequency of nociceptive rolling responses. ***p<0.001, compared to wt controls, Chi square test. (B, C) Box plots depict

crawling speed (B) and the proportion of time larvae spent in forward-directed locomotion (C) for larvae of the indicated genotype. ***p<0.001,

*p<0.05, Kruskal-Wallis rank sum test. The number of larvae tested is shown for each condition.

DOI: https://doi.org/10.7554/eLife.42455.023

The following figure supplement is available for figure 7:

Figure supplement 1. PBP10 feeding inhibits sheath formation.

DOI: https://doi.org/10.7554/eLife.42455.024
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classes of somatosensory neurons are ensheathed to different degrees in Drosophila and zebrafish.

The epidermal sheaths that wrap different types of somatosensory neurons are structurally similar,

thus it seems likely that different levels of the sheath-inducing ligand determine the extent of

ensheathment much as Nrg1 levels can drive the extent of Schwann cell ensheathment

(Michailov et al., 2004). Based on the conservation in the molecular machinery of sheath formation,

such a ligand and its epidermal receptor are likely conserved in fish and flies. Third, sheath formation

is temporally regulated. In both Drosophila and zebrafish, somatosensory neurites innervate the epi-

dermis more than a day prior to sheath formation (Parrish et al., 2009; O’Brien et al., 2012). This

may reflect a lack of competence by epithelial cells to ensheath somatosensory neurites as accelerat-

ing developmental progression in the Drosophila epidermis leads to precocious dendrite ensheath-

ment (Jiang et al., 2014). Finally, our laser severing experiments suggest that peripheral neurites

are required to maintain epidermal sheaths. Whether maintenance of sheaths is dependent on a

dedicated maintenance signal or simply reflects the absence of morphogenetic signals that would

remodel sheaths, for example the exposure by neurites to phosphatidylserine or other engulfment-

promoting signals, remains to be determined. Epidermally embedded dendrites that lack identifi-

able sheath-like structures have been previously described (Han et al., 2012); whether such struc-

tures represent cases in which sheaths have been lost or form via a distinct developmental

mechanism remains to be determined.

The earliest epidermal morphogenetic event we identified downstream of neurite-derived

ensheathment signals is the appearance of PIP2-enriched membrane microdomains. How might neu-

rite-derived signals trigger local accumulation of epidermal PIP2? Two prominent mechanisms exist

to form localized pools of PIP2 in the plasma membrane (Kwiatkowska, 2010), and each can be

triggered by cell-cell contacts. First, PIP2 can be locally clustered via electrostatic interactions with

polybasic proteins such as myristoylated alanine-rich C-kinase substrate (MARCKS) (Glaser et al.,

1996; Gambhir et al., 2004; McLaughlin and Murray, 2005), which additionally binds and cross-

links filamentous actin (Myat et al., 1997). Protocadherins regulate cortical dendrite morphogenesis

in part by maintaining a membrane-associated pool of active MARCKS (Garrett et al., 2012), thus

protocadherin-based adhesion provides one potential mechanism for localizing MARCKS and hence

PIP2 in epidermal cells. Neuronal signals could likewise trigger PIP2 localization via engagement of

transmembrane receptors with intracellular domains that electrostatically interact with and cluster

PIP2 (McLaughlin and Murray, 2005) or via membrane recruitment of other polybasic proteins such

as adducins or GAP43 (Kwiatkowska, 2010). Second, PIP2 can be locally synthesized, most com-

monly via phosphorylation of phosphatidylinositol 4-phosphate, and type I phosphatidylinositol 4-

phosphate five kinase (PIP5KI) can associate with N-cadherin to locally produce PIP2 at sites of

N-cadherin adhesion (El Sayegh et al., 2007). PIP5KIg associates with the exocyst via direct interac-

tion with Exo70 to promote membrane targeting of E-cadherin (Xiong et al., 2012), thus cadherin-

based adhesion can be both a cause and effect of localized PIP2 synthesis. Although we have not

found evidence for an epidermal PIP2 pre-pattern that determines sites of ensheathment, PIP5K

additionally localizes to focal adhesions to provide a local source of PIP2 (Ling et al., 2002). Thus, it

will be intriguing to determine whether integrin-based adhesions contribute to epidermal sheath for-

mation by generating local asymmetries in PIP2 levels that get amplified by neuron-derived signals.

Plasma membrane enrichment of epidermal PIP2 serves as a critical control point for a variety of

cellular processes (Sun et al., 2013). Among these, we note remarkable similarities between epider-

mal sheath formation and the early events of phagocytosis. First, sheath formation and the early

stages of phagocytosis appear to involve similar cellular rearrangements, with ensheathing cells and

engulfing cells wrapping their targets with membrane protrusions. Second, sheath formation and

phagocytosis share a common set of molecular mediators as PIP2 accumulates in nascent epidermal

sheaths and in the phagocytic cup of engulfing cells (Botelho et al., 2000), as does a network of

F-actin (Scott et al., 2005). Third, many types of ensheathing cells additionally exhibit phagocytic

activity, including Drosophila and zebrafish keratinocytes (Han et al., 2014; Rasmussen et al.,

2015), Drosophila ensheathing glia (Doherty et al., 2009), and astrocytes (Chung et al., 2013).

However, whereas PIP2 levels persist at sheaths, PIP2 disappears from the phagosomal membrane

during the late stages of phagocytosis (Botelho et al., 2000), leading to disassembly of the associ-

ated actin network (Scott et al., 2005). Similarly, transient accumulation of PIP2 is a feature of endo-

cytosis, cell migration, and other PIP2 regulated morphogenetic events. Thus, reducing PIP2 levels
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may facilitate phagocytic engulfment of neurites, providing a mechanism for rapid conversion of the

epidermal ensheathment channels to engulfment channels.

Functional roles for epidermal neurite ensheathment
Consistent with prior reports, we found that epidermal ensheathment limits dendrite branching of

Drosophila nociceptive c4da neurons (Jiang et al., 2014; Tenenbaum et al., 2017). We also found

that the extent of ensheathment is inversely related to peripheral axon branch number in zebrafish

somatosensory neurons, suggesting that epidermal ensheathment could similarly regulate neurite

branching in vertebrates. This epidermal growth control of peripheral sensory arbors appears to

involve two related mechanisms. First, epidermal ensheathment limits dendrite branching; dendrite

branching events rarely occur on ensheathed dendrites, and blocking epidermal ensheathment

potentiates dendrite branching. This dendrite branching control may reflect a masking of dendrite

arbors from substrate-derived signals that promote branching or a steric hindrance of branching.

Second, epidermal ensheathment stabilizes existing neurites; blocking epidermal ensheathment

potentiates dynamic growth behavior and structural plasticity in Drosophila sensory neurons. Deter-

mining whether ensheathment similarly regulates structural plasticity in zebrafish will require devel-

opment of more and better tools for effectively blocking sheath formation in zebrafish. However,

given that the timing of epidermal sheath formation correlates with the developmental restriction in

structural plasticity in both Drosophila and zebrafish (O’Brien et al., 2012; Jiang et al., 2014), devel-

opmental control of ensheathment appears to be a likely mechanism to stabilize receptive fields of

somatosensory neurons.

Different types of somatosensory neurons appear to be ensheathed to different degrees. What

would be the purpose of such an arrangement? Many different types of somatosensory neurons

innervate overlapping territories, and one recent study suggests that selective ensheathment of par-

ticular sensory neuron types facilitates coexistence of different types of sensory neurons in a given

territory (Tenenbaum et al., 2017). Differential levels of ensheathment may additionally allow for dif-

ferential coupling of somatosensory neurons to epidermal growth-promoting signals. Likewise, dif-

ferential ensheathment of somatosensory neuron types may allow different levels of functional

coupling of sensory neurons and epidermis. Our finding that nociceptive c4da neurons are the most

extensively ensheathed Drosophila somatosensory neurons, and that ensheathment regulates noci-

ceptive sensitivity, suggests that epidermal ensheathment may play a particularly important role in

tuning responses to noxious stimuli. Intriguingly, mutations that block ensheathment impair the func-

tion of a subset of C. elegans mechanosensory neurons (Chen and Chalfie, 2014); whether these

mechanosensory impairments are a consequence of ensheathment defects or other effects of the

mutations remains to be determined.

How might epidermal sheaths influence nociceptive sensitivity? First, epidermal sheaths may

potentiate the functional coupling of epidermal cells to somatosensory neurons. Recent studies sug-

gest that sensory-evoked responses of keratinocytes may modulate sensory neuron function

(Koizumi et al., 2004; Baumbauer et al., 2015; Pang et al., 2015; Moehring et al., 2018), and epi-

dermal sheaths could provide sites for vesicle release from keratinocytes or direct electrical coupling

between keratinocytes and somatosensory neurons. Merkel cells provide a precedent for the former

possibility (Maksimovic et al., 2013), but whether keratinocytes possess presynaptic release machin-

ery and which neurotransmitters they express remain to be determined. Alternatively, epidermal

ensheathment could potentiate nociceptor sensitivity by increasing proximity to stimulus source, by

clustering sensory channels, or by some other means. Regardless of the mechanism, our findings

that epidermal ensheathment modulates nociceptive sensitivity suggest that defects in epidermal

ensheathment could contribute to sensory deficits in human disease. Intriguingly, some forms of

peripheral neuropathy exhibit loss of unmyelinated intraepidermal nerves (Weis et al., 2011;

Üçeyler et al., 2013); whether defects in epithelial ensheathment play a role in these sensory neu-

ropathies remains to be determined.

Materials and methods

Key resources table

Continued on next page
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Continued

Reagent type Designation Source or reference Identifiers
Additional
information

Reagent type Designation Source or reference Identifiers
Additional
information

Gene (D. melanogaster) bantam NA FLYB:FBgn0262451

Gene (D. melanogaster) coracle NA FLYB:FBgn0010434

Gene (D. melanogaster) dArf6 FlyBase symbol:
Arf51F

Gene (D. melanogaster) Pis NA FLYB:FBgn0030670

Gene (D. melanogaster) PI4KII NA FLYB:FBgn0037339 FlyBase symbol:
Pi4KIIa

Gene (D. melanogaster) shg NA FLYB:FBgn0003391

Gene (D. melanogaster) shi NA FLYB:FBgn0003392

Genetic reagent
(D. melanogaster)

w1118 Bloomington
Drosophila Stock
Center

BDSC:5905;
FLYB:FBal0018186

Parrish Lab stock

Genetic reagent
(D. melanogaster)

ppk-CD4-tdTomato Bloomington
Drosophila Stock
Center

BDSC:35844;
FLYB:FBti0143430

FlyBase symbol:
P{ppk-CD4-td
Tomato}4a

Genetic reagent
(D. melanogaster)

ppk-CD4-tdTomato Bloomington
Drosophila Stock
Center

BDSC:35845;
FLYB:FBti0143432

FlyBase symbol:
P{ppk-CD4-td
Tomato}10a

Genetic reagent
(D. melanogaster)

Epidermal-Gal4 PMID: 15269788 FLYB:FBti0072310 FlyBase symbol:
P{GAL4}A58

Genetic reagent
(D. melanogaster)

elav-LexA Bloomington
Drosophila Stock
Center

BDSC:52676;
FLYB:FBti0155565

FlyBase symbol:
P{GMR27E08-
lexA}attP40

Genetic reagent
(D. melanogaster)

lexAOP-CD4-tdTomato Bloomington
Drosophila Stock
Center

BDSC:77138;
FLYB:FBti0195760

FlyBase symbol:
P{13xLexAop2-
CD4-tdTom}4

Genetic reagent
(D. melanogaster)

NompC-LexA Bloomington
Drosophila Stock
Center

BDSC:52240;
FLYB:FBti0157008

FlyBase symbol:
PBac{nompC-lex
A::p65}VK00018

Genetic reagent
(D. melanogaster)

ppk-Gal4 Bloomington
Drosophila Stock
Center

BDSC:32078;
FLYB:FBti0127690

FlyBase symbol:
P{ppk-GAL4.G}2

Genetic reagent
(D. melanogaster)

ppk-Gal4 Bloomington
Drosophila Stock
Center

BDSC:32079;
FLYB:FBti0131208

FlyBase symbol:
P{ppk-GAL4.G}3

Genetic reagent
(D. melanogaster)

21–7 Gal4 PMID: 20696376 FLYB:FBti0157010 FlyBase symbol:
P{GAL4}21–7

Genetic reagent
(D. melanogaster)

98b-Gal4 PMID: 26063572 FLYB:FBti0169386 FlyBase symbol:
P{GAL4}98b

Genetic reagent
(D. melanogaster)

GMR37B02-Gal4 PMID: 20697123 FLYB: FBti0135266 FlyBase symbol:
P{GMR37B02-GAL4}attP2

Genetic reagent
(D. melanogaster)

UAS-rpr Bloomington
Drosophila Stock
Center

BDSC:5824;
FLYB:FBti0016094

FlyBase symbol:
P{UAS-rpr.C}14

Genetic reagent
(D. melanogaster)

UAS-PIS(RNAi) Bloomington
Drosophila Stock
Center

BDSC:29383;
FLYB:FBti0129011

FlyBase symbol:
P{TRiP.JF03315}attP2

Genetic reagent
(D. melanogaster)

UAS-PI4KII(RNAi) Bloomington
Drosophila Stock
Center

BDSC:38242;
FLYB:FBti0144268

FlyBase symbol:
P{TRiP.GL00179}attP2

Continued on next page
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Reagent type Designation Source or reference Identifiers
Additional
information

Genetic reagent
(D. melanogaster)

UAS-cora(RNAi) Bloomington
Drosophila Stock
Center

BDSC:51845;
FLYB:FBti0157811

FlyBase symbol:
P{TRiP.HMC03418}attP40

Genetic reagent
(D. melanogaster)

UAS-shg(RNAi) Bloomington
Drosophila Stock
Center

BDSC:32904;
FLYB:FBti0140407

FlyBase symbol:
P{TRiP.HMS00693}attP2

Genetic reagent
(D. melanogaster)

UAS-shits Bloomington
Drosophila Stock
Center

BDSC:44222;
FLYB:FBti0151794

FlyBase symbol:
P{UAS-shits1.K}3

Genetic reagent
(D. melanogaster)

UAS-shiDN Bloomington
Drosophila Stock
Center

BDSC:5811;
FLYB:FBti0016096

FlyBase symbol:
P{UAS-shi.K44A}4–1

Genetic reagent
(D. melanogaster)

UAS-mys PMID: 10572057 FLYB:FBal0102506 FlyBase symbol:
mysUAS.cDa

Genetic reagent
(D. melanogaster)

UAS-mew PMID: 9250662 FLYB:FBal0062567 FlyBase symbol:
mewUAS.cMBa

Genetic reagent
(D. melanogaster)

UAS-Kir2.1-GFP Bloomington
Drosophila Stock
Center

BDSC:6596;
FLYB:FBti0017551

FlyBase symbol:
P{UAS-Hsap\KCNJ2.EGFP}1

Genetic reagent
(D. melanogaster)

Cha7.4kb-Gal80 PMID: 19531155 FLYB:FBtp0089195 FlyBase symbol:
P{ChAT.7.4kb-Gal80}

Genetic reagent
(D. melanogaster)

bantamD1 PMID: 12196398 FLYB:FBab0029992 FlyBase symbol:
Df(3L)banD1

Genetic reagent
(D. melanogaster)

UAS-CD4-tdGFP Bloomington
Drosophila Stock
Center

BDSC:35836;
FLYB:FBti0143423

FlyBase symbol:
PBac{UAS-CD4-
tdGFP}VK00033

Genetic reagent
(D. melanogaster)

UAS-mCD8-GFP Bloomington
Drosophila Stock
Center

BDSC:5137;
FLYB:FBti0012685

FlyBase symbol:
P{UAS-mCD8::GFP.L}LL5

Genetic reagent
(D. melanogaster)

UAS-myr-GFP Bloomington
Drosophila Stock
Center

BDSC:32198;
FLYB:FBti0131964

FlyBase symbol:
P{10XUAS-IVS-
myr::GFP}attP40

Genetic reagent
(D. melanogaster)

UAS-Asap-GFP Bloomington
Drosophila Stock
Center

BDSC:65849;
FLYB:FBti0183078

FlyBase symbol:
P{UASp-Asap.GFP}attP2

Genetic reagent
(D. melanogaster)

UAS-Dl-GFP Bloomington
Drosophila Stock
Center

BDSC:8610;
FLYB:FBti0058796

FlyBase symbol:
P{UAS-Dl::GFP}DA53

Genetic reagent
(D. melanogaster)

UAS-CG10702-GFP Bloomington
Drosophila Stock
Center

BDSC:65857;
FLYB:FBti0183086

FlyBase symbol:
P{UASp-CG10702.GFP}attP2

Genetic reagent
(D. melanogaster)

UAS-Dlg5-GFP Bloomington
Drosophila Stock
Center

BDSC:30928;
FLYB:FBti0130055

FlyBase symbol:
P{UAS-Dlg5.GFP}2

Genetic reagent
(D. melanogaster)

Sdc-CPTI002578 Kyoto Drosophila
Genomics and Genetics
Resources

Kyoto:115306;
FLYB:FBal0261862

FlyBase symbol:
SdcCPTI002578

Genetic reagent
(D. melanogaster)

UAS-2xOsh2PH-GFP Bloomington
Drosophila Stock
Center

BDSC:57353;
FLYB:FBti0162453

FlyBase symbol:
P{UAS-2xOsh2PH-GFP}attP2

Genetic reagent
(D. melanogaster)

UAS-PLCd-PH-GFP Bloomington
Drosophila Stock
Center

BDSC:39693;
FLYB:FBti0148832

FlyBase symbol:
P{UAS-PLCd-PH-EGFP}3

Genetic reagent
(D. melanogaster)

UAS-PLCD1-PH-Cerulean Bloomington
Drosophila Stock
Center

BDSC:30895;
FLYB:FBti0129991

FlyBase symbol:
P{UASp-PLCD1PH.
Cerulean}2

Continued on next page
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Continued

Reagent type Designation Source or reference Identifiers
Additional
information

Genetic reagent
(D. melanogaster)

UAS-PLCd-PH-
GFP (S39R)

Bloomington
Drosophila Stock
Center

BDSC:39694;
FLYB:FBti0148833

FlyBase symbol:
P{UAS-PLCd-PH.
S39R-EGFP}3

Genetic reagent
(D. melanogaster)

UAS-step-GFP Bloomington
Drosophila Stock
Center

BDSC:65862;
FLYB:FBti0183091

FlyBase symbol:
P{UASp-step.EGFP}attP2

Genetic reagent
(D. melanogaster)

UAS-GFP-myc-2xFYVE Bloomington
Drosophila Stock
Center

BDSC:42712;
FLYB:FBti0147756

FlyBase symbol:
P{UAS-GFP-myc-2xFYVE}2

Genetic reagent
(D. melanogaster)

UAS-Arf51F-GFP Bloomington
Drosophila Stock
Center

BDSC:65867;
FLYB:FBti0183094

FlyBase symbol:
P{UASp-Arf51F.GFP}attP2

Genetic reagent
(D. melanogaster)

UAS-Arf79F-GFP Bloomington
Drosophila Stock
Center

BDSC:65850;
FLYB:FBti0183079

FlyBase symbol:
P{UASp-Arf79F.GFP}attP3

Genetic reagent
(D. melanogaster)

UAS-Arf102F-GFP Bloomington
Drosophila Stock
Center

BDSC:65866;
FLYB:FBti0183075

FlyBase symbol:
P{UASp-Arf102F.GFP}attP4

Genetic reagent
(D. melanogaster)

UAS-Arl4-GFP Bloomington
Drosophila Stock
Center

BDSC:65868;
FLYB:FBti0183092

FlyBase symbol:
P{UASp-Arl4.GFP}attP5

Genetic reagent
(D. melanogaster)

UAS-Clc-GFP Bloomington
Drosophila Stock
Center

BDSC:7109;
FLYB:FBti0027887

FlyBase symbol:
P{UAS-EGFP-Clc}5

Genetic reagent
(D. melanogaster)

UAS-gamma-
cop-GFP

Bloomington
Drosophila Stock
Center

BDSC:29711;
FLYB:FBti0128586

FlyBase symbol:
P{UASp-gCOP.EGFP}3

Genetic reagent
(D. melanogaster)

UAS-YFP-Rab4 Bloomington
Drosophila Stock
Center

BDSC:9767;
FLYB:FBti0100783

FlyBase symbol:
P{UASp-YFP.Rab4}Sap-r32

Genetic reagent
(D. melanogaster)

UAS-YFP-Rab-5 Bloomington
Drosophila Stock
Center

BDSC:24616;
FLYB:FBti0100788

FlyBase symbol:
P{UASp-YFP.Rab5}02

Genetic reagent
(D. melanogaster)

UAS-GFP-Rab-7 Bloomington
Drosophila Stock
Center

BDSC:42705;
FLYB:FBti0150335

FlyBase symbol:
P{UASp-YFP.Rab7}2

Genetic reagent
(D. melanogaster)

UAS-YFP-Rab11 Bloomington
Drosophila Stock
Center

BDSC:50782;
FLYB:FBti0152903

FlyBase symbol:
P{UASp-YFP.Rab11}3

Genetic reagent
(D. melanogaster)

UAS-YFP-Rab-21 Bloomington
Drosophila Stock
Center

BDSC:23242;
FLYB:FBti0100844

FlyBase symbol:
P{UAST-YFP.Rab21}
smog04

Genetic reagent
(D. melanogaster)

UAS-YFP-Rab35 Bloomington
Drosophila Stock
Center

BDSC:9821;
FLYB:FBti0100873

FlyBase symbol:
P{UASp-YFP.Rab35}15

Genetic reagent
(D. melanogaster)

UAS-spin-RFP Bloomington
Drosophila Stock
Center

BDSC:42716;
FLYB:FBti0147756

FlyBase symbol:
P{UAS-GFP-myc-2xFYVE}2

Genetic reagent
(D. melanogaster)

UAS-Shrub-GFP Bloomington
Drosophila Stock
Center

BDSC:32559;
FLYB:FBti0131611

FlyBase symbol:
P{UAS-shrb-GFP}2

Genetic reagent
(D. melanogaster)

UAS-dia-GFP Bloomington
Drosophila Stock
Center

BDSC:56751;
FLYB:FBti0161167

FlyBase symbol:
P{UASp-dia.EGFP}2
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Continued

Reagent type Designation Source or reference Identifiers
Additional
information

Genetic reagent
(D. melanogaster)

UAS-EndoA-GFP This paper Created by injecting
pJFRC7-EndoA-GFP
DNA into flies with
the attP2 docking site

Genetic reagent
(D. melanogaster)

UAS-EndoB-GFP This paper Created by injecting
pJFRC7-EndoB-GFP
DNA into flies with
the attP2 docking site

Genetic reagent
(D. melanogaster)

UAS-Cip4-GFP PMID: 19716703 FLYB:FBtp0055642 FlyBase symbol:
P{UAS-Cip4.EGFP}

Genetic reagent
(D. melanogaster)

UAS-Arm-GFP Bloomington
Drosophila Stock
Center

BDSC:58725;
FLYB:FBti0164941

FlyBase symbol:
M{UASp-arm.
mGFP6}ZH-86Fb

Genetic reagent
(D. melanogaster)

UAS-shg-GFP Bloomington
Drosophila Stock
Center

BDSC:58445;
FLYB:FBti0164810

FlyBase symbol:
P{UASp-shg.GFP}5B

Genetic reagent
(D. melanogaster)

UAS-baz-GFP Bloomington
Drosophila Stock
Center

BDSC:65845;
FLYB:FBti0183077

FlyBase symbol:
P{UASp-baz.C.GFP}attP2

Genetic reagent
(D. melanogaster)

UAS-Dlg-GFP Bloomington
Drosophila Stock
Center

BDSC:8610;
FLYB:FBti0058796

FlyBase symbol:
P{UAS-Dl::GFP}DA53

Genetic reagent
(D. melanogaster)

edGFP exon trap Kyoto Drosophila
Genomics and
Genetics Resources

Kyoto:115114;
FLYB:FBti0144023

FlyBase symbol:
PBac{602 .P.
SVS-1}edCPTI000616

Genetic reagent
(D. melanogaster)

Nrg-GFP Bloomington
Drosophila Stock
Center

BDSC:6844;
FLYB:FBti0027855

FlyBase symbol:
P{PTT-GA}
NrgG00305

Genetic reagent
(D. melanogaster)

NrxIV-GFP Bloomington
Drosophila Stock
Center

BDSC:50798;
FLYB:FBti0099828

FlyBase symbol:
P{PTT-GA}
Nrx-IVCA06597

Genetic reagent
(D. melanogaster)

UAS-actin-GFP Bloomington
Drosophila Stock
Center

BDSC:9258;
FLYB:FBti0072618

FlyBase symbol:
P{UASp-GFP.Act5C}2–1

Genetic reagent
(D. melanogaster)

UAS-GMA-GFP Bloomington
Drosophila Stock
Center

BDSC:31776;
FLYB:FBti0131132

FlyBase symbol:
P{UAS-GMA}3

Genetic reagent
(D. melanogaster)

UAS-APC2-GFP Bloomington
Drosophila Stock
Center

BDSC:8815;
FLYB:FBti0072923

FlyBase symbol:
P{UAS-Apc2.GFP}3

Genetic reagent
(D. melanogaster)

UAS-LifeAct.mGFP Bloomington
Drosophila Stock
Center

BDSC:58717;
FLYB:FBti0164965

FlyBase symbol:
M{UASp-LifeAct.
mGFP6}ZH-2A

Genetic reagent
(D. melanogaster)

UAS-Arp3-GFP Bloomington
Drosophila Stock
Center

BDSC:39722;
FLYB:FBti0148835

FlyBase symbol:
P{UASp-Arp3.GFP}3

Genetic reagent
(D. melanogaster)

UAS-Arpc1-GFP Bloomington
Drosophila Stock
Center

BDSC:26692;
FLYB:FBti0114937

FlyBase symbol:
P{UASp-Arpc1.GFP}1

Genetic reagent
(D. melanogaster)

UAS-capu-GFP Bloomington
Drosophila Stock
Center

BDSC:24764;
FLYB:FBti0100538

FlyBase symbol:
P{UASp-capu.GFP}20

Genetic reagent
(D. melanogaster)

UAS-dpod1-GFP Bloomington
Drosophila Stock
Center

BDSC:8800;
FLYB:FBti0072921

FlyBase symbol:
P{UAS-pod1.GFPmyc}3
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Genetic reagent
(D. melanogaster)

UAS-Pak-GFP Bloomington
Drosophila Stock
Center

BDSC:52299;
FLYB:FBti0155014

FlyBase symbol:
P{UASp-GFP-Pak1}300

Genetic reagent
(D. melanogaster)

UAS-Rho1-GFP Bloomington
Drosophila Stock
Center

BDSC:9393;
FLYB:FBti0074447

FlyBase symbol:
P{UASp-GFP.Rho1}6

Genetic reagent
(D. melanogaster)

UAS-Rok-GFP Bloomington
Drosophila Stock
Center

BDSC:52290;
FLYB:FBti0155000

FlyBase symbol:
P{UASp-Rok.RBD-GFP}30

Genetic reagent
(D. melanogaster)

UAS-shot-GFP Bloomington
Drosophila Stock
Center

BDSC:29044;
FLYB:FBti0127943

FlyBase symbol:
P{UAS-shot.L(A)-GFP}1

Genetic reagent
(D. melanogaster)

UAS-GFP-blr Bloomington
Drosophila Stock
Center

BDSC:8659;
FLYB:FBti0064611

FlyBase symbol:
P{UAS-GFP.BLR}3

Genetic reagent
(D. melanogaster)

UAS-spir-GFP Bloomington
Drosophila Stock
Center

BDSC:8820;
FLYB:FBti0072893

FlyBase symbol:
P{UAS-spir.L.GFP}3

Genetic reagent
(D. melanogaster)

UAS-GFP-sstn Bloomington
Drosophila Stock
Center

BDSC:65863;
FLYB:FBti0183072

FlyBase symbol:
P{UASp-GFP-sstn}attP40

Genetic reagent
(D. melanogaster)

UAS-alpha
-tubulin84B-GFP

Bloomington
Drosophila Stock
Center

BDSC:7373;
FLYB:FBti0038034

FlyBase symbol:
P{UASp-GFPS65C-
aTub84B}3

Genetic reagent
(D. melanogaster)

UAS-EB1-GFP Bloomington
Drosophila Stock
Center

BDSC:35512;
FLYB:FBti0141213

FlyBase symbol:
P{UAS-EB1-GFP}3

Genetic reagent
(D. melanogaster)

UAS-hook-GFP Bloomington
Drosophila Stock
Center

BDSC:65858;
FLYB:FBti183087

FlyBase symbol:
P{UASp-hook.GFP}attP2

Genetic reagent
(D. melanogaster)

UAS-jar-GFP Bloomington
Drosophila Stock
Center

BDSC:67606;
FLYB:FBti0186539

FlyBase symbol:
P{UAS-jar.GFP}2

Genetic reagent
(D. melanogaster)

UAS-Khc-GFP Bloomington
Drosophila Stock
Center

BDSC:9648;
FLYB:FBti0076674

FlyBase symbol:
P{UAS-Khc.EGFP}2

Genetic reagent
(D. melanogaster)

UAS-GFP-Myo10A Bloomington
Drosophila Stock
Center

BDSC:24781;
FLYB:FBti0100569

FlyBase symbol:
P{UASp-Myo10A.GFP}20

Genetic reagent
(D. melanogaster)

UAS-GFP-Myo31DF Bloomington
Drosophila Stock
Center

BDSC:1521;
FLYB:FBti0003040

FlyBase symbol:
P{UAS-GFP.S65T}
Myo31DFT2

Genetic reagent
(D. melanogaster)

UAS-GFP-NinaC Bloomington
Drosophila Stock
Center

BDSC:43347;
FLYB:FBti0151777

FlyBase symbol:
P{UAS-GFP-ninaC}2

Genetic reagent
(D. melanogaster)

UAS-GFP-DCTN1-p150 Bloomington
Drosophila Stock
Center

BDSC:29982;
FLYB:FBti0128481

FlyBase symbol:
P{UAS-GFP.DCTN1
-p150}2

Genetic reagent
(D. melanogaster)

UAS-Unc104-GFP Bloomington
Drosophila Stock
Center

BDSC:24786;
FLYB:FBti0100934

FlyBase symbol:
P{UAS-unc-104.
GFP.RVB}1

Genetic reagent
(D. melanogaster)

UAS-Supervillin-GFP Bloomington
Drosophila Stock
Center

BDSC:66165;
FLYB:FBti0183648

FlyBase symbol:
P{UASp-GFP.Svil}attP2

Continued on next page
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Continued

Reagent type Designation Source or reference Identifiers
Additional
information

Genetic reagent
(D. melanogaster)

UAS-GFP-RhoGAP19D Bloomington
Drosophila Stock
Center

BDSC:66167;
FLYB:FBti0183650

FlyBase symbol:
P{UASp-GFP.
RhoGAP19D}attP2

Genetic reagent
(D. melanogaster)

UAS-Par6-GFP Bloomington
Drosophila Stock
Center

BDSC:65847;
FLYB:FBti0183076

FlyBase symbol:
P{UAS-par-6.GFP}2

Genetic reagent
(D. melanogaster)

UAS-fy-GFP Bloomington
Drosophila Stock
Center

BDSC:66513;
FLYB:FBti0184640

FlyBase symbol:
P{UAS-fy.GFP}3

Genetic reagent
(D. melanogaster)

UAS-sds22.GFP Bloomington
Drosophila Stock
Center

BDSC:65851;
FLYB:FBti0183080

FlyBase symbol:
P{UASp-sds22.GFP}attP2

Genetic reagent
(D. melanogaster)

UAS-EGFP (cytosolic) Bloomington
Drosophila Stock
Center

BDSC:5431;
FLYB:FBti0013987

FlyBase symbol:
P{UAS-EGFP}5a.2

Genetic reagent
(D. melanogaster)

UAS-mito-GFP Bloomington
Drosophila Stock
Center

BDSC:8443;
FLYB:FBti0040804

FlyBase symbol:
P{UAS-mito-HA-GFP.AP}3

Genetic reagent
(D. melanogaster)

UAS-GFP-Golgi Bloomington
Drosophila Stock
Center

BDSC:31422;
FLYB:FBti0129989

FlyBase symbol:
P{UASp-GFP.Golgi}14

Genetic reagent
(D. melanogaster)

UAS-GFP-KDEL Bloomington
Drosophila Stock
Center

BDSC:9898;
FLYB:FBti0076567

FlyBase symbol:
P{UAS-GFP.KDEL}11.1

Genetic reagent
(D. melanogaster)

UAS-GFP.SKL Bloomington
Drosophila Stock
Center

BDSC:28881;
FLYB:FBti0127932

FlyBase symbol:
P{UAS-GFP.SKL}2

Genetic reagent
(D. melanogaster)

UAS-eGFP-Atg5 Bloomington
Drosophila Stock
Center

BDSC:59848;
FLYB:FBti0072907

FlyBase symbol:
P{UASp-eGFP-drAtg5}16

Genetic reagent
(D. melanogaster)

UAS-Atg8-GFP Bloomington
Drosophila Stock
Center

BDSC:52005;
FLYB:FBti0154554

FlyBase symbol:
P{UAS-Atg8a.GFP}2

Genetic reagent
(D. melanogaster)

UAS-GFP-LAMP Bloomington
Drosophila Stock
Center

BDSC:42714;
FLYB:FBti0150347

FlyBase symbol:
P{UAS-GFP-LAMP}2

Genetic reagent
(D. melanogaster)

UAS-Aplip-GFP Bloomington
Drosophila Stock
Center

BDSC:24634;
FLYB:FBti0100247

FlyBase symbol:
P{UASp-Aplip1.EGFP}3

Genetic reagent
(D. melanogaster)

UAS-hiw-GFP Bloomington
Drosophila Stock
Center

BDSC:51640;
FLYB:FBti0164779

FlyBase symbol:
P{UAS-GFP-hiw}B

Genetic reagent
(D. melanogaster)

UAS-src-EGFP Bloomington
Drosophila Stock
Center

BDSC:5429;
FLYB:FBti0013989

FlyBase symbol:
P{UAS-srcEGFP}M7A

Genetic reagent
(D. melanogaster)

UAS-bsk-GFP Bloomington
Drosophila Stock
Center

BDSC:59267;
FLYB:FBti0166949

FlyBase symbol:
P{UAS-bsk.GFP}2

Genetic reagent
(D. melanogaster)

UAS-Dronc-GFP Bloomington
Drosophila Stock
Center

BDSC:56759;
FLYB:FBti0161295

FlyBase symbol:
P{UAS-Dronc.EGFP}2

Genetic reagent
(D. melanogaster)

UAS-Myc-fry-GFP Bloomington
Drosophila
Stock Center

BDSC:32106;
FLYB:FBti0131207

FlyBase symbol:
P{UAS-Myc-fry-GFP}2

Genetic reagent
(D. melanogaster)

UAS-Fak-GFP Gift. PMID: 15525665 FLYB:FBtp0020317 FlyBase symbol:
P{UAS-Fak.EGFP}

Continued on next page
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Continued

Reagent type Designation Source or reference Identifiers
Additional
information

Genetic reagent
(D. melanogaster)

UAS-muskelin-GFP Bloomington
Drosophila Stock
Center

BDSC:65860;
FLYB:FBti0183089

FlyBase symbol:
P{UASp-muskelin.
GFP}attP2

Genetic reagent
(D. melanogaster)

UAS-roc2-GFP Bloomington
Drosophila
Stock Center

BDSC:65861;
FLYB:FBti0183090

FlyBase symbol:
P{UASp-Roc2.GFP}attP2

Genetic reagent
(D. melanogaster)

UAS-GFP-cora1-383 This paper Created by injecting
UAS-GFP-cora1-383 DNA
into flies with the
VK00027 attP docking site

Strain, strain
background
(Danio rerio)

TgBAC(tp63:
GAL4FF)la213

PMID: 25589751 RRID:ZFIN_ZDB-
ALT-150424-4

NA

Strain, strain
background
(Danio rerio)

Tg(isl1[ss]: LEXA-VP16,LEXAop:
tdTomato)la215

PMID: 25589751 RRID:ZFIN_ZDB-
ALT-150424-6

NA

Strain, strain
background
(Danio rerio)

Tg(isl1:GAL4-VP16,
UAS:EGFP)zf154

PMID: 15886097 RRID:ZFIN_ZDB-
ALT-090917-1

NA

Strain, strain
background
(Danio rerio)

Tg(isl1:GAL4-VP16

,UAS:RFP)zf234

PMID: 19962310 RRID:ZFIN_ZDB-
ALT-110520-2

NA

Strain, strain
background
(Danio rerio)

Tg(UAS:EGFP-
PH-PLC)la216

This paper NA Created by
co-injection of
pDEST-4xUASnr-
EGFP-PH-PLC-pA
and tol2 mRNA

Strain, strain
background
(Danio rerio)

Tg(UAS:lifeact
-GFP)mu271

PMID: 23698350 RRID:ZFIN_ZDB-
ALT-130624-2

NA

Strain, strain
background
(Danio rerio)

Tg(UAS:GFP-
CAAX)pd1025

PMID: 23460678 RRID:ZFIN_ZDB-
ALT-130409-2

NA

Strain, strain
background
(Danio rerio)

Gt(jupa-citrine)
ct520a

PMID: 22056673 RRID:ZFIN_ZDB-
ALT-170123-1

NA

Strain, strain
background
(Danio rerio)

Gt(ctnna-citrine)ct3a PMID: 22056673 RRID:ZFIN_ZDB-
ALT-111010-23

NA

Strain, strain
background
(Danio rerio)

Gt(cdh1-tdtomato)xt18 PMID: 30504889 NA NA

Strain, strain
background
(Danio rerio)

AB (Wild-Type) Other NA Sagasti Lab stock

Antibody Rabbit polyclonal
anti-GFP antibody

Thermo Fisher
Scientific

Thermo Fisher
Scientific: A-11122;
RRID:AB_221569

1:500; overnight at 4˚C

Antibody Mouse anti-GFP
monoclonal antibody
clone 3E6

Thermo Fisher
Scientific

Thermo Fisher
Scientific: A-11120;
RRID:AB_221568

1:500; overnight at 4˚C

Antibody Rabbit polyclonal
anti-dsRed antibody

Clontech Clontech Cat# 632496;
RRID:AB_10013483

1:500; overnight at 4˚C

Antibody Mouse anti-coracle
monoclonal antibody

Developmental
Studies Hybridoma
Bank

DSHB Cat#
c566.9;
RRID:AB_1161642

1:25; overnight at 4˚C

Continued on next page
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Continued

Reagent type Designation Source or reference Identifiers
Additional
information

Antibody Goat anti-mouse
IgG (H + L)
cross-adsorbed
secondary antibody,
Alexa Fluor 568

Thermo Fisher
Scientific

Thermo Fisher
Scientific: A-11004;
RRID:AB_2534072

1:500; 2 h at 23˚C

Antibody Goat anti-rabbit
IgG (H + L)
cross-adsorbed
secondary antibody,
Alexa Fluor 555

Thermo Fisher
Scientific

Thermo Fisher
Scientific: A-21428;
RRID:AB_2535849

1:100; 4 h at 23˚C

Antibody Goat anti-mouse
IgG (H + L)
cross-adsorbed
secondary antibody,
Alexa Fluor 488

Thermo Fisher
Scientific

Thermo Fisher
Scientific: A-31561;
RRID:AB_2536175

1:100; 4 h at 23˚C

Antibody Goat anti-rabbit
IgG (H + L)
cross-adsorbed
secondary antibody,
Alexa Fluor 488

Thermo Fisher
Scientific

Thermo Fisher
Scientific: A-11034;
RRID:AB_2576217

1:100; 4 h at 23˚C

Antibody Donkey anti-rabbit
IgG (H + L), ATTO
565-conjugated

This study NA 1:10; 4 h at 23˚C

Antibody Goat anti-horseradish
peroxidase IgG,
affinity purified
Cy5 conjugate

Jackson
Immunoresearch

Jackson
Immunoresearch:
123-175-021

Recombinant
DNA reagent

pJFRC7 Addgene;
PMID: 20697123

Addgene: 26220

Recombinant
DNA reagent

pJFRC-MUH Addgene;
PMID: 20697123

Addgene: 26213

Recombinant
DNA reagent

pUAST-EndoA-GFP This paper Assembled using
restriction enzyme
digest

Recombinant
DNA reagent

pUAST-EndoB-GFP This paper Assembled using
restriction enzyme
digest

Recombinant
DNA reagent

pJFRC-MUH-
GFP-cora1-383

This paper Assembled using
restriction enzyme
digest

Recombinant
DNA reagent

pAA173 PMID: 18190904 NA NA

Recombinant
DNA reagent

p5E-krtt1c19e PMID: 25589751 NA NA

Recombinant
DNA reagent

p5E-4xUASnr PMID: 21223961 NA NA

Recombinant
DNA reagent

pME-EGFP PMID: 17937395 NA NA

Recombinant
DNA reagent

pME-EGFP-CAAX PMID: 17937395 NA NA

Recombinant
DNA reagent

pME-EGFP-PH-PLC This paper NA Assembled using
restriction enzyme
digest

Recombinant
DNA reagent

p3E-pA PMID: 17937395 NA NA
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Continued

Reagent type Designation Source or reference Identifiers
Additional
information

Recombinant
DNA reagent

pDEST-4xUASnr-
EGFP-PH-PLC-pA

This paper NA Assembled using
multisite gateway
cloning

Recombinant
DNA reagent

pDEST-krtt1c19e
-EGFP-CAAX-pA

This paper NA Assembled using
multisite gateway
cloning

Recombinant
DNA reagent

pDEST-neurod
5 kb:mTangerine

Other NA Gift from Alex
Nechiporuk

Recombinant
DNA reagent

pGFP-FRT-Kan-FRT PMID: 22134125 NA NA

Recombinant
DNA reagent

CH73-316A13 BACPAC
Resources Center

NA NA

Recombinant
DNA reagent

CH211-120J4 BACPAC
Resources Center

NA NA

Recombinant
DNA reagent

dscl2-gfp BAC This paper NA Assembled using
BAC recombineering

Recombinant
DNA reagent

dspa-gfp BAC This paper NA Assembled using
BAC recombineering

Sequence-based
reagent

Control morpholino GeneTools NA NA

Sequence-based
reagent

neurog1
morpholino

GeneTools.
PMID: 12413897,
12015292

NA NA

Chemical
compound, drug

PBP10 Sigma Sigma Cat# 529625

Chemical
compound, drug

AG1478 Calbiochem Calbiochem
Cat#:658552

NA

Software, algorithm FIMTrack PMID: 28493862 https://www.uni-
muenster.de
/PRIA/en/FIM/

Software, algorithm Ctrax PMID: 19412169 http://ctrax.
sourceforge.net/

Software, algorithm FIJI PMID: 22743772 Fiji, RRID:SCR_002285 https://fiji.sc/

Software, algorithm R R Project for
Statistical
Computing

R Project for
Statistical Computing,
RRID:SCR_001905

https://www.R-project.org

Drosophila strains
Flies were maintained on standard cornmeal-molasses-agar media and reared at 25˚ C under 12 hal-

ternating light-dark cycles. Alleles used in this study are detailed in the Key Resources Table, results

from the reporter screen are detailed in Supplementary file 1 and Figure 1—figure supplement 1.

Experimental genotypes are listed in Supplementary file 2.

Generation of transgenic fly lines
UAS-EndoA-GFP and UAS-EndoB-GFP
We PCR-amplifed EndoA and EndoB from genomic DNA with the following primers:

EndoA Forward: 5’-GAAGCGGCCGCTGGAAAAAATCGAAGATTAC-3’
EndoA Reverse: 5’-GAAGGATCCGTTGCCATTGGGCAGGGGC-3’
EndoB Forward: 5’-GGAGCGGCCGCTACGAAGTAGAGGAAATAAA-3’
EndoB Reverse: 5’-CACGGATCCGAGGGTGACATCGTGCTCT-3’

PCR amplicons were ligated into pJFRC following NotI/BamHI digestion. The resulting plasmids

(pJFRC7-EndoA and pJFRC7-EndoB) were used for phiC31 integrase-mediated transformation of

flies carrying the attP2 third chromosome attP docking site.
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UAS-GFP-cora1-383

We PCR-amplifed the amino terminal portion of the cora gene, which is sufficient to direct junctional

localization of the gene product (Ward et al., 1998), using the following primers: Forward: 5’-

GGAACTAGTATGCCGGCGGAAATTAAAC-3’; Reverse: 5’-GAACTCGAGCTACTTCTCCTTCTTG

TTCTTGATGG-3’. The cora PCR amplicon was digested with SpeI and XhoI and ligated into a ver-

sion of pJFRC-MUH (Pfeiffer et al., 2010) that was modified to contain the coding region of GFP as

an in-frame amino-terminal fusion protein. The resulting plasmid (pJFRC-MUH-GFP-cora1-383) was

used for phiC31 integrase-mediated transformation of flies carrying the VK00027 third chromosome

attP docking site (Bestgene).

PBP10 feeding
Larvae were transferred at 72 h AEL to 35 mm dishes containing unmodified cornmeal-molasses

agar (mock) or cornmeal-molasses agar supplemented with 20 mM PBP10 and assayed for behavior

responses and cora immunoreactivity at 120 h AEL.

Zebrafish
Zebrafish (Danio rerio) were grown at 28.5˚C on a 14 h/10 h light/dark cycle. The following previ-

ously described transgenic strains were used: TgBAC(tp63:GAL4FF)la213, Tg(isl1[ss]: LEXA-VP16,LEX-

Aop:tdTomato)la215 (Rasmussen et al., 2015), Tg(isl1:GAL4-VP16,UAS:EGFP)zf154 (Sagasti et al.,

2005), Tg(isl1:GAL4-VP16,UAS:RFP)zf234 (O’Brien et al., 2009a), Gt(ctnna-citrine)ct3a (Trinh et al.,

2011), Gt(jupa-citrine) ct520a (Trinh et al., 2011), Tg(UAS:lifeact-GFP)mu271 (Helker et al., 2013), Gt

(cdh1-tdtomato)xt18 (Cronan et al., 2018), and Tg(UAS:GFP-CAAX)pd1025 (Ellis et al., 2013). All

experimental procedures were approved by the Chancellor’s Animal Research Care Committee at

UCLA.

BAC modification
To generate BAC reporters for dsc2l and dspa, the corresponding stop codons in BACs CH73-

316A13 and CH211-120J4, respectively, were replaced by a GFP-KanR cassette as previously

described (Suster et al., 2011).

Zebrafish plasmid assembly
To generate pME-EGFP-PH-PLC, the PH domain of rat PLC1d1 was PCR amplified from pAA173

(Kachur et al., 2008) and cloned into pME-EGFP (Kwan et al., 2007) using the restriction enzymes

XhoI and BglII. The pDEST-4xUASnr-EGFP-PH-PLC-pA plasmid was created by Gateway cloning of

p5E-4xUASnr (Akitake et al., 2011), pME-EGFP-PH-PLC, and p3E-pA (Kwan et al., 2007). pDEST-

krtt1c19e-EGFP-CAAX-pA was assembled by Gateway cloning of p5E-krtt1c19e (Rasmussen et al.,

2015), pME-EGFP-CAAX, and p3E-pA (Kwan et al., 2007).

UAS:GFP-PH-PLC zebrafish transgenic line construction
To create a stable line, one cell stage embryos were injected with pDEST-4xUASnr-EGFP-PH-PLC-

pA and tol2 mRNA, raised to adulthood and screened for transgene transmission to the F1

generation.

Zebrafish transient transgenesis
To label lateral line axons, one to four-cell stage zebrafish embryos were injected with 25 pg of a

neurod:mTangerine plasmid (gift from Alex Nechiporuk, Oregon Health and Science University, Port-

land, OR). 200 pg of BAC reporters for dsc2l and dspa were injected at the one to four-cell stage.

Morpholino injection
To block somatosensory neuron development, one cell stage embryos were injected with 1 nl of

injection mixture containing an antisense morpholino oligonucleotide targeting neurog1 (5’-ACGA

TCTCCATTGTTGATAACCTGG-3’) at a concentration of 0.7 mM (Andermann et al., 2002;

Cornell and Eisen, 2002). Loss of response to touch was monitored to confirm efficacy of the treat-

ment. As a control, embryos were injected with 1 nl of an antisense morpholino that targets an
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intron of the human beta-globin gene (5’-CCTCTTACCTCAGTTACAATTTATA-3’) at a concentration

of 0.7 mM. Antisense morpholino oligonucleotides were synthesized by GeneTools (Philomath, OR).

AG1478 treatment
The ErbB receptor antagonist AG1478 was used to perturb repositioning of the pLLn below the epi-

dermis (Raphael et al., 2010). Embryos were bathed in embryonic medium containing either 4 mM

AG1478/1% DMSO or 1% DMSO as a control.

Microscopy
Imaging
Drosophila larvae were mounted in 90% glycerol under No. one coverslips and imaged using a Leica

SP5 microscope with a 40 � 1.2 NA oil immersion lens. For time-lapse analysis, larvae were imaged

at the indicated time, recovered to yeasted agar plates with vented lids, aged at 25 ˚C, and imaged

again. Zebrafish embryos were mounted as described (O’Brien et al., 2009b). Confocal imaging was

performed on an LSM 510 or 800 confocal microscope (Carl Zeiss).

Laser ablation
Larvae were mounted in 90% glycerol under No. one coverslips, dendrites were imaged using a

Leica SP8 2-photon microscope with a 20 � 1.0 NA water immersion lens at 2x magnification under

low (<20%) laser power. Cells were ablated or dendrites were severed by focusing high laser output

(>80%) on the nucleus or a ~ 2 micron dendrite segment (64x magnification ROI scan), respectively.

Larvae were recovered to yeasted agar plates with vented lids, aged at 25 ˚C, and processed for live

imaging or immunostaining at the indicated time. Zebrafish axons were severed using a 2-photon

laser as previously described (O’Brien et al., 2009b).

Drosophila immunostaining
Third instar larvae were pinned on a sylgard plate, filleted along the ventral midline, and pinned

open. After removing the intestines, fat bodies, imaginal discs, and ventral nerve cord, fillets were

fixed in PBS with 4% PFA for 15 min at room temperature, washed four times for 5 min each in PBS

with 0.3% Tx-100 (PBS-Tx), blocked for 1 h in PBS-Tx +5% normal donkey serum, and incubated in

primary antibody overnight at 4˚ C. Samples were washed four times for 5 min each in PBS-Tx, incu-

bated in secondary antibody for 4 h at room temperature, washed four times for 5 min each in PBS-

Tx, and stored in PBS prior to imaging. Antibody dilutions were as follows: rabbit anti-GFP (Fisher

#A-11122, 1:500), mouse anti-coracle (DSHB, C566.9 supernatant, 1:25), rabbit anti-dsRed (Clone-

tech #632496, 1:200), HRP-Cy5 (Jackson Immunoresearch, 1:100), goat anti-mouse Alexa488 (Ther-

mofisher A-11001, 1:200), goat anti-rabbit Alexa 488 (Thermofisher A-11034, 1:200), goat anti-rabbit

Alexa 555 (Thermofisher A-21428, 1:200).

Drosophila expansion microscopy
Immunostaining was as above with the following antibodies: mouse anti-GFP, clone 3E6 (Invitrogen

#A11120, 1:100), rabbit anti-dsRed (Clonetech #632496, 1:50), goat anti-mouse Alexa488 (Thermo-

fisher A31561, 1:100), donkey anti-rabbit ATTO 565 (Vaughan lab, 1:10). Following immunostaining,

samples were mounted on lysine-coated #1.5 cover glass in polydimethylsiloxane wells and incu-

bated in monomer solution (2 M NaCl, 8.625% sodium acrylate, 2.5% acrylamide, 0.15% bisacryla-

mide in PBS) for 1 h at 4˚ C prior to gelation. A stock of 4-hydroxy-2,2,6,6-tetramenthylpiperidin-1-

oxyl (4-hydroxy-TEMPO) at 1% (wt/wt) in water was added to the incubation solution and diluted to

a concentration of 0.01%. Concentrated stocks of tetramethylethylenediamine (TEMED) and ammo-

nium persulfate (APS) at 10% (wt/wt) in water were added sequentially to the incubation solution

and diluted to concentrations of 0.2% (wt/wt). The tissues were then incubated at 37˚C for 3–4 h.

After gelation, the gels were cut and placed in a small 12-well chamber and 1 unit/ml (5 mg/ml) of

chitinase in PBS (pH 6.0) was used to digest the cuticles for ~4 d at 37˚C. Chitinase-treated samples

were incubated with 1000 units/ml collagenase solution (prepared with buffer 1x HBSS lacking cal-

cium, magnesium, and phenol red) with 0.01 M CaCl2 and 0.01 M MgCl2 overnight in a 37˚C shaking

incubation chamber. Samples were then rinsed with PBS twice for 5 min and digested in 8 units/ml

proteinase K solution in digestion buffer (40 mM Tris pH 8.0, 1 mM EDTA, 0.5% Triton, 0.8 M
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Guanidine HCl) for 1 h at 37˚C. Subsequently, samples were removed from the digestion solution

and were allowed to expand overnight in a large excess of deionized water. After expansion, the

expanded gel was trimmed to fit onto the coverglass, excess water was removed, and the gel was

mounted on a lysine-coated cover glass for imaging. Confocal microscopy was performed on a Leica

SP5 inverted confocal scanning microscope using a 63 � 1.2 NA water lens.

Drosophila SBF-SEM
Third instar larva were perforated with insect pins and cut open on ice in freshly made fixative (2.5%

glutaraldehyde, 4% paraformaldehyde, 0.1 M sodium cacodylate). Samples were

centrifuged at 15000 x rpm in a microcentrifuge for 1 h and then incubated at 4˚ C overnight to

achieve thorough fixation. Next, samples were washed five times for 5 min each in 0.1 M sodium

cacodylate and then post-fixed in osmium ferrocyanide for 1 h on ice. The tissues were then washed

five times for 5 min each in ddH2O at room temperature and incubated in a 1% thiocarbohydrazide

solution for 20 min at room temperature. The samples were washed five times for 5 min each in

ddH2O at room temperature and then incubated in 2% osmium tetroxide for 30 min at room tem-

perature. Following another five washes for 5 min each in ddH2O at room temperature, samples

were stained en bloc in 1% uranyl acetate at 4˚ C overnight. The following day, tissues were washed

five times for 5 min each in ddH2O at room temperature and stained en bloc in Walton’s lead aspar-

tate for 30 min at 60˚ C. The samples were then washed five times for 5 min each in ddH2O and

dehydrated in an ice cold ethanol series (30%, 50%, 70%, and 95% EtOH), then transferred to room

temperature for 5 min. This was followed by two changes of 100% EtOH and two changes of propyl-

ene oxide for 5 min each. The tissues were then infiltrated in a 1:1 mixture of propylene oxide: Dur-

cupan resin, for 2 h at room temperature followed by overnight infiltration in fresh Durcupan. The

following day, tissues were given a fresh change of Durcupan for 2 h at room temperature and then

placed in flat embedding molds and polymerized in a 60˚ C oven for 2 days. The blocks were

trimmed and imaged using a Zeiss Sigma scanning electron microscope with a Gatan 3-view system

at 2.5–1.7 KV. Stacks (1000 sections) were collected with a 60 nm step size.

Morphometric analysis
All image analysis was performed using Fiji (Schindelin et al., 2012). The Simple Neurite Tracer

plugin (Longair et al., 2011) was used to trace neurites, ensheathment channels, and cell borders.

Only basal cells for which the entire perimeter of the cell was visible were traced. R (https://www.r-

project.org/) was used to generate plots and perform statistical tests.

Behavior assays
Harsh Touch. Larvae were placed in a plastic petri dish with enough water, so larvae remained moist,

but did not float in the dish. von Frey filaments made from fishing line and affixed to glass capillaries

were applied to the dorsal side of the larvae between segments A3 and A6 until the filament buck-

led, exhibiting a pre-determined force (~78 mN). A positive response was scored if one complete

nocifensive roll occurred within 10 s of the mechanical stimulus.

Larval locomotion
Larvae were washed and placed on a 2% agar plate. To measure crawling velocity, 10 s videos of

individual crawling larvae were recorded as uncompressed avi files using a Leica DFC310 FX camera

on an AmScope FMA050 mount. Files were converted to flymovieformat with any2ufmf and analyzed

in Ctrax (Branson et al., 2009). To measure crawling trajectory, larval locomotion was analyzed using

the frustrated total internal reflection-based imaging method FIM together with the FIMTrack soft-

ware package (Risse et al., 2013).

Experimental design and statistical analysis
Datasets were tested for normality using Shapiro-Wilks goodness of fit tests. Details on statistical

tests are provided in figure legends. Sample genotypes were blinded for both data acquisition and

analysis.
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